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Abstract

We consider a nonlinear elliptic system proposed in 2007 by E. Gilad, J. von Hardenberg, A.
Provenzale, M. Shachak and E. Meron, in deserti�cation studies. The system models the mutual
interaction between the biomass b, the soil-water content w and the surface-water height h: The in-
teractions with the plant environment may lead to some non-local terms which can be approximated
by suitable local expressions. Various kinds of feedback processes arise. The change in environmental
conditions can be simulated by the change of suitable parameters in the di¤erential equations. Here
we consider the case of Dirichlet boundary conditions. After describing some positive solutions corre-
sponding to special values of the parameters, we prove the existence of positive solutions for the local
and non-local system. We obtain some bifurcation diagrams showing, rigorously, its starting value
and characterizing the supercritical (resp. subcritical) nature of the branch (something unnoticed
before in the previous literature) according to a suitable parameters balance expression. Finally, we
prove that if the precipitation datum p(x) grows near the boundary of the domain @
 as d(x; @
)2

then h(x) grows, at most, as d(x; @
)4.

Alla cara memoria di Maria Assunta Pozio

Keywords: Local and non-local elliptic systems, positive solutions, Dirichlet boundary conditions,
subcritical and supercritical bifurcation, free boundary, �at solutions.
Subject Classi�cation: 35K57, 35J57, 35B32, 35R35.

1 Introduction

Equations and systems of reaction-di¤usion type have been widely studied during the last �fty years both
for their mathematical interest and the relevance in applications (population dynamics, combustion,
chemical reactions, nerve impulses, etc.). See the books [30], [25] and the references therein for more
informations.
Existence and uniqueness of solutions for parabolic systems are studied, and then the asymptotic

behavior of solutions. From this point of view it is important the study of the existence (and multiplicity)
of solutions of the associated stationary problem together with the stability of their solutions. Very often
only positive solutions are interesting for the applications.
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The �rst author and P. Kyriasopoulos studied in [14] an elliptic system arising in a dryland vegetation
model suggested by Gilad et al. in [18] (other models can be found in [28], [3] and [23]). This system was
proposed through the modelling of appropriate ecosystems consisting of organisms that interact among
themselves and with their environment. These interactions involve various kinds of feedback processes
that may combine to form positive feedback loops and instabilities when environmental conditions change,
and this can be simulated by the change of suitable parameters in the di¤erential equations. Like the
well-established activator-inhibitor principle in bio-chemical systems [24], the combination of these scale-
dependent feedback mechanisms can induce instabilities that result in large-scale spatial patterns, which
are similar to a wide variety of vegetation patterns observed in drylands, peatlands, savannas and undersea
(see, e.g. the monograph [23]). Here we do not intend to enter in the very rich �eld of pattern formation
but only to complete the mathematical analysis of these types of models already initiated in [14] (see also
[22]). We also mention the mathematical study of the corresponding dynamical system (now given by a set
of parabolic equations) made in [19], [20] and [15]. Understanding the dynamics and stability/instability
of spatially extended ecosystems has become an active �eld of research in the last two decades within
communities of ecologists, environmental scientists, mathematicians and physicists.
The more general version of the system we shall consider in this paper is given by8<: ��b�b = ��b+Gbb(1� b) in 
;

��w�w = �Gww � Ebw + Ibh in 
;
��h�h2 = �Ibh+ p in 
;

(1)

where we suppose that 
 � R2 is a bounded domain with C2 boundary and n is the outward pointing
unit normal on @
. The vertical variable usually arises in some extra terms in third equation representing
the ground surface height for non-�at topographies but here they are neglected in order to get a more
basic qualitative study. Here, b represents the biomass, w the soil-water content and h the surface-water
height (after suitable non-dimensionalization). The growth rate Gb and the water uptake rate Gw are
non-local terms given by

Gb(b; w) = �

Z



g(x; y)w(y) dy and Gw(b) = 

Z



g(y; x)b(y) dy

where

g(x; y) =
1

2��2
exp

�
� jx� yj
2 [�(1 + �b)]

2

�
for x; y 2 
: (2)

Moreover, �(x) > 0 represents the biomass loss rate,

Eb(b) =
�

1 + �b
(3)

is the evaporation rate of the soil water, and

Ib(b) = �
b+ q=c

b+ q
(4)

represents the in�ltration rate of the surface water. Notice that the third equation involves nonlinear
di¤usion of porous medium type and the precipitation rate datum p which we will assume, for simplicity,

p 2 C(
); p(x) > 0 for any x 2 
: (5)

All parameters �; �; �; q; � are nonnegative and c > 1:With respect to the boundary conditions, we should

point out that although in most of the previous papers it is assumed Neumann boundary conditions,
@b

