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Abstract. By using some rearrangements technics, jointly with a study of the radially symmetric
case, we prove that the bifurcation curve for some sublinear elliptic eigenvalue type problems converges
to zero when the eigenvalue parameter � converges to in�nity. The result improves some previous work in
the literature (dealing mainly with the one-dimensional case or imposing some restrictions to the spatial
dimension of the open set) and has application in several contexts.
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1 Introduction

We study in this paper the bifurcation diagram, with respect to �, of non-negative solutions to the
semilinear elliptic equation

P (q; �; �) =

�
��u+ q(x)juj��1u = �u in 
,
u = 0 on @
;

(1)

where 
 is a smooth bounded domain in RN (N � 1), � is a real parameter, 0 < � < 1 and q(x) � 0 is
a real function satisfying that there exists q0 and q, with 0 < q0 � q; such that

q0 � q(x) � q a.e. x 2 
: (2)

Notice that, obviously, u � 0 is always a solution of problem (1) and so our interest relies on the existence
of nontrivial solutions of the problem.
One of the main motivations for studying problem P (q; �; �); with 0 < � < 1; arises from some

previous results ([15]) concerning solutions of the linear elliptic Schroedinger equation associated to the
so-called in�nite well potential. For instance, in the one-dimensional case, we can formulate it as�

�u00 + V (x)u = �u in (�R;R);
u(�R) = 0; (3)

for a given R > 0; or on the real line, R = +1 (and thus it is assumed that V (x) = +1 if x =2 (�R0; R0)
for some R0 > 0). It turns out that there is some ambiguity in the treatment of the case of the real
line: what is mentioned to be �the solutions� in most of the text-books are not classical solutions of
the problem since Dirac�s deltas appear at x = �R. Such functions are solutions merely in the sense of
distributions, but besides that, they satisfy a di¤erent equation where deltas at x = �R must be included.
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In this situation solutions of the semilinear equation P (q; �; �) provide some kind of, say, "alternative
approach" if we assume that V (x) := q(x)juj��1 (see a detailed analysis in [15]).
The one-dimensional case of P (q; �; �), with 
 = (�R;R) and q � 1, was studied in [17] by using

some phase plane methods in ODEs. There it was proved that for 0 < � < �1 there is no solution to (3)
and for �1 < � < �

� , where �� is a critical value given explicitly, there is a unique solution u� > 0 with
@u�=@n(�R) < 0 bifurcating at in�nity for � = �1. Moreover u� is decreasing as a function of � and
the solution u�� > 0 in (�R;R) is such that u0��(�R) = 0: this corresponds to the de�nition of a �at
solution. Moreover, from this �at solution solution it is possible to build continua of compact support
solutions. We also obtained in [17] the asymptotic behaviour (in �) of the solutions when � ! +1;
namely

ku�kL1(�R;R) �
C

�1=(1��)
: (4)

Notice that this asymptotic behavior of the bifurcation curve, in the plane R2; with variables � and
ku�kL1(�R;R), is quite exceptional in contrast to many other nonlinear problems exhibiting bifurcation
phenomena: in many cases it can be shown that the corresponding solutions u� satisfy that ku�kL1 %
+1 when �! +1:
Coming back again to the consideration of the Schroedinger equation, the results of [17] imply that

�� > 0 and u�� > 0 are, respectively, the �rst eigenvalue and its corresponding eigenfunction for the
linear eigenvalue problem of Schroedinger type�

�w00 + ju�� j��1 w = �w in (�R;R);
w(�R) = 0: (5)

Moreover u0��(�R) = 0 (which allows to prolongate this function by zero to the rest of R without
generating any Dirac delta at the points x = �R). It is in this sense that we have an "alternative
approach" for solutions to linear Schrödinger equation for such type of singular potentials V (x).
Obviously, problem P (q; �; �) also arises in many other contexts since it is a typical example of the

so-called di¤usion-reaction equations (see, e.g. [32], [33], [11]). If q � 1 and � > 1 it is the well-known
logistic equation in population dynamics. In this case there is a unique positive solution u� for any
� > �1, where �1 > 0 is the �rst eigenvalue of the Laplacian with Dirichlet boundary conditions and
it follows immediately from the Strong Maximum Principle that if u� � 0, u� 6� 0, is a solution then
u� > 0 in 
 and @u�

