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MATHEMATICAL ANALYSIS OF A
VISCOELASTIC-GRAVITATIONAL LAYERED EARTH MODEL

FOR MAGMATIC INTRUSION IN THE DYNAMIC CASE

ALICIA ARJONA, JESÚS ILDEFONSO DÍAZ

Abstract. Volcanic areas present a lower effective viscosity than usually in

the Earth’s crust. It makes necessary to consider inelastic properties in defor-

mation modelling. As a continuation of work done previously by some of the
authors, this work is concerned with the proof that the perturbed equations

representing the viscoelastic-gravitational displacements resulting from body

forces embedded in a layered Earth model leads to a well-posed problem even
for any kind of domains, with the natural boundary and transmission condi-

tions. A homogeneous or stratified viscoelastic half-space has often been used
as a simple earth model to calculate the displacements and gravity changes.

Here we give a constructive proof of the existence of weak solutions and we

show the uniqueness and the continuous dependence with respect to the initial
data of weak solutions of the dynamic coupled viscoelastic-gravitational field

equations.

1. Introduction

The study of ground deformation in volcano has been an important issue during
last decades. There is a wide amount of literature on methodologies for mod-
elling elastic and viscoelastic response when a source is embedded in media. The
Mogi model [27] is the simplest analytical solution for a point source of pressure
in an elastic half-space to interpret ground deformation. However, pure elastic
models do not allow to reproduce gravity changes in some events. Therefore, the
computation of gravity changes and deformations is advisable in order to do a
correct interpretation. For an example, see the following and references therein
[31, 32, 34, 35] and [15, 16, 18, 19, 20, 21]. Analytical and numerical solutions for
modelling ground deformations and gravity changes have been devised and used in
literature [4, 5, 6, 7, 10, 12, 28, 29, 36]. These models consider different source ge-
ometries representing magma such as spherical sources [27], ellipsoidal point sources
[5] and sources due to pressurisation of the magma chamber [8]. As we shall see
the coupling with the stationary equation for the potential gravity leads to many
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new difficulties with respect to the pure viscoelastic models (see, e.g. [13] and its
references).

In volcanic areas the presence of inhomogeneous materials and high temperature
bodies reduce the effective viscosity of the Earth’s crust. Therefore, inelastic prop-
erties of the Earth’s crust must be taken into account [8, 21]. In this way Mogi’s
model was generalized to viscoelastic rheology in [8]. Rundle [34] presented a strat-
ified viscoelastic half-space taking into account the interaction between the mass
of the intrusion and the ambient gravity field and the effect caused by the change
of pressure in the magmatic system. A theoretical and computational methods for
the calculation of viscoelastic-gravitational displacements resulting from strike-slip
faulting was described in [37]. The flow properties of the medium must also be con-
sidered. A Maxwell viscoelastic fluid was used by Pollitz [30] instead of Maxwell
rheologies [17, 19, 22, 23, 34]. In this last case, the solution of the governing equa-
tions can be obtained from elastic solution employing the correspondence principle
[24]. A propagator matrix technique is used to obtain the analytical solution of the
elastic problem (see its description in [15, 31]).

The objective of this work is to prove that the perturbed equations representing
the viscoelastic-gravitational displacements resulting from body forces embedded
in a layered Earth model leads to a well-posed problem even for any kind of do-
mains, with the natural boundary and transmission conditions. The existence and
uniqueness of weak solutions of the elastic-gravitational problem was demonstrated
in [3] and the stabilization to solutions of the associated stationary system was
proved in [2]. We give here an additional constructive proof of the existence of
weak solutions and we show the uniqueness and the continuous dependence with
respect to the initial data of weak solutions of the coupled viscoelastic-gravitational
field equations.

2. The problem

We consider here an Earth model composed of several viscoelastic-gravitational
layers. We also consider the contribution of source terms which represent magmatic
intrusion, corresponding to body forces acting on the medium. This is due to both
volumetric change of wall of the chamber and sudden emplacement of a mass into
the medium as a result of a new material injection into a magmatic chamber. The
coupled model for deformation and variation of gravity is given by the following
system of partial differential equations:

ρu(t,x)tt − γ∆u(t,x)t −∆u(t,x)− 1
1− 2ν

∇(div u(t,x))

− ρg

µ
∇(u(t,x) · ez) +

ρg

µ
ez div u(t,x) +

ρ

µ
∇φ(t,x)

= fu(t,x),

−∆φ(t,x)− 4πρGdiv u(t,x) = fφ(t,x) in (0, T )× Ω,

(2.1)

where u denotes the displacement, φ gravitational perturbed potential, ν the Pois-
son’s ratio, ρ the unperturbed density of the medium, g the externally imposed
gravitational acceleration, µ is the rigidity, γ∆ut is a term introduced by the vis-
coelasticity of each layer, G universal gravitational constant, ez is the unit vector
pointing in the positive z-direction (down into the medium) and fu and fφ the body
forces. Let us consider spatial domain Ω as union of p layers “overlay”, that we will
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denote Ωi, i = 1, . . . , p . Each layer is given through a common horizontal open
set, ω ⊂ R2, and so

Ω1 := ω × (d1, d1 + d2), Ω2 := ω × (d1 + d2, d1 + d2 + d3), . . . ; (2.2)

that is,

Ωi := ω ×
( i−1∑
j=1

dj ,

i∑
j=1

dj

)
⊂ R3, (2.3)

where i = 1, . . . , p− 1, and

Ωp := ω × (H,H + dr), (2.4)

where H :=
∑i−1
j=1 dj and dr can be equal to +∞.

