A Time-Dependent Strange Term Arising in Homogenization of an Elliptic Problem with Rapidly Alternating Neumann and Dynamic Boundary Conditions Specified at the Domain Boundary: The Critical Case

J. I. Díaz ${ }^{a, *}$, D. Gómez-Castro ${ }^{a}$, T. A. Shaposhnikova ${ }^{b, * *}$, and M. N. Zubova ${ }^{b}$
Presented by Academician of the RAS V.V. Kozlov November 18, 2019

Received December 10, 2019; revised December 10, 2019; accepted December 11, 2019

Abstract

A strange term arising in the homogenization of elliptic (and parabolic) equations with dynamic boundary conditions given on some boundary parts of critical size is considered. A problem with dynamic boundary conditions given on the union of some boundary subsets of critical size arranged ε-periodically along the boundary and with homogeneous Neumann conditions given on the rest of the boundary is studied. It is proved that the homogenized boundary condition is a Robin-type containing a nonlocal term depending on the trace of the solution $u(x, t)$ on the boundary $\partial \Omega$.

Keywords: homogenization, rapidly oscillating boundary conditions, dynamic boundary conditions
DOI: 10.1134/S106456242002009X

In this paper, we identify a strange term arising in the homogenization of some elliptic (and parabolic) equations with dynamic boundary conditions given on some boundary parts of critical size. The case of dynamic boundary conditions specified on the boundary of cavities of critical radius in an ε-periodically perforated domain is studied in [5]. Unlike in the case when dynamic boundary conditions are set on the boundaries of cavities of diameters of order ε [1,7], a new nonlocal term H_{u} appears as an absorption term in the homogenized elliptic (or parabolic) equation; in this case, H_{u} is a solution of an ordinary differential equation depending on the solution $u(x, t)$ of the homogenized model. A problem with dynamic conditions specified on the boundaries of cavities located ε-periodically along an ($n-1$)-dimensional manifold was considered in [6]. In this case, a nonlocal strange term $H_{u}(x, t)$ appears in transmission conditions posed on this manifold. In the present paper, we consider the case of dynamic boundary conditions specified on the union of outer boundary subsets of critical size

[^0]arranged ε-periodically along the boundary; homogeneous Neumann conditions are set on the rest of the boundary. The main goal of this work is to prove that the homogenized boundary condition is a Robin-type one containing a nonlocal term depending on the trace of the solution $u(x, t)$ on the boundary $\partial \Omega$. This result is a generalization of the main theorem in [3] to the case of dynamic boundary conditions.

We would like to underline that one of the most important steps in obtaining the strange term (this is how the new term in the homogenized equation was called by Cioranescu and Murat in [2]) is the correct choice of the parameter values characterizing the perforation radius and the correct scaling of the absorption coefficient in the boundary condition.

The results of this work admit many generalizations. For a more detailed presentation of them, as well as numerous other works on this topic, the reader is referred to the monograph of the authors [4].

Let Ω be a bounded domain in $\mathbb{R}^{2} \cap\left\{x_{2}>0\right\}$ with a smooth boundary consisting of two parts: $\partial \Omega=$ $\Gamma_{1} \cup \Gamma_{2}$, where $\Gamma_{1}=\partial \Omega \cap\left\{x_{2}>0\right\}$ and $\Gamma_{2}=\partial \Omega \cap\left\{x_{2}=\right.$ $0\}=[-l, l]$ for some $l>0$.

We introduce the notation $Y_{1}=\left\{\left(y_{1}, 0\right):-\frac{1}{2}<y_{1}<\frac{1}{2}\right\}$ and $\hat{l}_{0}=\left\{\left(y_{1}, 0\right):-l_{0}<y_{1}<l_{0}\right\} \subset Y_{1}$, where $l_{0} \in\left(0, \frac{1}{2}\right)$. For a small parameter $\varepsilon>0$ and a parameter
$0<a_{\varepsilon} \ll \varepsilon$ whose value is "critical," that is, $a_{\varepsilon}=$ $C_{0} \varepsilon \exp \left(-\frac{\alpha^{2}}{\varepsilon}\right), C_{0}, \alpha>0$, we introduce the set

$$
\tilde{G}_{\varepsilon}=\bigcup_{j \in \mathbb{Z}^{\prime}}\left(a_{\varepsilon} \hat{l}_{0}+\varepsilon j\right)=\bigcup_{j \in \mathbb{Z}^{\prime}} l_{\varepsilon}^{j},
$$

where $\mathbb{Z}^{\prime}=\mathbb{Z} \times\{0\}$ is the set of vectors of the form $j=\left(j_{1}, 0\right), j_{1} \in \mathbb{Z}$. We set $\Upsilon_{\varepsilon}=\left\{j \in \mathbb{Z}^{\prime}: \overline{l_{\varepsilon}^{j}} \subset[-l+2 \varepsilon\right.$, $l-2 \varepsilon] \times\{0\}\}$. We introduce the sets $Y_{\varepsilon}^{j}=\varepsilon Y_{1}+\varepsilon j$, $j \in \mathbb{Z}^{\prime}$, and

$$
l_{\varepsilon}=\bigcup_{j \in \mathrm{Y}_{\varepsilon}} l_{\varepsilon}^{j} .
$$

It is straightforward to see that $\overline{l_{\varepsilon}^{j}} \subset Y_{\varepsilon}^{j}$. We introduce the notation $\gamma_{\varepsilon}=\Gamma_{2} \backslash \bar{\varepsilon}_{\varepsilon}$. Note that $\left|l_{\varepsilon}^{j}\right|=2 a_{\varepsilon} l_{0}$ for an arbitrary $j \in \mathbb{Z}$ ' and $\left|l_{\varepsilon}\right| \cong d a_{\varepsilon} \varepsilon^{-1}, d=$ const >0.