@� < 0 on @
; i.e., all non-negative solutions to the logistic equation are actually
positive. But this is not the case for P (q; �; �) for q � 1 and 0 < � < 1 and for some problems of this kind
previously studied. These one-dimensonal results were extended in [21] to the case of the p-Laplacian as
well as possible singular zero order terms �1 < � < p� 1.
Problem P (q; �; �) is studied in [24] for q = 1 and 0 < � < 1 as a particular case of a much more

general class of problems allowing more general nonlinear terms and boundary conditions. The main
result in [24] is the existence of an unbounded continuum of non-negative solutions bifurcating from
in�nity at the asymptotic bifurcation point �1. The method of proof was to apply global asymptotic
bifurcation theorems by Rabinowitz [30] by using as a tool some theorem in [10]. Many other references
on related problems can be found in the list of references of [18].
Existence of a bounded weak non-negative solutions for any � > �1 was obtained later by Porretta

[29] (also for q � 1 but for a more general linear elliptic second order operator). He proves that

lim
�!+1

ku�kL1(
) = 0

under the assumption
N � 2
N + 2

< � < 1:

He used some variational methods, namely a variant of the Ambrosetti-Rabinowitz Mountain Pass The-
orem. Some complementary results concerning, for example, several estimates for some norms of the
solutions are also obtained there.
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A more general set of results (in the N -dimensional case) was presented in the paper [18]: by using
some variational methods (Nehari manifolds), it was proved there that for any � > �1 there exists (at
least) a non-negative solution. These solutions bifurcate from in�nity at �1 and generate an unbounded
continuum of non-negative solutions. In this paper we proved a Pohozaev type identity showing the
relevance of the coe¢ cient q(x) concerning existence (or not) of a �at solutions (satisfying that u� > 0 in

 and @u�

@� = 0 on @
) and compact support solutions. The existence of solutions with compact support
in 
 was considered in Section 5 of [18]. With the usual philosophy of reaction-di¤usion equations giving
rise to a free boundary (see Section 1.2 of [11]), the results of the mentioned paper show that, in the
case of problem (1), the "di¤usion-absorption balance" condition on the nonlinearities is satis�ed (since
� < 1) and that the "balance condition between the data and the domain", necessary for the formation
of compact support solutions (and thus of �at solutions) is here represented by means of the requirement
of assuming � large enough (see also [23]). It is important to remark that the existence of solutions with
compact support in [18] was obtained by using, in a crucial way, the assumption that lim�!+1 ku�k1 = 0
(that was also used in the proof of a similar result in [23]). So, once again, decay estimates of the type
(4) are relevant for di¤erent purposes. The stability of solutions was considered in [19].

The main purpose of this paper is to get some asymptotic estimates on the bifurcation curve for
�! +1, similar to those obtained (4) for the one-dimensional case and q � 1, improving the results of
[29] and [18]. We shall show that no additional condition on � (or N) is needed.

A very rough argument, without any rigorous justi�cation, to expect such estimate on the bifurcation
solutions curve could come (according this author) from the rough idea that for many purposes the
Laplacian operator ��u can be substituted by the zero order expression �1u, where �1 is the �rst
eigenvalue of the Laplacian with Dirichlet boundary conditions for this domain 
. In this way, if we
assume that q(x) � q0 we �could arrive to the approximated identity� �1u + q0u� � �u: From here we
can see that

u � C

(�� �1)1=(1��)
with C =

1

q
1=(1��)
0

:

This also indicates that if � < �1 no positive solution must be possible. In fact, in Porretta [29], as an
intermediate step in his proof the author proves that, for any 0 < � < 1

ku�kL�+1(
) �
C

�1=(1��)
: (6)

The following theorem shows that this rough idea can be made precise, by some arguments which are
far from trivial and make precise the correct decay estimate on the bifurcation solutions curve. Since, in
contrast with the onedimensional case and q(x) = q0, we can not ensure the uniqueness of weak solutions
of P (q; �; �) it is opportune to mention that our result will be valid also for a concrete subclass of weak
solutions; the so called ground state solution, i.e. a weak solution u� of P (q; �; �) which satis�es

E�(u�) � E�(w�)

for any other nonzero weak solution w� of P (q; �; �). Here E�(u) is the energy functional corresponding
to P (q; �; �) which is de�ned on the Sobolev space H1

0 (
) as follows

E�(u) =
1

2

Z



jruj2 dx+ 1

�+ 1

Z



q(x)juj�+1 dx� �
2

Z



juj2 dx:

Theorem 1. Let q(x) satisfying (2). Let

�# =

�
j
j
!N

�2N
(7)
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Figure 1: Bifurcation curve for q(x) constant.

with !N := jB1(0)j. Then, for any � > �#, there exists a weak solution u� of problem P (q; �; �) such
that

ku�kL1(
) �
C

�
1

1��
(8)

for some C > 0 depending only on j
j and q0: In addition the above weak solutions u� may be assumed
to be ground solutions and, in any case, they have compact support.