Let ui : [0, T ]×Ωi → R3 be the displacement vector in each layer where T is an
arbitrary time, ui = (uix, u

i
y, u

i
z) which depends on x =(x, y, z) and t ∈ [0, T ]. The

system (2.1) has been reached on each layer.
To the set of partial differential equations we will add the following boundary

conditions (see Figure 2). Regarding to displacement field we prescribe on the side
boundary, ∂lΩi, for i = 1, . . . , p, that:

ui(t,x) = 0 x ∈ ∂lΩi, t ∈ (0, T ) (2.5)

on the upper boundary of the first layer ∂+Ω1,

∂u1(t,x)
∂z

= 0 x ∈ ∂+Ω1, t ∈ (0, T ), (2.6)

and that on the bottom boundary ∂−Ωp,

up(t,x) = 0 x ∈ ∂−Ωp, t ∈ (0, T ). (2.7)

Figure 1. Domain of the problem.

In general, we can assure only that the first derivatives of u are continuous on
the boundaries of the layers, that is, on the boundary between layers. We will
require ”transmission conditions” between both upper and bottom boundaries of
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the layers excepting on the first and the last layers. Therefore, the next conditions
on ∂−Ωi = ∂+Ωi+1, with i = 1, . . . , p− 1 are as follows:

ui(t,x) = ui+1(t,x) x ∈ ∂−Ωi, t ∈ (0, T ),

∂ui(t,x)
∂z

=
∂ui+1(t,x)

∂z
x ∈ ∂−Ωi, t ∈ (0, T ).

(2.8)

In relation to the gravitational perturbed potential we will assume that on side
boundary ∂lΩi for i = 1, . . . , p, it holds:

φ(t,x) = 0 x ∈ ∂lΩi, t ∈ (0, T ), (2.9)

on the upper boundary of the first layer ∂+Ω1;

φ1(t,x) = φ0(t,x) x ∈ ∂+Ω1, t ∈ (0, T ), (2.10)

and on the bottom boundary, ∂−Ωp;

φp(t,x) = 0 x ∈ ∂−Ωp, t ∈ (0, T ). (2.11)

Like before, we will require transmission conditions between upper and bottom
boundary of the next layers excepting on the first and the last layers. So, we must
have, on ∂−Ωi = ∂+Ωi+1 with i = 1, . . . , p− 1, the following conditions:

φi(t,x) = φi+1(t,x) x ∈ ∂−Ωi, t ∈ (0, T ),

∂φi(t,x)
∂z

=
∂φi+1(t,x)

∂z
x ∈ ∂−Ωi, t ∈ (0, T ).

(2.12)

Finally we prescribe initial conditions for the displacements and the velocities:
u(0,x) = u0(x) in Ω,

ut(0,x) = v0(x) in Ω.
(2.13)

Since the multilayered structure of the domain introduce some possible abrupt
changes on the second derivatives of solutions the existence of classical solutions
of the problem looks artificial and we must introduce a suitable weak formulation
notion of the problem which mathematical analysis is the main object of this paper.

Remark 2.1. Here, and in what follows, H1(Ω) denotes the Sobolev space

H1(Ω) = {ψ ∈ L2(Ω) :
∂ψ

∂xi
∈ L2(Ω), i = 1, 2, 3},

where L2 is the space of all square integrable functions. Both spaces have structure
of Hilbert space (see, e.g. [9], for more details).

3. Weak formulation

Following some ideas already introduced in the previous work by the authors
concerning the stationary problem [3] we define the energy space V = Vu × Vφ
as cross product of the energy spaces for the displacement and for the perturbed
gravitational potential, Vu and Vφ respectively, where

Vφ :=
{

(φ1, . . . , φp) ∈
p∏
i=1

H1(Ωi): φi = 0 on ∂lΩi∀ i = 1 . . . p, φ1 = 0 on ∂+Ω1

and φp = 0 on ∂−Ωp, φi = φi+1,
∂φi(x)
∂z

=
∂φi+1(x)

∂z

on ∂−Ω1 ∪ ∂+Ω2 ∪ ∂−Ω2 ∪ . . . ∪ ∂+Ωp, for i = 1 . . . p− 1
}
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and

Vu :=
{

(u1, . . . ,up) ∈
p∏
i=1

H1(Ωi)3 : ui = 0 on ∂lΩi for i = 1 . . . p,u1 = 0 on ∂+Ω1

and up = 0 on ∂−Ωp,ui = ui+1 and
∂ui

∂z
=
∂ui+1

∂z

on ∂−Ω1 ∪ ∂+Ω2 ∪ ∂−Ω2 ∪ · · · ∪ ∂+Ωp, for i = 1 . . . p− 1
}
.

Regarding boundary data, φ0 shall be extended to the interior of the domain Ω1

such that

φ̂0 ∈ Lq(0, T : H1(Ω1)), φ̂0(t,x) = φ0(t,x) in (0, T )× ∂+Ω1,

φ̂0(x) = 0 in (0, T )× (∂−Ω1 ∪ ∂lΩ1), for some 2 ≤ q ≤ +∞.
(3.1)

We will suppose, at least, that

φ0 ∈ Lq(0, T :
p∏
i=1

H1(Ωi)) and satisfies (3.1), (3.2)

and under the following regularity on the data:

fu ∈ L2(0, T :
p∏
i=1

H−1(Ωi)3), (3.3)

fφ ∈ Lq(0, T :
p∏
i=1

H−1(Ωi)), (3.4)

for some 2 ≤ q ≤ +∞ and

u0,v0 ∈ Vu.