In the cylinder $Q_{T}=\Omega \times(0, T)$, we consider the problem

$$
\begin{gather*}
-\Delta_{x} u_{\varepsilon}=f(x, t), \quad(x, t) \in Q_{T}, \\
\beta(\varepsilon) \partial_{t} u_{\varepsilon}+\partial_{\vee} u_{\varepsilon}+\lambda \beta(\varepsilon) u_{\varepsilon}=\beta(\varepsilon) g(x, t), \\
(x, t) \in l_{\varepsilon} \times(0, T), \\
\partial_{\vee} u_{\varepsilon}=0, \quad(x, t) \in \gamma_{\varepsilon} \times(0, T), \tag{1}\\
u_{\varepsilon}(x, t)=0, \quad(x, t) \in \Gamma_{1} \times(0, T), \\
u_{\varepsilon}(x, 0)=0, \quad x \in l_{\varepsilon},
\end{gather*}
$$

where the coefficient $\beta(\varepsilon)$ has the critical value, that is, $\beta(\varepsilon)=\exp \left(\frac{\alpha^{2}}{\varepsilon}\right), \quad \lambda \geq 0, \quad f \in C\left([0, T] ; \quad L^{2}(\Omega)\right)$, $\partial_{t} f \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$, and $g(x, t) \in C^{1}(\bar{\Omega} \times[0, T])$.

The weak solution of the initial boundary value problem (1) is a function $u_{\varepsilon} \in L^{2}\left(0, T ; H^{1}\left(\Omega, \Gamma_{1}\right)\right)$ that satisfies $\partial_{t} u_{\varepsilon} \in L^{2}\left(0, T ; H^{-1 / 2}\left(l_{\varepsilon}, \Gamma_{1}\right)\right)$ and the integral identity

$$
\begin{align*}
& \beta(\varepsilon) \int_{0}^{T}\left\langle\partial_{t} u_{\varepsilon}, v\right\rangle_{l_{\varepsilon}} d t+\int_{0}^{T} \int_{\Omega}^{T} \nabla u_{\varepsilon} \nabla v d x d t \\
& \quad+\lambda \beta(\varepsilon) \int_{0}^{T} \int_{\varepsilon_{\varepsilon}} u_{\varepsilon} V d x_{1} d t \\
& =\beta(\varepsilon) \int_{0}^{T} \int_{\zeta_{\varepsilon}}^{T} g V d x_{1} d t+\int_{0}^{T} \int_{\Omega} f_{V} d x d t, \tag{2}
\end{align*}
$$

for an arbitrary function $v \in L^{2}\left(0, T ; H^{1}\left(\Omega, \Gamma_{1}\right)\right)$, where $\langle\cdot,\rangle_{l_{\varepsilon}}$ is the duality relation between the spaces $H^{1 / 2}\left(l_{\varepsilon}\right.$, $\left.\Gamma_{1}\right)$ and $H^{-1 / 2}\left(l_{\varepsilon}, \Gamma_{1}\right)$. As usual, $H^{1}\left(\Omega, \Gamma_{1}\right)$ denotes the closure in $H^{1}(\Omega)$ of the set of infinitely differentiable functions in $\bar{\Omega}$ that vanish in a neighborhood of Γ_{1}.

Using Galerkin approximations, we deduce the following theorem.

Theorem 1. Problem (1) has a unique weak solution u_{ε}, which satisfies the estimate

$$
\begin{gather*}
\left\|u_{\varepsilon}\right\|_{L^{2}\left(0, T ; H^{1}\left(\Omega, \Gamma_{1}\right)\right)}+\beta(\varepsilon)\left\|u_{\varepsilon}\right\|_{L^{2}\left(0, T ; L^{2}\left(l_{\varepsilon}\right)\right)}^{2} \tag{3}\\
\quad+\beta(\varepsilon)\left\|\partial_{t} u_{\varepsilon}\right\|_{L^{2}\left(0, T ; L^{2}\left(l_{\varepsilon}\right)\right)}^{2} \leq K ;
\end{gather*}
$$

here and below, K is a positive constant independent of ε.
It follows from (3) that there is a subsequence (denoted in the same way as the original sequence) such that

$$
\begin{equation*}
u_{\varepsilon} \rightharpoonup u \quad \text { weakly } \quad \text { in } \quad L^{2}\left(0, T ; H^{1}\left(\Omega, \Gamma_{1}\right)\right), \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
u_{\varepsilon} \rightharpoonup u \quad \text { strongly } \quad \text { in } \quad L^{2}\left(0, T ; L^{2}(\Omega)\right) \tag{5}
\end{equation*}
$$