@n
=

@w

@n
=
@h

@n
= 0 hold on @
; a sharper modelling of some concrete example will require the use of other

types of boundary conditions, among them, of course, Dirichlet conditions.
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It is well-known ([18], [28], [23]) that the ecosystem response to decreasing rainfall, for example, may
take the form of abrupt collapses to a nonproductive �desert state�, or involve gradual deserti�cation,
consisting of a cascade of state transitions to sparser vegetation, or gradual vegetation retreat by front
propagation. This explains the crucial role played by the data given by p. In a simpli�ed framework (for
very local purposes) it can be considered as a given positive constant (and the possible multiplicity of
solutions according the values of p lead to di¤erent kinds of bifurcation diagrams). In a more spatially
global framework p should be understood as a spatial given function p(x) which may justify the occurrence
of fronts separating regions in which h > 0 from parts in which h = 0. Let us mention that rigorous
mathematical study of the qualitative behavior of solutions is a necessary complement of previous studies
in which the use of computational tools for quite special cases (see a very complete source of references in
[23]) leads to create some theories which require to be checked in each new special case of the parameters
and other data.
In [14] the authors consider the situation of plant species with negligible below ground biomass. In

this case it can be assumed that the root extension parameter is � = 0. And also that since the minimal
root size of such plant specie goes to zero, non-local e¤ects of the root systems are negligible. In such a
situation we may replace g(x; y) with the Dirac delta based on x and hence obtaining the following local
coupled system 8<: ��b�b = ��(x)b+ �wb(1� b) in 
;

��w�w = �bw � Ebw + Ibh in 
;
��h�h2 = �Ibh+ p in 
;

(6)

with the Neumann boundary conditions.
Then the authors do not study the full system (6) but only the case where in�ltration feedback and

soil-water di¤usion are not present, i.e., when �w = �h = 0. In this case, they obtain existence of multiple
positive solutions for 1 � �(x) � �� in terms of the parameter p. Moreover, they also get results concerning
the free boundary of the surface-water solution component h in the case of the full system.
In this paper we study the full system in both the non-local and the (simpli�ed) local versions. This

study is greatly simpli�ed by making the change of variable H = h2 (and then replacing again H by h)
obtaining the system (now we change the boundary conditions)8>><>>:

��b�b+ �(x)b = Gbb(1� b) in 
;
��w�w +Gww + Ebw = Ibh in 
;
��h�h+ Ib

p
h = p in 
;

b = w = h = 0 on @
:

(7)

This choice of the boundary conditions will simplify (and somewhat modify) the problem with respect
to Neumann boundary conditions, but we will show that most of the results hold for general (linear)
boundary conditions of the third type

@b

@n
+ !(x)b = 0 on @
;

with !(x) > 0 smooth (see Remark 23)
Notice that the presence of

p
h in the third equation of (7) makes possible the existence of non-negative

solutions with �dead core�where the solution annihilates (the above mentioned fronts originated by data
p(x) vanishing in some subregions). Examples of systems with such solutions were given time ago in [13],
[26], [27].
The paper is organized as follows. Just for the sake of completeness, we deal, in Section 2, with a simple

study of several particular cases of the system which may have some interest in the applications. The
main results of this paper concern the rest of the sections of this paper. In Section 3 we prove existence
of positive solutions for the local system and in Section 4 in the non-local case. In Section 5 we study,
perhaps the deeper results of this paper, the existence of positive solutions when �b > 0 and �w = 0 getting
both uniqueness and multiplicity results. In contrast to previous results dealing with Neumann boundary
condition, we obtain some bifurcation diagrams showing rigorously its starting value (from the �rst

3



eigenvalue �1 of a linear operator with the corresponding weights and with Dirichlet boundary conditions)
and characterizing the supercritical (resp. subcritical) nature of the branch (something unnoticed before
in the literature) according the positivity (resp. negativity) of the parameters balance expression �(1 �
�) + . In Section 6 we study the case in which p(x) vanishes on @
 completing the results of [14]. We
show (for �h > 0) that if p(x) grows near @
 as d(x; @
)2 then h(x) grows, at most, as d(x; @
)4. In
particular h is a ��at solution�, in the sense that h = @h

@n = 0 on @
; with h > 0 on 
 if p > 0 on 
.
Finally, Section 7 is devoted to recall the main conclusions and to state some few open problems.