To introduce the weak solution definition we will follow similar arguments already
introduced in the previous work by the authors for the stationary case. We start by
assuming that (u,φ) is a classical solution of system (2.1). Let (w,θ) ∈ C2([0, T ] :
Vu× Vφ) be test functions. We multiply the first equation of (2.1) by wi(t,x), and
the second equation by θi(t,x). Integrating by parts and applying Green’s formula,
we arrive, in a natural way, to the definition of the weak solution of the problem.

Definition 3.1. We assume the above regularity on the functions fu, fφ, φ0, u0

and v0. We say that {u, φ} is a weak solution of the problem (2.1) with the above
mentioned boundary conditions if (u,φ − φ0) ∈ L2(0, T : V ), utt ∈ L2(0, T : V ′u)
and for any test function (w, θ) ∈ L2(0, T : V ), v ∈ H1(0, T : V ′u) the following
equalities hold:∫ T

0

p∑
i=1

[
〈ρiuitt,wi〉+

∫
Ωi

{ 1
1− 2νi

div ui div wi

− ρig

µi
∇(ui · ez) ·wi +

ρig

µi
ez div uiwi +∇ui : ∇wi + γi∇uit : ∇wi

}
dx
]
dt

=
∫ T

0

p∑
i=1

[ ρi
µi

∫
Ωi

−∇φi ·wi dx + 〈f iu(t, ·),wi(t, ·)〉V ′u×Vu
]
dt,

(3.5)



6 A. ARJONA, J. I. DÍAZ EJDE-2015/CONF/22

and a.e. t ∈ (0, T ),
p∑
i=1

∫
Ωi

∇φi(t, ·) · ∇θi(t, ·)dx

=
p∑
i=1

[
4πρiG

∫
Ωi

div ui(t, ·)θi(t, ·)dx + 〈f iφ(t, ·), θi(t, ·)〉V ′φ×Vφ
]
.

(3.6)

We shall prove that problem (2.1) is well-posed in the Hadamard sense.

Theorem 3.2. (i) Assumed the regularity on the data fu, fφ, φ0, u0 and v0 then
there exists a unique weak solution {u, φ} of the problem (2.1). Moreover ut ∈
L∞(0, T : L2(Ω)), u ∈L∞(0, T : Vu), φ ∈ Lq(0, T : Vφ) and there exists a positive
constant C (depending on T , Ωi and the constants ρi, µi, νi, γi and G) such that
the following continuous dependence estimate holds

sup
t∈[0,T ]

p∑
i=1

[ ∫
Ωi

|uit|2dx
]

+
∫ T

0

∫
Ωi

|∇uit|2 dx dt+ sup
t∈[0,T ]

p∑
i=1

∫
Ωi

|∇ui|2dx

+ sup
t∈[0,T ]

p∑
i=1

∫
Ωi

(div ui)2 dx +
∫ T

0

p∑
i=1

∫
Ωi

|∇φi(t,x)|2 dx

≤ C
[ ∫ T

0

p∑
i=1

‖f iu(t, ·)‖2H−1dt+
∫ T

0

p∑
i=1

‖f iφ(t, ·)‖2H−1dt

+
∫
∂+Ω1

|φ0(s)v0(s) · n|ds+
p∑
i=1

∫
Ωi

|vi0(x)|2dx

+
p∑
i=1

∫
Ωi

|∇vi0(x)|2dx +
p∑
i=1

∫
Ωi

|∇ui0(x)|2dx

+
p∑
i=1

∫
Ωi

div ui0(x)2dx +
∫ T

0

∫
∂+Ω1

∣∣φ0(t, s)
∂

∂n
φ0(t, s)

∣∣ds].

(3.7)

(ii) If in addition we assume that

φ̂0 ∈ H1(0, T : H1(Ω1)), φ0 ∈ H1(0, T :
p∏
i=1

H1(Ωi)),

fφ ∈ H1(0, T :
p∏
i=1

H−1(Ωi)),

(3.8)

then φ ∈ H1(0, T : Vφ) and we have the additional continuous dependence estimate

sup
t∈[0,T ]

p∑
i=1

[ ∫
Ωi

|uit|2dx
]

+
∫ T

0

∫
Ωi

|∇uit|2 dx dt+ sup
t∈[0,T ]

p∑
i=1

∫
Ωi

|∇ui|2dx

+ sup
t∈[0,T ]

p∑
i=1

∫
Ωi

(div ui)2 dx + sup
t∈[0,T ]

p∑
i=1

∫
Ωi

|∇φi(t,x)|2 dx

≤ C
[ ∫ T

0

p∑
i=1

‖f iu(t, ·)‖2H−1dt+
∫ T

0

p∑
i=1

‖f iφ(t, ·)‖2H−1dt
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+
∫ T

0

p∑
i=1

‖ ∂
∂t

(f iφ)(t, ·)‖2H−1dt+
∫
∂+Ω1

|φ0(s)v0(s) · n|ds+
p∑
i=1

∫
Ωi

|vi0(x)|2dx

+
p∑
i=1

∫
Ωi

|∇vi0(x)|2dx +
p∑
i=1

∫
Ωi

|∇ui0(x)|2dx +
p∑
i=1

∫
Ωi

div ui0(x)2dx

+
∫ T

0

∫
∂+Ω1

|φ0(t, s)
∂

∂n
φ0(t, s)|ds+

∫ T

0

∫
∂+Ω1

∣∣φ0(t, s)
∂2

∂t∂n
φ0(t, s)

∣∣ds],
for a suitable positive constant C (depending on T , Ωi and the constants ρi, µi,
νi, γi and G).