as $\varepsilon \rightarrow 0$.
The main results is stated in the following assertion.
Theorem 2. Let u_{ε} be a weak solution of problem (1).
Then the function $u \in L^{2}\left(0, T ; H^{1}\left(\Omega, \Gamma_{1}\right)\right)$ defined by (4) and (5) is a weak solution of the nonlocal boundary value problem

$$
\begin{gather*}
-\Delta_{x} u=f(x, t), \quad(x, t) \in \Omega \times(0, T), \\
\partial_{v} u+\frac{\pi}{\alpha^{2}} u=H_{u}(x, t), \quad(x, t) \in \Gamma_{2} \times(0, T), \tag{6}\\
u(x, t)=0, \quad(x, t) \in \Gamma_{1} \times(0, T),
\end{gather*}
$$

where $H_{u}(x, t)$ is a unique solution of the following Cauchy problem for the ordinary differential equation:

$$
\begin{gather*}
\frac{\partial H_{u}}{\partial t}+\left(\lambda+\frac{\pi}{2 \alpha^{2} l_{0} C_{0}}\right) H_{u}=g(x, t)+\frac{\pi}{2 \alpha^{2} l_{0} C_{0}} u(x, t), \\
(x, t) \in \Gamma_{2} \times(0, T), \tag{7}\\
H(x, 0)=0, \quad x \in \Gamma_{2} .
\end{gather*}
$$

Remark 1. For $u \in L^{2}\left(0, T ; L^{2}\left(\Gamma_{2}\right)\right)$, the solution of the Cauchy problem has the form

$$
\begin{align*}
& H_{u}(x, t)=\frac{\pi}{\alpha^{2}} \int_{0}^{t}\left(g(x, \tau)+\frac{\pi}{2 \alpha^{2} l_{0} C_{0}} u(x, \tau)\right) \tag{8}\\
& \quad \times \exp \left(-\left(\lambda+\frac{\pi}{2 \alpha^{2} l_{0} C_{0}}\right)(t-\tau)\right) d \tau .
\end{align*}
$$

Proof. We introduce auxiliary functions w_{ε}^{j} and q_{ε}^{j} as weak solutions of the boundary value problems

$$
\begin{align*}
\Delta w_{\varepsilon}^{j}=0, & x \in T_{\varepsilon / 4}^{j} \backslash \overline{T_{a_{\varepsilon}}^{j}}, \\
w_{\varepsilon}^{j}=1, & x \in \partial T_{a_{e},}^{j}, \tag{9}\\
w_{\varepsilon}^{j}=0, & x \in \partial T_{\varepsilon / 4}^{j} ;
\end{align*}
$$

$$
\begin{gather*}
\Delta q_{\varepsilon}^{j}=0, \quad x \in T_{\varepsilon / 4}^{j} \overline{l_{\varepsilon}^{j}}, \\
q_{\varepsilon}^{j}=1, \quad x \in l_{\varepsilon}^{j}, \tag{10}\\
q_{\varepsilon}^{j}=0, \quad x \in \partial T_{\varepsilon / 4 .}^{j} .
\end{gather*}
$$

Here, T_{r}^{j} is a ball of radius r centered at $(\varepsilon j, 0)$. Note that w_{ε}^{j} and q_{ε}^{j} are solutions of the problems

$$
\begin{gather*}
\Delta w_{\varepsilon}^{j}=0, \quad x \in\left(T_{\varepsilon / 4}^{j}\right)^{+} \backslash \overline{T_{a_{\varepsilon}}^{j}}, \\
w_{\varepsilon}^{j}=0, \quad x \in \partial T_{\varepsilon / 4}^{j} \cap\left\{x_{2}>0\right\}, \tag{11}\\
w_{\varepsilon}^{j}=1, \quad x \in \partial T_{a_{\varepsilon}}^{j} \cap\left\{x_{2}>0\right\}, \\
\partial_{x_{2}} w_{\varepsilon}^{j}=0, \quad x \in\left\{x_{2}=0\right\} \cap\left(T_{\varepsilon / 4}^{j} \overline{T_{a_{\varepsilon}}^{j}}\right),
\end{gather*}
$$

where $A^{+}=A \cap\left\{x_{2}>0\right\}, A \subset \mathbb{R}^{2}$, and

$$
\begin{gather*}
\Delta q_{\varepsilon}^{j}=0, \quad x \in\left(T_{\varepsilon / 4}^{j}\right)^{+}, \\
q_{\varepsilon}^{j}=1, \quad x \in l_{\varepsilon}^{j}, \tag{12}\\
q_{\varepsilon}^{j}=0, \quad x \in\left(\partial T_{\varepsilon / 4}^{j}\right)^{+}, \\
\partial_{x_{2}} q_{\varepsilon}^{j}=0, \quad x \in\left(T_{\varepsilon / 4}^{j} \cap\left\{x_{2}=0\right\}\right) \backslash \overline{l_{\varepsilon}^{j}},
\end{gather*}
$$

where $j \in \Upsilon_{\varepsilon}$ and $l_{\varepsilon}^{j}=a_{\varepsilon} \hat{l}_{0}+\varepsilon j$. Note that

$$
\begin{equation*}
w_{\varepsilon}^{j}(x)=\frac{\ln \left(\frac{4 r}{\varepsilon}\right)}{\ln \left(\frac{4 a_{\varepsilon}}{\varepsilon}\right)} \tag{13}
\end{equation*}
$$