We point out that in the case q(x) = q0 it was proved in [27] that any possible weak solution of
P (q; �; �) must be radially symmetric with respect to some point x0 2 
: Obviously this is not necessarily
true for the case of a general coe¢ cient q(x) satisfying (2) and so the last conclusion of Theorem 1 seems
to be new in the literature (the results of [33] require a change of sign in q(x)). In some sense, estimate (8)
shows that there is a continuous curve bifurcating from the in�nity but now from the �point�(+1; 0):We
also recall that according Proposition 2.2 of [18], the bifurcation curve (�; ku�kL1(
)) of ground solutions
bifurcates from the in�nity but now from the �point�(�1;+1),when �& �1 (as in the one-dimensional
case and q(x) = q0).
Theorem 1 gives answer to the following question arising in the controllability of elastic vibrations of

a body 
: assume the open bounded set 
 vibrating (unidirectionally) in its �rst natural vibration mode
and with a very large amplitude. So, let vA(x) satisfying�

��v = �1v in 
,
v = 0 on @
;

with kvAkL1(
) = A and A very large. Given � > 0 we want to control the vibration (i.e. to stabilize
the vibration to the static rest) of the body, i.e., connecting the vibrational state vA with the total
equilibrium v � 0; by means of unidirectional forces f�(x), of a decreasing amplitude, kf�kL1(
) & 0; as
the parameter �% +1 such that if w� is the state associated to the control f�(x)�

��w = �1w + f�(x) in 
,
w = 0 on @
;

then we want to have
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A� kw�kL1(
) � � if �� �1 is small enough
and

kw�kL1(
) � � if � is large enough.

Questions of this type can be understood as a peculiar approximate controllability property (see, e.g., the
monograph [7]). Given 0 < � < 1; by taking the feedback control f�(x) := (���1)w(x)�jw(x)j��1w(x)
and applying Theorem 1 we see that estimate (8) shows that kf�kL1(
) & 0 as �% +1.

Corollary 1 It is possible to stabilize a very large vibration vA of an elastic body 
, in its �rst natural
vibration mode, by means of a family of feedback controls f�(x) of decreasing to zero amplitude: Moreover
the spatial action of the controls family f� is a decreasing family of compact subsets of the body.

2 Proof of the main result

The main idea of the proof will be to reduce the derivation of the estimate (8) to the simple case of
radially symmetric solutions and then to extend the conclusion to the case of general domains by using
rearrangement techniques. So, the �rst step is the consideration of a simpler formulation. Inspired in the
proof of Proposition 5.1 of [18] we have:
Proposition 1. Let q(x) � q0 > 0: Then, if �� is given by (7) the conclusion of Theorem 1 holds

for the radially symmetric solution of P (q; �; �) on 
 = BR(0), for any R > R� with

R� =

�
!N
j
j

�N
: (9)

Proof. We make the change of variables

u�(x) =
�q0
�

� 1
1��

U(
p
�x) (10)

with U solution of the special problem P (1; �; 1) on 
 = BR(0); i.e.�
��u+ juj��1u = u in Bp�R(0),
u = 0 on @Bp�R(0):

(11)

Then, if R = R�, since 1=R�2 = �# the transformed problem P (1; �; 1) takes place on the ball B1(0) and
thus by the results of [26] we know the existence of a unique radially symmetric �at solution u��(x) =
u��(jxj). Since this solution can be extended to the whole RN by zero outside BR�(0); for any � > �#

we can introduce a change of variables leading to the relation

u�(x) =

 
�#

�

! 1
1��

u��(

p
�p
�#
x);

and thus

ku�k1 =

 
�#

�

! 1
1��

ku�#k1 ;

which leads to the estimate (8). Moreover, for any x0 2 BR(0) such that Bp
�#p
�
R
(x0) � BR(0) we can

construct the solution

u�(x;x0) :=

8><>:
�
�#

�

� 1
1��

u�#(
p
�p
�#
jx� x0j) on Bp

�#p
�
R
(x0);

0 on BR(0) nBp
�#p
�
R
(x0);
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which also satis�es the estimate.�

Now we pass to the consideration of a general bounded domain 
:

Proof of Theorem1. 1 st step. We assume for the moment that q 2W 1;1(
) and satis�es (2). Let q#(jxj)
be the radially symmetric increasing rearrangement of q(x) (see, e.g. [11], [12] and its many references).
Then we know that q# 2W 1;1(BR(0)) and that

q0 � q#(jxj) � q a.e. x 2 BR(0); (12)

where BR(0) (which we can denote by 
�) is taken such that jBR(0)j = j
j ; i.e.