The existence of weak solutions will be proved by means of an iterative method
(which can be very useful to justify the convergence of some numerical algorithms)
without requiring any additional time regularity to function φ. This allows a great
generality on the data. In the second part we shall prove a stronger regularity on
the weak solution by a “cancellation method” related to the time differentiability
of function φ. We show that this holds under some slightly stronger regularity on
the data.

4. Proof of Theorem 3.2 part (i)

We shall prove the existence of a weak solution by splitting it in several steps. We
first consider two different uncoupled problems: the first one when displacements
are known and the second one in which the gradient of the gravitational potential
is given.

4.1. Uncoupled problem for the potential. (u is assumed to be known)
We assume that u is known, with

ui ∈ H1(0, T : H1(Ωi)). (4.1)

Let us consider the following problem, which we denotes as P1[φ1
0,u

i, f iφ], over the
energy space L2(0, T : Vφ):

−∆φi = 4πρiGdiv ui(t,x) + f iφ(t,x) in (0, T )× Ωi,

φi = 0 on (0, T )× ∂lΩi ∀i = 1, . . . , p,

φi = φi+1,
∂φi

∂z
=
∂φi+1

∂z
on (0, T )× ∂−Ωi = (0, T )× ∂+Ωi+1,

∀i = 1, . . . , p− 1,

φ1 = φ1
0 on (0, T )× ∂+Ω1,

φp = 0 on (0, T )× ∂−Ωp.

(4.2)

Definition 4.1. Assumed the above regularity, a function φ is a weak solution of
the problem P1[φ1

0,u
i, f iφ] if φ∗ := φ − φ0 ∈ Vφ and for any test function θ ∈ Vφ,

and a.e. t ∈ (0, T ) we have
p∑
i=1

∫
Ωi

∇φ∗i · ∇θi dx =
p∑
i=1

4πρiG
∫

Ωi

(div ui) θi dx + 〈fφ, θ〉V ′φ×Vφ . (4.3)

The following result was shown in the previous paper by the authors.
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Theorem 4.2 ([3]). Assuming the above regularity on the data ui, fφ and φ0,
there exists a weak solution, φ, of the problem (4.2). Moreover, if we denote the
Poincaré’s constant on Ωi by C(Ωi) we have the estimate

p∑
i=1

∫
Ωi

|∇φi(t,x)|2 dx ≤
p∑
i=1

C(Ωi)4πρiG
∫

Ωi

|∇ui(t,x)|2dx

+
p∑
i=1

‖f iφ(t, ·)‖2H−1 + 2
∫
∂+Ω1

φ0(t, s)
∂

∂n
φ0(t, s)ds.

Remark 4.3. Note that in fact, since we assume that ui ∈ H1(0, T : H1(Ωi)) it
is easy to see that fφ ∈ H1(0, T :

∏p
i=1H

−1(Ωi)) implies a more regularity with
respect to the variable t : φi ∈ H1(0, T : H1(Ωi)).

4.2. Uncoupled problem for the displacements. (φ is assumed to be known)
Now we assume given φ is given and

φi ∈ L2(0, T : H1(Ωi)). (4.4)

Let us consider the following problem P2[φi, f iu] in L2(0, T : Vu):

ρiuitt − γi∆uit −∆ui − 1
1− 2νi

∇(div ui)

− ρig

µi
∇(ui · ez) +

ρig

µi
ez div ui

= − ρi
µi
∇φi + f iu in (0, T )× Ωi,

ui(0,x) = ui0(x) in Ωi,

uit(0,x) = vi0(x) in Ωi,

ui = 0 on ∂lΩi, i = 1, . . . , p,

ui = ui+1,
∂ui

∂z
=
∂ui+1

∂z
on ∂−Ωi = ∂+Ωi+1, i = 1, . . . , p− 1,

u1 = 0 on ∂+Ω1,

up = 0 on ∂−Ωp .

(4.5)

Definition 4.4. We assume the above mentioned regularity on the data fφ and φ0

and initial data. The function u is a weak solution of problem (4.5) if u ∈ H1(0, T :
Vu), utt ∈ L2(0, T : V ′u) and for any test function w such that w ∈ H1(0, T : Vu)
and w ∈ H2(0, T : V ′u) we have

p∑
i=1

[ ∫ T

0

(ρi〈uitt,wi〉dt+
1

1− 2νi

∫ T

0

∫
Ωi

div ui div wi dx dt

− ρig

µi

∫ T

0

∫
Ωi

∇(ui · ez) ·wi dx dt+
ρig

µi

∫ T

0

∫
Ωi

ez div uiwi dx dt

+
∫ T

0

∫
Ωi

∇ui : ∇wi dx dt+
∫ T

0

∫
Ωi

γi∇uit : ∇widx
]

=
p∑
i=1

[
− ρi

µi

∫ T

0

∫
Ωi

∇φi ·wi dx +
∫ T

0

〈f iu(t,x),wi(t,x)〉V ′u×Vu
]
.

(4.6)
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The following result is a non difficult adaptation of a more general result pre-
sented in [14, Theorem 6.1, Chapter 3].

Theorem 4.5. Assumed the regularity on fφ, the initial data and (4.4) there exists
a weak solution, u, of the problem (4.5).