We introduce the functions

$$
\begin{gather*}
W_{\varepsilon}(x)=\left\{\begin{array}{l}
w_{\varepsilon}^{j}(x), \quad x \in\left(T_{\varepsilon / 4}^{j}\right)^{+} \backslash \overline{\left(T_{a_{\varepsilon}}^{j}\right)^{+}}, \quad j \in \Upsilon_{\varepsilon}, \\
1, \\
0, \quad x \in\left(T_{a_{\varepsilon}}^{j}\right)^{+}, \quad j \in \Upsilon_{\varepsilon}, \\
Q_{\varepsilon}(x)= \begin{cases}q_{\varepsilon}^{j}, & x \in\left(T_{\varepsilon / 4}^{j}\right)^{+}, \quad j \in \Upsilon_{\varepsilon}, \\
0, & x \in \Omega \backslash \overline{\left.\bigcup_{j \in \Upsilon_{\varepsilon}}^{j}\right)^{+}},\end{cases} \\
\left(T_{\varepsilon / 4}^{j}\right)^{+} .
\end{array}\right. \tag{14}
\end{gather*}
$$

It is straightforward to see that $W_{\varepsilon}, Q_{\varepsilon} \in H^{1}\left(\Omega, \Gamma_{1}\right)$ and $W_{\varepsilon} \longrightarrow 0$ weakly in $H^{1}\left(\Omega, \Gamma_{1}\right)$ as $\varepsilon \rightarrow 0$. To compare these two functions, we will use the following lemma proved in [3].

Lemma 1. Let W_{ε} be the function defined by (14), and let Q_{ε} be the function defined by (15). Then

$$
\begin{equation*}
\left\|W_{\varepsilon}-Q_{\varepsilon}\right\|_{H^{\prime}(\Omega)} \leq K \sqrt{\varepsilon} \tag{16}
\end{equation*}
$$

It follows from (2) that for arbitrary test function $v \in L^{2}\left(0, T ; H^{1}\left(\Omega, \Gamma_{1}\right)\right)$ such that $\partial_{t} v \in L^{2}\left(0, T ; L^{2}\left(l_{\varepsilon}\right)\right)$ we have the integral inequality

$$
\beta(\varepsilon) \int_{0}^{T} \int_{l_{\varepsilon}} \partial_{t} v\left(v-u_{\varepsilon}\right) d x_{1} d t+\int_{0}^{T} \int_{\Omega} \nabla_{V} \nabla\left(v-u_{\varepsilon}\right) d x d t
$$

$$
\begin{align*}
& +\beta(\varepsilon) \lambda \int_{0}^{T} \int_{J_{\varepsilon}} v\left(v-u_{\varepsilon}\right) d x_{1} d t \geq \beta(\varepsilon) \int_{0}^{T} \int_{I_{\varepsilon}} g\left(v-u_{\varepsilon}\right) d x_{1} d t \\
& \quad+\int_{0}^{T} \int_{\Omega} f\left(v-u_{\varepsilon}\right) d x d t-\frac{\beta(\varepsilon)}{2}\|v(x, 0)\|_{L^{2}\left(l_{\varepsilon}\right)}^{2} . \tag{17}
\end{align*}
$$

For arbitrary functions $\eta \in C^{1}[0, T]$ and $\psi \in C^{\infty}(\bar{\Omega})$ that vanish in a neighborhood of the boundary Γ_{1}, we introduce the function $\phi(x, t)=\eta(t) \psi(x)$. Let $H_{\phi}(x, t)$ be a solution of the Cauchy problem

$$
\begin{gather*}
\frac{\partial H_{\phi}}{\partial t}+\left(\lambda+\frac{\pi}{2 \alpha^{2} l_{0} C_{0}}\right) H_{\phi}=g(x, t)+\frac{\pi}{2 \alpha^{2} l_{0} C_{0}} \phi(x, t), \tag{18}\\
H_{\phi}(x, 0)=0 .
\end{gather*}
$$

We set $H_{\varepsilon, j}(t)=H_{\phi}\left(P_{\varepsilon}^{j}, t\right)$. For $t \in(0, T)$, we define the function
$Q_{\phi}^{\varepsilon}=\left\{\begin{array}{l}q_{\varepsilon}^{j}(x)\left(\phi\left(P_{\varepsilon}^{j}, t\right)-H_{\varepsilon, j}(t)\right), \\ 0, \quad x \in \Omega \backslash\left(T_{\varepsilon / 4}^{j}\right)^{+}, j \in \Upsilon_{\varepsilon}, \\ \bigcup_{j \in \Upsilon_{\varepsilon}}\left(T_{\varepsilon / 4}^{j}\right)^{+} .\end{array}\right.$
In view of estimate (16), we obtain

$$
\begin{equation*}
Q_{\phi}^{\varepsilon} \rightharpoonup 0 \quad \text { weakly } \quad \text { in } \quad H^{1}\left(\Omega, \Gamma_{1}\right) . \tag{20}
\end{equation*}
$$