R =

�
j
j
!N

�1=N
:

Given a radially symmetric positive coe¢ cient function Q(jxj) we de�ne the general set of radially sym-
metric problems

P (Q;BR) =

�
��u+Q(jxj)juj��1u = �u in BR(0),
u = 0 on @BR(0):

(13)

Let U� and U� be the (unique) corresponding radially symmetric solutions of P (q;BR�) and P (q0; BR�);
respectively, given in the proof of the above proposition, for � = �� := 1=R�2 = �#: Since both �at
solutions are positive and radially symmetric, arguing as in [26], we deduce that

U�(jxj) � U�(jxj) for any x 2 BR�(0):

Moreover, thanks to (12) we know that U� (respectively U�) is a subsolution (resp. a supersolution) to
problem P (q#; BR�). Then, by the iterative method of super and sub-solutions we know that there exists

the minimal and maximal associate solutions U ]�(jxj), U
]

�(jxj) of problem P (q#; BR�) such that, for any
other weak solution such that U�(jxj) � U(x) � U�(jxj) we must have

U�(jxj) � U
]
�(jxj) � U(x) � U

]

�(jxj) � U�(jxj) for any x 2 BR�(0):

Moreover, we know that U ]�(jxj) and U
]

�(jxj) can be assumed to be ground solutions (see, e.g. [34], p.17).
As in the proof of the above proposition we can construct solutions with compact support for any � � ��:
2nd step. Let u� be any weak solution u� of problem P (q; �; �) and let u�� be the symmetric decreasing
rearrangement of u� (see, e.g. [11] and its many references) by

u�� : 

� ! R; with u��(x) := eu�(!N jxjN );

with eu� the scalar decreasing rearrangement of u�: At least formally, eu� is given as the inverse function
of the distribution function �� of u�

�� : R! R; ��(�) := jfx 2 
 : u�(x) > �gj ;

([11]). We de�ne, e
 := (0; j
j) and for any s 2 [0; j
j] the function
k(s) =

Z s

0

bq(�)eu(�)�d�;
where bq(s) is the scalar increasing rearrangement of q(x): Notice that

eu(s) = ( 1bq(s) dkds (s)) a.e. s 2 (0; j
j);
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where
(r) = jrj1=� sign(r):

It can be proved that k(t; s) veri�es (in a weak sense) the inequality

�a(s) d
ds
(

1bq(s) dkds (s)) + k(s) � ( 1bq(s) dkds (s)) on (0; j
j);
with

a(s) :=
�
N!

1=N
N s(N�1)=N

�2
:

The proof of this inequality is quite long and technical but it is an obvious adaptation to the present
framework of Theorem 1 of [12] (see also Theorem 2 of [13] and Theorem 1 of [14]).

3 rd step. The scalar decreasing rearrangement
f
U
]

�(s) of the radially symmetric maximal solution U
]

�(jxj)
of problem P (q#; BR) gives rise to a function K(s) de�ned by

K(s) =

Z s

0

bq(�)fU ]�(�)�d�;
which satis�es

�a(s) d
ds
(

1bq(s) dKds (s)) +K(s) = ( 1bq(s) dKds (s)) on (0; j
j):
The proof of this is again an obvious adaptation to our framework of the similar results of the above
mentioned references. Moreover, in both cases, we have the boundary conditions�

k(0) = K(0) = 0;
dk
ds (j
j) =

dK
ds (j
j) = 0:

(14)

4 rd step. By using the T-accretiveness in L1(e
) of the operator
D(A) = fw 2 L1(e
) : w(0) = 0; dwds (j
j) = 0; a(s) dds( 1bq(s) dwds (s)) 2L1(e
)g

Aw = �a(s) dds(
1bq(s) dwds (s)) if w 2 D(A);

we get the comparison result
k(s) � K(s) for any s 2 [0; j
j]: (15)