Proof. We define the two bilinear forms au : Vu×Vu → R, a∗ut(ut,w) : Vu×Vu → R
and the linear form Lu : Vu → R as follows:

au(u,w) :=
p∑
i=1

[ ∫
Ωi

{ 1
1− 2νi

div ui div wi − ρig

µi
∇(ui · ez) ·wi

+
ρig

µi
ez div ui wi +∇ui : ∇wi + γi∇uit : ∇wi dx

}]
,

(4.7)

a∗ut(ut,w) :=
p∑
i=1

∫
Ωi

γi∇uit : ∇wi dx, (4.8)

〈L
u
(t),w〉 :=

p∑
i=1

[ ρi
µi

∫
Ωi

−∇φi(t, ·) ·wi dx + 〈f iu(t, ·),wi(t, ·)〉V ′u×Vu
]
. (4.9)

That the bilinear form au(·, ·) · is continuous and coercive, and that the lineal form
Lu(t) is continuous was proved in [3, Theorem 3]. On the other hand, the same
type of arguments shows that the form a∗ut(ut,w) is also continuous on Vu × Vu.
Then, we can apply the same arguments of the proof of [14, Theorem 6.1, Chapter
3], to the special case of no constraint, to the problem

p∑
i=1

〈ρiuitt,wi(t, ·)〉V ′u×Vu + au(u,w) + a∗ut(ut,w) = 〈L
u
(t),w〉V ′u×Vu

�

(by using the transmission conditions) and we obtain the result.

4.3. Coupled system. To proof the existence and uniqueness of solutions of the
coupled system an iterative method will be used. Firstly, we shall construct two
sequences {un(t,x)} and {φn(x)} as follows. We start with φ0(x) vector which
has initial data, φ0(x), as a first component and rest of components 0. With this
vector and (4.5) problem the unique vector u1(t,x) is obtained. Taking this vector
as known, we solve (4.2) problem to get the solution associated to φ1. In this way
we build the next sequences (which allow us to introduce some notations which will
be used in what follows):

φ0 =


φ0

0
·
0

 P2[φi0,f
i
u]→ u1 =


u1

1

u1
2

·
u1
p

 P1[φ1
0,u

i,fiφ]
→ φ1 =


φ1

1

φ1
2

·
φ1
p

 .

In general,

φn−1 =


φn−1

1

φn−1
2

·
φn−1
p

 P2[φi,f iu]→ un =


un1
u1

2

·
unp

 P1[φ1
0,u

i,fiφ]
→ φn =


φn1
φn2
·
φnp

 .
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We claim that it is possible to find some universal a priori estimates (i.e., inde-
pendent on n) allowing to pass to the limit. Indeed, by multiplying the equation
of uni by ρiuni,t(t,x) (where uni,t(t,x) = ∂uni (t,x)

∂t ). Since, in general, we know that

∇ui · ∇uit =
1
2
∂

∂t
(|∇ui|2),∫ T

0

∫
Ωi

∆ui · uit = −1
2

∫ T

0

d

dt

∫
Ωi

|∇ui|2.∫ T

0

∫
Ωi

div ui div uit =
1
2

∫ T

0

d

dt

∫
Ωi

(div ui)2 .

Then, by using Green’s formula, denoting the Poincaré’s constant on Ωi, by C(Ωi),
and applying Poincaré’s and Young’s inequalities (ab ≤ εa2 + Cεb

2) we obtain the
estimate

sup
t∈[0,T ]

p∑
i=1

ρi(
1
2
− Tgρi

µi
)
∫

Ωi

|uni,t|2dx +
p∑
i=1

(1− ε)ρiγi
∫ T

0

∫
Ωi

|∇uni,t|2 dx dt

+ sup
t∈[0,T ]

p∑
i=1

ρi

2
(1− Tgρi

µi
)
∫

Ωi

|∇uni |2dx

+ sup
t∈[0,T ]

p∑
i=1

ρi

2
( 1

(1− 2νi)
− Tgρi

µi
) ∫

Ωi

(div uni )2 dx

≤ Cε
p∑
i=1

∫ T

0

(∫
Ωi

|φn−1
i (t,x)|2dx +

ρi

γi
‖f iu(t, ·)‖2H−1

)
dt

+
p∑
i=1

ρi

2

∫
Ωi

|vi0(x)|2dx +
p∑
i=1

γiρi
∫

Ωi

|∇vi0(x)|2dx

+
p∑
i=1

ρi

2

∫
Ωi

|∇ui0(x)|2dx +
p∑
i=1

ρi

2(1− 2νi)

∫
Ωi

div ui0(x)2dx

+
∫ T

0

∫
∂+Ω1

|φ0(t, s)
∂

∂n
φ0(t, s)|ds.

(4.10)
In the above estimate we used the following inequalitites

p∑
i=1

ρi

(µi)2γi

∫ T

0

∫
Ωi

∇φn−1
i (t,x) · uni,t(t,x)dx dt

= −
p∑
i=1

ρi

(µi)2γi

∫ T

0

∫
Ωi

φn−1
i (t,x) div uni,t(t,x)dx dt

≤
p∑
i=1

(Cε
∫ T

0

∫
Ωi

|φn−1
i (t,x)|2dx dt+ ερiγi

∫ T

0

∫
Ωi

|∇uni,t|2 dx dt),

∣∣ ∫ T

0

∫
Ωi

∇(uni · ez) · uni,t
∣∣ ≤ T

2
sup
t∈[0,T ]

∫
Ωi

|∇uni |2 +
T

2
sup
t∈[0,T ]

∫
Ωi

|uni,t|2,

∣∣ ∫ T

0

∫
Ωi

ez div uni · uni,t
∣∣ ≤ T

2
sup
t∈[0,T ]

∫
Ωi

|div uni |2 +
T

2
sup
t∈[0,T ]

∫
Ωi

|uni,t|2.
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On the other hand, since L2(Ωi) ⊂ H−1(Ωi), there exists K > 0 such that

‖ div un−1
i ‖H−1(Ωi) ≤ K‖ div un−1

i ‖L2(Ωi).