As a test function in (17), we take $v=\phi(x, t)-Q_{\phi}^{\varepsilon}$. Then

$$
\begin{gather*}
\beta(\varepsilon) \int_{0}^{T} \int_{\varepsilon_{\varepsilon}}\left(\partial_{t} \phi-\partial_{t} Q_{\phi}^{\varepsilon}\right)\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d x_{1} d t+ \\
+\int_{0}^{T} \int_{\Omega} \nabla\left(\phi-Q_{\phi}^{\varepsilon}\right) \nabla\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d x d t+ \\
+\lambda \beta(\varepsilon) \int_{0}^{T} \int_{l_{\varepsilon}}\left(\phi-Q_{\phi}^{\varepsilon}\right)\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d x_{1} d t \\
\geq \beta(\varepsilon) \int_{0}^{T} \int_{I_{\varepsilon}} g\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d x_{1} d t \\
+\int_{0}^{T} \int_{\Omega}^{T} f\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d x d t \tag{21}\\
-\frac{\beta(\varepsilon)}{2} \sum_{j \in Y_{\varepsilon}}\left\|\phi(x, 0)-\phi\left(P_{\varepsilon}^{j}, 0\right)\right\|_{L^{2}\left(l_{\varepsilon}^{\prime} .\right.}^{2} .
\end{gather*}
$$

Note that $\left.\partial_{t} Q_{\phi}^{\varepsilon}(x, t)\right|_{l_{\varepsilon}^{j}}=\partial_{t} \phi\left(P_{\varepsilon}^{j}, t\right)-\left(H_{\varepsilon, j}(t)\right)^{\prime}$ if $x \in l_{\varepsilon}^{j}$ and $t \in[0, T]$. Therefore,

$$
\begin{gathered}
\beta(\varepsilon) \int_{0}^{T} \int_{L_{\varepsilon}}\left(\partial_{t} \phi-\partial_{t} Q_{\phi}^{\varepsilon}\right)\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d x_{1} d t \\
=\beta(\varepsilon) \sum_{j \in Y_{\varepsilon}} \int_{0}^{T} \int_{J_{\varepsilon}}\left(\partial_{t} \phi(x, t)-\partial_{t} \phi\left(P_{\varepsilon}^{j}, t\right)\right)\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d x_{1} d t
\end{gathered}
$$

$$
\begin{equation*}
+\beta(\varepsilon) \sum_{j \in \Upsilon_{\varepsilon}} \int_{0}^{T} \int_{l_{\varepsilon}^{j}}\left(\frac{d}{d t} H_{\varepsilon, j}\right)\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d x_{1} d t \tag{22}
\end{equation*}
$$

It is easy to see that

$$
\begin{gather*}
\lim _{\varepsilon \rightarrow 0} \beta(\varepsilon) \sum_{j \in \Upsilon_{\varepsilon}} \int_{0}^{T} \int_{I_{\varepsilon}}\left(\partial_{t} \phi(x, t)-\partial_{t} \phi\left(P_{\varepsilon}^{j}, t\right)\right) \tag{23}\\
\quad \times\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d x_{1} d t=0
\end{gather*}
$$

Introducing the notation

$$
I_{\varepsilon} \equiv \int_{0}^{T} \int_{\Omega} \nabla\left(\phi-Q_{\phi}^{\varepsilon}\right) \nabla\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d x d t
$$

we have

$$
\begin{aligned}
& I_{\varepsilon}=\int_{0}^{T} \int_{\Omega} \nabla\left(\phi-W_{\phi}^{\varepsilon}\right) \nabla\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d x d t \\
& +\int_{0}^{T} \int_{\Omega} \nabla\left(W_{\phi}^{\varepsilon}-Q_{\phi}^{\varepsilon}\right) \nabla\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d x d t
\end{aligned}
$$

where, for $t \in[0, T]$,

$$
\begin{gathered}
W_{\phi}^{\varepsilon}(x, t) \\
=\left\{\begin{array}{l}
w_{\varepsilon}^{j}(x)\left(\phi\left(P_{\varepsilon}^{j}, t\right)-H_{\varepsilon, j}(t)\right), \quad x \in\left(T_{\varepsilon / 4}^{j}\right)^{+}, \quad j \in \Upsilon_{\varepsilon}, \\
0, \quad x \in \Omega \backslash \cup_{j \in \Upsilon_{\varepsilon}},
\end{array}, \begin{array}{l}
\left(T_{\varepsilon / 4}^{j}\right)^{+} .
\end{array}\right.
\end{gathered}
$$

Using Lemma 1, we deduce that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{0}^{T} \int_{\Omega} \nabla\left(W_{\phi}^{\varepsilon}-Q_{\phi}^{\varepsilon}\right) \nabla\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d x d t=0 \tag{24}
\end{equation*}
$$

In addition, we derive that

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0} \int_{0}^{T} \int_{\Omega} \nabla \phi \nabla\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d x d t \tag{25}\\
& \quad=\int_{0}^{T} \int_{\Omega} \nabla \phi \nabla(\phi-u) d x d t
\end{align*}
$$