Although this comparison can be proved by using the techniques of [3] we shall follow here a di¤erent
method which uses the T-accretiveness in L1(e
) of operator A (a well-known result in the previous
literature; see, e.g. [4], [8]). We know that dk

ds ;
dK
ds 2 C

1(�; j
j) for any � > 0: Then, we can reason as in
[9] by using the interior semiproduc on L1(e
)

�(z; y) = lim ess sup
"&0

f(signz(s))y(s) : s 2 J(z; ")g

where
J(z; ") = fs 2 e
 : jz(s)j > kzkL1(e
) � "g:

Thus, multiplying (by means of �) the di¤erence of the di¤erential expressions for k and K by

z(s) = [k(s)�K(s)]+ ;

if we assume that z(s) > 0 we get a contradiction since for

y(s) = (�a(s) d
ds
(

1bq(s) dkds (s))�� a(s) dds( 1bq(s) dKds (s)))
7



we know that �(z; y) � 0 (the T-accretiveness in L1(e
) of A), for
y(s) = k(s)�K(s)

we get that
�(z; y) =

[k �K]+L1(e
) > 0
and for

y(s) = (
1bq(s) dkds (s))� ( 1bq(s) dKds (s))

we have that
�(z; y) = 0: (16)

The proof of (16) uses the de�nition of the set J(z; "), the fact that dk
ds ;

dK
ds 2 C

1(�; j
j) for any � > 0,
and that then there exists s0 2 (0; j
j) such that

max
s2[0;j
j]

[k(s)�K(s)]+ = k(s0)�K(s0);

since obviously s0 > 0 and s0 < j
j : Then

dk

ds
(s0) =

dK

ds
(s0)

and hence

lim ess sup
"&0

f
�
(

1bq(s) dkds (s))� ( 1bq(s) dKds (s))
�
: s 2 J(z; ")g = 0:

5 rd step. The inequality (15) is stable by passing to the limit in a regularizing process on q and so we
can assume merely that q(x) satis�es (2). Moreover, by using the Hardy-Littelwood-Polya property (see
e.g. [11]) we know that (15) implies the comparison

ku�kL1(
) �
U ]�

L1(
�)
:

Finally, since U ]�
L1(
�)

�
U�L1(
�) � �q0� � 1

1�� U��L1(
�)
we get the estimate (8). The proof of the compactness of the support of the constructed solutions follows
the same arguments than the proof of Theorem 5.1 since the key ingredient is to have estimate (8).�

Remark 2 It is illustrative to compare the above bifurcation results with the ones which are available in
the literature for the opposite sign of coe¢ cient q(x), i.e. when q(x) < �q0 < 0: In this case there is
again a phenomenon of bifurcation from the in�nity near the �rst eigenvalue of the Laplacian �1 but now
the existence of positive solutions requires the condition � < �1: see, e.g. [28]

Remark 3 The estimate (8) can be also obtained for some solutions of the associated periodic problem

(P )

8<: ut �4u+ q(x)juj��1u = �u in Q := 
� R,
u(x; t) = 0 on � := @
� R,
u(x; t+ T ) = u(x; t) in Q.

The techniques to get a similar treatment of the radial case (and spatially compact support solutions) were
given in [2] for a family of related problems. The symmetrization of time-periodic problems was already
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studied in [25] for some other eigenvalue problems but the extension to the above problem can be obtained
easily. We point out that in [22] it was shown the reverse inequality

ku�(t; :)kL1(
) �
C

�
1

1��
(17)

for some C > 0 (see their Theorem 3.4). In the stationary case we also can prove a reverse type inequality
as (17) at least for the one-dimensional and radially symmetric formulations.

Remark 4 Theorem 1 can be extended to a quasilinear version of problem P (q; �; �) by replacing the
Laplacian operator by the p-Laplacian di¤usion

�pu = div(jrujp�2ru); p > 1:

The question is much more delicate (and in fact it is an interesting open problem) when we replace the
Laplacian operator by an anisotropic di¤usion of the type

NX
i=1

@

@xi
(

���� @u@xi
����pi�2 @u@xi ), pi > 1:

The basic comparison result dealing the p-Laplacian can be already found in the references indicated in
the proof of Theorem 1. The case of anisotropic di¤usion was studied recently in [1]. The associated
eigenvalue problem has now a richer structure since the associated eigenvalue problem is not so easily
de�ned as for the p-Laplacian case (see references in [6]). Notice that the arguments of the Proposition
1 do not apply (at least directly) to the case of anisotropic di¤usion.
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