Then, from the coerciveness of the bilinear form associated to the elliptic equation
we know that∫

Ωi

|∇φni (t,x)|2 dx ≤ K
(∫

Ωi

|div un−1
i (t,x)|2 dx +

p∑
i=1

‖f iφ(t, ·)‖2H−1

+
∫
∂+Ω1

∣∣φ0(t, s)
∂

∂n
φ0(t, s)

∣∣ds). (4.11)

Using twice Poincaré’s inequality we obtain

p∑
i=1

∫ T

0

∫
Ωi

|φni (t,x)|2dx dt

≤
p∑
i=1

K̂(C(Ωi))
∫ T

0

∫
Ωi

|∇φni (t,x)|2 dx dt

≤
p∑
i=1

K̂
{∫ T

0

∫
Ωi

|un−1
i (T,x)|2 dx dt+

∫ T

0

p∑
i=1

‖f iφ(t, ·)‖2H−1dt

+
∫
∂+Ω1

∣∣φ0(t, s)
∂

∂n
φ0(t, s)

∣∣ds}
≤

p∑
i=1

K
{
T sup
t∈[0,T ]

∫
Ωi

|∇un−1
i (t,x)|2 dx +

∫ T

0

p∑
i=1

‖f iφ(t, ·)‖2H−1dt

+
∫
∂+Ω1

∣∣φ0(t, s)
∂

∂n
φ0(t, s)

∣∣ds},
where K̂ and K are positive constants depending increasingly on the Poincaré’s
constants C(Ωi). Thus, combining both inequalities we obtain

sup
t∈[0,T ]

p∑
i=1

ρi
(1

2
− Tgρi

µi
) ∫

Ωi

|uit|2dx

+
p∑
i=1

(1− εC(Ωi))ρiγi
∫ T

0

∫
Ωi

|∇uit|2 dx dt

+ sup
t∈[0,T ]

p∑
i=1

ρi

2
(
1− Tgρi

µi
) ∫

Ωi

|∇ui|2dx

+ sup
t∈[0,T ]

p∑
i=1

ρi

2
( 1

(1− 2νi)
− Tgρi

µi
) ∫

Ωi

(div ui)2 dx +
p∑
i=1

∫ T

0

∫
Ωi

|φni (t,x)|2dxdt

≤
p∑
i=1

K
{
T sup
t∈[0,T ]

∫
Ωi

|∇un−1
i (t,x)|2 dx +

p∑
i=1

∫ T

0

p∑
i=1

‖f iφ(t, ·)‖2H−1dt

+
p∑
i=1

∫ T

0

‖f iu(t, ·)‖2H−1dt+ +
p∑
i=1

∫
Ωi

|vi0(x)|2dx +
p∑
i=1

∫
Ωi

|∇vi0(x)|2dx
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+
p∑
i=1

∫
Ωi

|∇ui0(x)|2dx
p∑
i=1

∫
Ωi

div ui0(x)2dx (4.12)

+
∫ T

0

∫
∂+Ω1

∣∣φ0(t, s)
∂

∂n
φ0(t, s)

∣∣ds dt}. (4.13)

Summarizing, if we assume T > 0 and ε small enough we conclude that any uniform
estimate on the term

In = sup
t∈[0,T ]

p∑
i=1

∫
Ωi

|∇uni (t,x)|2 dx

allows us to make uniform all the above inequalities. But we can understood (4.13)
in the form

In ≤ δIn−1 +A

with

δ :=
KT

mini ρ
i

2

(
1− Tgρi

µi

)
and A given trough the external and initial data. Thus, if δ ∈ (0, 1), we obtain

lim
n
In ≤ A

and we obtain the uniform estimate In ≤ 1 +A for any n ∈ N large enough (which
implies uniform estimates in (4.10) and (4.11)). But, as before, the condition
δ ∈ (0, 1) holds if we assume T = T0 > 0 small enough and thus we obtain a set of
uniform a priori estimates on the sequences {un} and {φn} which show that they
converge weakly in H1(0, T0 : Vu) and L2(0, T0 : Vφ), respectively, to a vectorial
function (u,φ) which is a local (in time) weak solution of the coupled system.

To prove the uniqueness of the local weak solution (i.e. when t ∈ [0, T0] it suffices
to show that if we assume as zero all the data then the unique solution is the trivial
solution (u,φ) = (0, 0). This is an special conclusion of the obtained continuous
dependence estimate.