Taking into account the definition of W_{ϕ}^{ε} yields

$$
\begin{gathered}
-\int_{0}^{T} \int_{\Omega} \nabla W_{\phi}^{\varepsilon} \nabla\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d x d t \\
=-\sum_{j \in T_{\varepsilon}} \int_{0}^{T} \int_{\left(T_{\varepsilon / 4}^{j}\right)^{+} \backslash\left(T_{a_{\varepsilon}}^{j}\right)^{+}} \nabla w_{\varepsilon}^{j} \\
\times \nabla\left[\left(\phi\left(P_{\varepsilon}^{j}, t\right)-H_{\varepsilon, j}(t)\right)\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right)\right] d x d t \\
=-\sum_{j \in T_{\varepsilon}} \int_{0}^{T} \int_{\left(\partial T_{\varepsilon / 4}^{j}\right)^{+}} \partial_{v} w_{\varepsilon}^{j}\left(\phi\left(P_{\varepsilon}^{j}, t\right)-H_{\varepsilon, j}(t)\right)\left(\phi-u_{\varepsilon}\right) d s d t
\end{gathered}
$$

$-\sum_{j \in \Upsilon_{\varepsilon}} \int_{0}^{T} \int_{\left(\partial T_{\left.a_{\varepsilon}\right)^{+}}\right.} \partial_{v} w_{\varepsilon}^{j}\left(\phi\left(P_{\varepsilon}^{j}, t\right)-H_{\varepsilon, j}(t)\right)\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d s d t$.
Since w_{ε}^{j} is a solution of problem (9), we infer the relations

$$
\begin{gather*}
\left.\partial_{v} w_{\varepsilon}^{j}\right|_{\left(\partial \tau_{\varepsilon / 4}^{j}\right)^{+}}=\frac{4}{-\alpha^{2}+\varepsilon \ln \left(4 C_{0}\right)} \\
\left.\partial_{v} w_{\varepsilon}^{j}\right|_{\left(\partial T_{a_{\varepsilon}}^{j}\right)^{+}}=\frac{\exp \left(\alpha^{2} / \varepsilon\right)}{C_{0} \alpha^{2}-C_{0} \varepsilon \ln \left(4 C_{0}\right)} \tag{26}
\end{gather*}
$$

It follows that

$$
\begin{gather*}
-\int_{0}^{T} \int_{\Omega} \nabla W_{\phi}^{\varepsilon} \nabla\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d x d t \\
=\frac{4}{\alpha^{2}} \sum_{j \in Y_{\varepsilon}} \int_{0}^{T} \int_{\left(\partial T_{\varepsilon / 4}^{j}\right)^{+}}\left(\phi\left(P_{\varepsilon}^{j}, t\right)-H_{\varepsilon, j}(t)\right)\left(\phi-u_{\varepsilon}\right) d s d t \\
-\frac{\beta(\varepsilon)}{\alpha^{2} C_{0}} \sum_{j \in \Upsilon_{\varepsilon}} \int_{0}^{T} \int_{\left(\partial T_{a_{\varepsilon}}^{j}\right)^{+}}\left(\phi\left(P_{\varepsilon}^{j}, t\right)-H_{\varepsilon, j}(t)\right) \tag{27}\\
\times\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d s d t+\alpha_{\varepsilon}
\end{gather*}
$$

where $\alpha_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$.
Relations (20)-(27) yield the inequality

$$
\begin{aligned}
& \beta(\varepsilon) \sum_{j \in \mathrm{Y}_{\varepsilon}} \int_{0}^{T} \int_{L_{\varepsilon}}\left(H_{\varepsilon, t}^{\prime}+\lambda H_{\varepsilon, j}-g\left(P_{\varepsilon}^{j}, t\right)\right)\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d x_{1} d t \\
&-\beta(\varepsilon) \sum_{j \in \mathrm{Y}_{\varepsilon}} \int_{0}^{T} \int_{\left(\partial T_{a_{\varepsilon}}^{j}\right)^{+}} \frac{1}{C_{0} \alpha^{2}}\left(\phi\left(P_{\varepsilon}^{j}, t\right)\right. \\
&\left.-H_{\varepsilon, j}(t)\right)\left(\phi-u_{\varepsilon}\right) d s d t+\alpha_{\varepsilon} \\
&+\frac{4}{\alpha^{2}} \sum_{j \in \Upsilon_{\varepsilon}} \int_{0}^{T} \int_{\left(\partial T_{\varepsilon / 4}^{j}\right)^{+}}\left(\phi\left(P_{\varepsilon}^{j}, t\right)-H_{\varepsilon, j}(t)\right)\left(\phi-u_{\varepsilon}\right) d s d t
\end{aligned}
$$

$$
+\int_{0}^{T} \int_{\Omega} \nabla \phi \nabla\left(\phi-u_{\varepsilon}\right) d x d t \geq \int_{0}^{T} \int_{\Omega} f\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d x d t
$$

$$
\alpha_{\varepsilon} \rightarrow 0 \text { as } \varepsilon \rightarrow 0
$$

Here, we used the fact that

$$
\lim _{\varepsilon \rightarrow 0} \beta(\varepsilon) \sum_{j \in \Upsilon_{\varepsilon}}\left\|\phi(x, 0)-\phi\left(P_{\varepsilon}^{j}, 0\right)\right\|_{L^{2}\left(l_{\varepsilon}^{j}\right)}^{2}=0
$$

In what follows, we will need the following lemma of [3].