Moreover, such local time T0 does not depend on any norm of the data (but only
on the coefficients). In particular, if T = T0 we obtain the estimate

p∑
i=1

∫ T

0

∫
Ωi

|∇uit|2 dx dt+
p∑
i=1

∫ T

0

∫
Ωi

|φni (t,x)|2dx dt

≤
p∑
i=1

K{
p∑
i=1

∫ T

0

p∑
i=1

‖f iφ(t, ·)‖2H−1dt+
p∑
i=1

∫ T

0

‖f iu(t, ·)‖2H−1dt

+
p∑
i=1

∫
Ωi

|vi0(x)|2dx +
p∑
i=1

∫
Ωi

|∇vi0(x)|2dx

+
p∑
i=1

∫
Ωi

|∇ui0(x)|2dx +
p∑
i=1

∫
Ωi

div ui0(x)2dx

+
∫ T

0

∫
∂+Ω1

∣∣φ0(t, s)
∂

∂n
φ0(t, s)

∣∣ ds dt},

(4.14)

with K > 0 independent of T0. Thus we can iterate the estimate on the intervals
[mT0, (m+ 1)T0] and the estimate (4.14) remains valid. So, no possible blow-up of
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the norms of (u,φ) on (0, T ) may arise if T > 0 is any arbitrary number and part i)
of Theorem 1 is completely proved (note that the resultant constant C in estimate
(3.7) can be taken as C = K/[1 − cT0]m if T ∈ [mT0, (m + 1)T0] for some natural
number m and a suitable constant c such that cT0 < 1.

5. Proof of Theorem 3.2 part (ii)

In contrast with the above set of estimates we can use now different arguments
since we already know that there exists a solution of the iterative algorithm. We use
now an idea which we can call as a “cancellation argument” (among the equations
and boundary conditions) which essentially consists in differentiating the equation
of φi with respect to t. If we neglect, for a while, the external data then we obtain

∂

∂t
(−∆φi) = 4πρiG

∂

∂t
div ui = 4πρiGdiv uit

and since the right hand side was controlled in the previous estimate we obtain
that the left hand side is integrable in a suitable functional space. More precisely,
by multiplying last expression by ρi

µiφ
i and integrating over the space we obtain∫

Ωi

ρi

µi
∇φi · ∇φit dx =

∫
Ωi

4π(ρi)2

µi
Gdiv uit φ

i dx. (5.1)

But the right hand side of (5.1) arises also when we multiply the equation of ui
by ρiui,t(t,x). Finally, if we apply such a process but now taking into account the
contributions of the body forces f iφ and f iu, the ones of the boundary data (when
integrating by parts, specially on ∂+Ω1), and the one of the initial data we obtain

sup
t∈[0,T ]

p∑
i=1

[ ∫
Ωi

(
2π(ρi)2G− T4π(ρi)2Gg

µi

)
|uit|2dx

]
+
∫ T

0

∫
Ωi

4πρiGγi|∇uit|2 dx dt

+ sup
t∈[0,T ]

p∑
i=1

[ ∫
Ωi

(
2πρiG− T2π(ρi)2Gg

µi

)
|∇ui|2dx

+
( 2πρiG

1− 2νi
− T2π(ρi)2Gg

µi

)∫
Ωi

(div ui)2 dx
]

≤ sup
t∈[0,T ]

p∑
i=1

∫
Ωi

ρi

2µi
|∇φi(t,x)|2 dx

+
p∑
i=1

4πρiGρi
∫ T

0

〈f iu,uit〉dt+
p∑
i=1

ρi

µi

∫ T

0

〈 ∂
∂t

(f iφ), φi〉dt

+
4π(ρ1)2G

µ1

∫
∂+Ω1

|φ0(s)v0(s) · n|ds+
p∑
i=1

2π(ρi)2G

∫
Ωi

|vi0(x)|2dx

+
p∑
i=1

4πρiGγi
∫

Ωi

|∇vi0(x)|2dx +
p∑
i=1

2πρiG
∫

Ωi

|∇ui0(x)|2dx

+
p∑
i=1

2πρiG
1− 2νi

∫
Ωi

div ui0(x)2dx +
ρ1

µ1

∫ T

0

∫
∂+Ω1

∣∣φ0(t, s)
∂2

∂t∂n
φ0(t, s)

∣∣ds,
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where we used that∫ T

0

∫
Ωi

ρi

µi
∇φi · ∇φit =

1
2

∫ T

0

d

dt

∫
Ωi

ρi

µi
|∇φi|2.

Similarly, for t ∈ [0, T ], using the Poincaré’s constants C(Ωi)
p∑
i=1

∫
Ωi

|∇φi(t,x)|2 dx

≤
p∑
i=1

C(Ωi)4πρiG
∫

Ωi

|∇ui(t,x)|2dx+
p∑
i=1

‖f iφ(t, ·)‖2H−1

+ 2
∫
∂+Ω1

∣∣φ0(t, s)
∂

∂n
φ0(t, s)

∣∣ds.
Adding both inequalities and by taking a suitable constant K (depending increas-
ingly on the Poincaré’s constant C(Ωi)) we obtain the result.

6. Associated stationary system

The above arguments can be also applied to prove the uniqueness of the associ-
ated stationary problem

ρiuitt − γi∆uit −∆ui − 1
1− 2νi

∇(div ui)− ρig

µi
∇(ui · ez) +

ρig

µi
ez div ui

= − ρi
µi
∇φi + fu(x) in Ωi,

−∆φi = 4πρiGdiv ui(t,x) + fφ(x) in Ωi,

(6.1)

under the same type of boundary conditions (but now with data independent of t):

ui = 0, φi = 0, on ∂lΩi ∀i = 1, . . . , p,

ui = ui+1,
∂ui

∂z
=
∂ui+1

∂z
on ∂−Ωi = ∂+Ωi+1, i = 1, . . . , p− 1,

φi = φi+1,
∂φi

∂z
=
∂φi+1

∂z
on ∂−Ωi = ∂+Ωi+1, i = 1, . . . , p− 1,

u1 = 0, φ1 = φ1
0(x) on ∂+Ω1,

up = 0, φp = 0 on ∂−Ωp.

(6.2)

Note that in [3] the sign of the term in ∇φ was the opposite. Nevertheless
the techniques used there and the present papers can be easily adapted to this
stationary formulation for proving the following result.