Lemma 2. Let $h \in H^{1}\left(\Omega, \Gamma_{1}\right)$. Then

$$
\begin{gather*}
\left|\frac{\beta(\varepsilon) \pi}{2 l_{0}} \int_{l_{\varepsilon}} h d x_{1}-\beta(\varepsilon) \sum_{j \in \Upsilon_{\varepsilon}} \int_{\left(\partial T_{a_{\varepsilon}}^{j}\right)^{+}} h d s\right| \tag{29}\\
\leq K \sqrt{\varepsilon}\|h\|_{H^{1}\left(\Omega, \Gamma_{1}\right)}
\end{gather*}
$$

Estimate (29) implies that, as $\varepsilon \rightarrow 0$,

$$
\left\lvert\, \frac{\beta(\varepsilon)}{\alpha^{2} C_{0}} \sum_{j \in \Upsilon_{\varepsilon}} \int_{0}^{T} \int_{\left.\partial T_{a_{\varepsilon}}^{j}\right)^{+}}\left(\phi\left(P_{\varepsilon}^{j}, t\right)-H_{\varepsilon, j}(t)\right)\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d s d t\right.
$$

$$
\begin{equation*}
-\frac{\beta(\varepsilon) \pi}{2 \alpha^{2} C_{0} l_{0}} \sum_{j \in Y_{\varepsilon}} \int_{0}^{T} \int_{l_{\varepsilon}}\left(\phi\left(P_{\varepsilon}^{j}, t\right)-H_{\varepsilon, j}(t)\right) \tag{30}
\end{equation*}
$$

$$
\times\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d x_{1} d t \mid \rightarrow 0
$$

In view of (28)-(30), we derive the inequality

$$
\begin{gather*}
\beta(\varepsilon) \sum_{j \in \Upsilon_{\varepsilon}} \int_{0}^{T} \int_{l_{\varepsilon}^{j}}\left(\frac{d H_{\varepsilon, j}}{d t}+\lambda H_{\varepsilon, j}\right. \\
-g\left(P_{\varepsilon}^{j}, t\right)-\frac{\pi}{2 \alpha^{2} C_{0} l_{0}} \phi\left(P_{\varepsilon}^{j}, t\right) \\
\left.+\frac{\pi}{2 \alpha^{2} C_{0} l_{0}} H_{\varepsilon, j}\right)\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d x_{1} d t \\
+\int_{0}^{T} \int_{\Omega} \nabla \phi \nabla(\phi-u) d x d t \\
+\frac{4}{\alpha^{2}} \sum_{j \in Y_{\varepsilon}} \int_{0}^{T} \int_{\left(\partial T_{\varepsilon / 4}^{j}\right)^{+}}\left(\phi\left(P_{\varepsilon}^{j}, t\right)-H_{\varepsilon, j}(t)\right)\left(\phi-u_{\varepsilon}\right) d s d t \\
\geq \int_{0}^{T} \int_{\Omega} f\left(\phi-Q_{\phi}^{\varepsilon}-u_{\varepsilon}\right) d x d t+\tilde{\alpha}_{\varepsilon} \tag{31}
\end{gather*}
$$

where $\tilde{\alpha}_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$.
Taking into account that $H_{\varepsilon, j}(t)$ is a solution of Cauchy problem (18), we deduce that the first sum on the right-hand side of inequality (31) is zero.

The assertion proved in $[3,6]$ implies that

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0} \frac{4}{\alpha^{2}} \sum_{j \in \Upsilon_{\varepsilon}} \int_{0}^{T} \int_{\left(\partial T_{\varepsilon / 4}^{j}\right.}\left(\phi\left(P_{\varepsilon}^{j}, t\right)-H_{\varepsilon, j}(t)\right)\left(\phi-u_{\varepsilon}\right) d s d t \\
& \quad=\frac{\pi}{\alpha^{2}} \int_{0}^{T} \int_{\Gamma_{2}}\left(\phi(x, t)-H_{\phi}(x, t)\right)(\phi-u) d x_{1} d t \tag{32}
\end{align*}
$$

where the function $H_{\phi}(x, t)$ is defined by (8).
It follows from (31) and (32) that u satisfies the integral inequality

$$
\begin{align*}
& \int_{0}^{T} \int_{\Omega} \nabla \phi \nabla(\phi-u) d x d t+\frac{\pi}{\alpha^{2}} \int_{0}^{T} \int_{\Gamma_{2}}\left(\phi-H_{\phi}\right)(\phi-u) d x_{1} d t \\
& \geq \int_{0}^{T} \int_{\Omega} f(\phi-u) d x d t \tag{33}
\end{align*}
$$