Theorem 6.1. Under the same spatial regularity assumption on the data in The-
orem 1 there exists a unique weak solution of problem (6.1), (6.2).

Proof. The existence part follows the same strategy than the proof of part i) of
Theorem 3.2 and, more specifically, the proof of [3, Theorem 1]. Obviously, the
uncoupled problem for φ is exactly the same and the uncoupled problem for u is
treated in same manner (since, at this moment, ∇φ is assumed to be prescribed).
We recall that the coerciveness of the bilinear form au : Vu × Vu → R given by
(4.7) requires either some assumption on the coefficients (see (69) [also denoted as
assumption H(ρ, µ, ν)] of [3]) or the application of the “dilatant argument”: we
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make the changes of spatial variables y =λx, we remark that the constant in the
Poincaré’s inequality can be assumed to depend linearly on λ (since such a constant
only depends on the diameter of Ω) and then, by introducing the change of unknown

v(y) = u(x) = u(
y
λ

)

we see that the new condition in terms of the new coefficients always holds if we
take λ large enough.

Moreover, the a priori estimates used to justify the passing to the limit process,
n → +∞, remains valid word by word since the estimate of the right hand side
of the equation for un only uses the norm of the vector ‖∇φn−1‖ and thus its
sign information is not relevant to this purpose. The application of [3, Lemma 1]
(note the resemblances with the argument on δ < 1 used in the proof of part (i) of
Theorem 3.2 of the present paper) ends the proof of the existence of solutions.

Concerning the proof of the uniqueness of solutions of (6.1), (6.2) we use what
we call as “cancellation method” but now after multiplying the equation of ui by
4πρiui and the one of φi by (ρi/µi)φi (as done in [3]). Then adding the resultant
equations, after applying Green’s formula, we obtain

p∑
i=1

4πGρia(ui,ui)−
p∑
i=1

ρi

µi

∫
Ωi

|∇φi(x)|2 dx = 0

(compare this with [3, equation (52)] in which the sign of the second term is the
opposite one). Nevertheless, by using the standard estimate for elliptic equations
(since div ui ∈ H−1(Ωi)), and Poincaré’s inequality we arrive to the uniqueness
conclusion if C(Ωi) is small enough. More exactly, the conclusion holds if Ω is such
that

4πG
p∑
i=1

ρi >

p∑
i=1

ρiC(Ωi)K
µi

. (6.3)

Once again, we can apply the “dilatation argument” in the sense that if condition
(6.3) does not hold then we make the dilatation y =λx, the change of unknown
v(y) = u(x) = u(y

λ ) and we see that the last term of the right hand side remains
constant in λ but the third term of the left hand side appears multiplied by λ.
Thus, the corresponding condition (similar to (6.3)) holds by taking λ large enough

λ >

∑p
i=1

ρiC(Ωi)K
µi

4πG
∑p
i=1 ρ

i
, (6.4)

and thus the uniqueness in now proven without condition (6.3), which completes
the proof. �

Discussion and conclusion

A rigorous well-posedness proof of the viscoelastic-gravitational model has been
presented in this paper. The existence and uniqueness of solutions representing a
layered Earth have been carried out. For that, some techniques of the weak solu-
tions of partial differential equations theory have been applied. Moreover, we have
given a constructive proof of the existence of the weak solutions. There is a clear
geophysical need of this kind of models for interpretation of observed displacement
and gravity changes at volcanic areas (see introduction and, e.g., [8, 19, 23]). In
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previous results obtained by other authors [19], introducing viscoelastic proper-
ties in all or part of the medium can extend the effects (displacements, gravity
changes, etc.) considerably and therefore lower (and more realistic) pressure in-
creases are required to model given observed effects. The viscoelastic effects seem
to depend mainly on the rheological properties of the layer (zone) where the intru-
sion is located, rather than on the rheology of the whole medium. Those results
should be confirmed with the described model. Additionally, normally purely elas-
tic half-space models are used to interpret displacements and gravity data in active
volcanic areas. Elastic-gravitational models allow the computation of gravity, de-
formation, and gravitational potential changes due to pressurized magma cavities
and intruding masses together [11], taking into account the mass interaction with
the self-gravitation of the Earth through coupling between model equations. In [11]
a dimensional analysis of the elastic-gravitational model estimating the magnitude
of intrusion mass and coupling effects at the space scale associated with volcano
monitoring is performed. They show that the intrusion mass cannot be neglected
in the interpretation of gravity changes while displacements are primarily caused
by pressurization. Therefore the intrusion of mass, together with the associated
pressurization of the magma chamber, produces distinctive changes in gravity that
could be used to interpret gravity changes without ground deformation and vice
versa, depending on what type of source plays the main role in the intrusion process.
Their theoretical experiments indicate that mass and self-gravitation could produce
changes in the magnitude and pattern of predicted gravity that may be above mi-
crogravity accuracy and the elastic-gravitational model is a refinement of purely
elastic models which can better interpret gravity and deformation changes in active
volcanic zones. Similar studies should be done for the viscoelastic-gravitational case
described here checking the existence or not of effects as observed in the viscoelastic-
gravitational problem for faulting (e.g., the introduction of a long-wavelength com-
ponent into the time deformation and the need of a proper consideration of gravity
for near-field computations and long time periods [17, 22]). The iterative scheme
presented in this work can be useful to construct a numerical method to compute
the coupled effects of gravity and viscoelastic deformations produced by possible
sources embedded in an inhomogeneous Earth.
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