Since u satisfies inequality (33), we conclude that u is a solution of the integral identity

$$
\begin{gathered}
\begin{array}{c}
\int_{0}^{T} \int_{\Omega} \nabla u \nabla v d x d t
\end{array}+\frac{\pi}{\alpha^{2}} \int_{0}^{T} \int_{\Gamma_{2}}\left(u-H_{u}\right) v d x_{1} d t \\
=\int_{0}^{T} \int_{\Omega} f v d x d t
\end{gathered}
$$

where $v(x, t)=\eta(t) \psi(x), \eta \in C^{1}[0, T], \psi \in C^{\infty}(\bar{\Omega})$, and ψ is zero on some neighborhood of the boundary Γ_{1}. In view of the fact that the set of functions of this type is everywhere dense in $L^{2}\left(0, T ; H^{1}\left(\Omega, \Gamma_{1}\right)\right)$, we infer that u is a weak solution of problem (6), (7).

We will prove the uniqueness of the weak solution of problem (6), (7). Let u_{1} and u_{2} be two weak solutions of problem (6), (7). Then $w=u_{1}-u_{2}$ is a weak solution of the problem

$$
\begin{gathered}
\Delta_{x} w=0, \quad(x, t) \in \Omega \times(0, T), \\
\partial_{v} w+\frac{\pi}{\alpha^{2}} w=H_{w}(x, t), \quad(x, t) \in \Gamma_{2} \times(0, T), \\
w(x, t)=0, \quad(x, t) \in \Gamma_{1} \times(0, T), \\
\frac{\partial H_{w}}{\partial t}+\left(\lambda+\frac{\pi}{2 \alpha^{2} l_{0} C_{0}}\right) H_{w}=\frac{\pi}{2 \alpha^{2} l_{0} C_{0}} w, \\
(x, t) \in \Gamma_{2} \times(0, T), \\
H_{w}(x, 0)=0, \quad x \in \Gamma_{2} .
\end{gathered}
$$

Since H_{w} is a solution of Cauchy problem (7), it satisfies the estimate

$$
\int_{0}^{t} \int_{\Gamma_{2}}\left|H_{w}(x, \tau)\right|^{2} d x_{1} d \tau \leq C t \int_{0}^{t} \int_{\Gamma_{2}}|w(x, \tau)|^{2} d x_{1} d \tau .
$$

The integral identity for w yields

$$
\begin{gathered}
\int_{0}^{t} \int_{\Omega}|\nabla w|^{2} d x d \tau+\frac{\pi}{\alpha^{2}} \int_{0}^{t} \int_{\Gamma_{2}} w^{2} d x_{1} d \tau=\int_{0}^{t} \int_{\Gamma_{2}} w H_{w} d x_{1} d \tau \\
\leq C_{1} \sqrt{t} \int_{0}^{t} \int_{\Gamma_{2}} w^{2} d x_{1} d \tau \leq C_{2} \sqrt{t} \int_{0}^{t} \int_{\Omega}|\nabla w|^{2} d x d \tau .
\end{gathered}
$$

For $C_{2}^{2} t<1$, we immediately obtain $w \equiv 0$. By applying iterations with respect to time, we conclude that $w=0$ a.e. in $\Omega \times(0, T)$.

FUNDING

The studies of J.I. Diaz and D. Gomez-Castro were supported in part by project no. MTM2017-85449-P (Ministerio de Ciencia, Innovación y Universidades Agencia Estatal de Investigación (Spain)). In addition, the studies of D. GomezCastro were supported in part by grant no. PG 2018-098440-BI00 (Ministerio de Ciencia, Innovacin y Universidades Agencia Estatal de Investigacin (Spain)).

REFERENCES

1. M. Anguiano, Mediterr. J. Math. 17, Article 18, 1-22 (2020).
2. D. Cioranescu and F. Murat, in Topics in Mathematical Modeling of Composite Materials, Ed. by A. Cherkaev and R. Kohn (Springer Science Business Media, New York, 1997), p. 4594.
3. J. I. Diaz, D. Gomez-Castro, A. V. Podolskiy, and T. A. Shaposhnikova, Dokl. Math. 97 (3), 271-276 (2018).
4. J. I. Diaz, D. Gomez-Castro, and T. A. Shaposhnikova, Nanocomposite Reaction-Diffusion Processes: Anomalous Improved Homogenization: Series on Nonlinear Analysis and Applications (De Gruyter, Berlin) (to appear in 2021).
5. J. I. Diaz, D. Gomez-Castro, T. A. Shaposhnikova, and M. N. Zubova, Electron. J. Differ. Equations 77, 1-13 (2019).
6. T. A. Shaposhnikova and M. N. Zubova, Dokl. Math. 99 (3), 245-251 (2019).
7. C. Timofte, Math. Model. Anal. 8 (4), 337-350 (2003).
8. D. Gomez, M. Lobo, E. Perez, and E. Sanchez-Palencia, Appl. Anal. 97 (16), 2893-2919 (2018).

Translated by N. Berestova

[^0]: ${ }^{a}$ Instituto de Matematica Interdisciplinar, Universidad Complutense, Madrid, 28040 Spain
 ${ }^{b}$ Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia
 *e-mail:ji_diaz@mat.ucm.es
 **e-mail: shaposh.tan@mail.ru