2 The local system. Some particular cases

First we will consider some special cases of the general local system which may have some particular
interest for the applications. The general version of the local system after one change of variable is8>><>>:

��b�b+ �(x)b = �wb(1� b) in 
;
��w�w + bw + Ebw = Ib

p
h in 
;

��h�h+ Ib
p
h = p(x) in 
;

b = w = h = 0 on @
:

(8)

We recall that we have

Eb(b) =
�

1 + �b
, Ib(b) = �

b+ q=c

b+ q
(9)

and thus Eb(b) is decreasing in b and
�

1 + �
� Eb(b) � � if b 2 [0; 1]; (10)

and that Ib(b) is increasing in b and for any b � 0

0 <
�

c
< Ib(b) < �: (11)

In this paper we are mainly interested in continuous solutions of system (8) which requires some
assumptions on the data which are stronger than when one deals with other kind of weak solutions (see
Remarks 3 and 22). We assume that � is C1 and for some � > 1

1 � �(x) � � (12)

and p(x) � 0 is continuous on 
.
We will use several well-known auxiliary results which give, at the same time, some basic properties of

solutions. Their proof can be obtained even under conditions much more general than the above indicated
framework, nevertheless we give here a short proof of them for the sake of completeness.

Lemma 1 Assume that b � 0 is a solution of (8). Then 0 � b(x) < 1 on 
.

Proof. Indeed, let us prove, �rst, that 0 � b � 1. If we de�ne A = fx 2 
 j 1 < b(x)g, then we have
��b�b + �(x)b < 0 on A and b = 1 on @A. From the Maximum Principle, b < 1 on A, a contradiction.
Moreover, if b(x0) = 1 for some x0 2 
, then

0 � ��b(x0) = ��(x0)b(x0) + �w(x0)b(x0)(1� b(x0)) = ��(x0) < 0;

which is a contradiction.

Lemma 2 The problem �
��w + �(w) = h(x)
w = 0

in 
;
on @
;

(13)

where � is continuous and monotone increasing with �(0) = 0 and h 2 C(
), h � 0 in 
, has a solution
w � 0: If h > 0 in 
, then w > 0 in 
 and it is unique.
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Proof. We use sub and supersolutions. As a supersolution we pick w0 such that ��w0 = h in 
; w0 = 0
on @
; w0 2 C10 (
) and w0 > 0. For a subsolution let us choose D smooth such that h(x) � c1 > 0 on
D, and let �1 > 0 the �rst eigenvalue of �� on D with eigenfunction  1 > 0, i.e., �� 1 = �1 1 in D;
 1 = 0 on @D. We can show that

u0 =

�
c 1 on D
0 on 
 nD;

for c > 0 small is a subsolution. Hence there exists a C1(
) solution with w � 0. We do not have
necessarily w > 0, but this is obviously the case if h > 0 in 
. Uniqueness is proved by the usual
monotonicity argument.

Remark 3 As indicated before, the above auxiliary results hold under more general assumptions. For
instance, the proof of Lemma 2 for h 2 L1(
; d) where d = d(x; @
) can be found in [16]. In this case
the (unique) solution should be understood in the class of very weak solutions of problem (13).

We study next a few particular cases of system (8). The meaning of such particular cases sometimes
can be easely understood in terms of the ecological model (see, e.g. Section 9.2.3 of [23]).

2.1 Solutions with b � 0
In this case the system is reduced to8<: ��w�w + E0w = I0

p
h in 
;

��h�h+ I0
p
h = p(x) in 
;

w = h = 0 on @
:
(14)

Since p � 0, the second equation has a unique solution h(:; p) � 0 (Lemma 2). For this h(:; p) the �rst
equation has a unique solution w > 0: Thus we have

Proposition 4 There is a unique solution (w; h) with w > 0; h � 0 of system (8) with b � 0:

2.2 Solutions with w � 0
Now the system is written as 8<:

��b�b+ �(x)b = 0 in 
;
��h�h+ Ib

p
h = p(x) in 
;

b = h = 0 on @
:
(15)

Now b � 0 and the system (8) has only the solution (0; 0; h) with h � 0 the unique solution of�
��h�h+ I0

p
h = p(x) in 
;

h = 0 on @
:

Proposition 5 The system (8) has a unique solution (0; 0; h) with h � 0 and w � 0:
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2.3 Solutions with h � 0
It is clear that this is only possible if p(x) � 0 as well. In this case the system (8) is reduced to8<: ��b�b+ �(x)b = �wb(1� b) in 
;

��w�w + bw + Ebw = 0 in 
;
b = w = 0 on @
:

(16)

But since b � 0, the second equation and the Maximum Principle give w � 0 and the �rst one b � 0:
Hence

Proposition 6 If p(x) � 0 the system (8) has only the trivial solution.

2.4 Solutions with �h � 0
Now we have Ib

p
h = p(x) and the resultant system is8<: ��b�b+ �(x)b = �wb(1� b) in 
;

��w�w + bw + Ebw = p(x) in 
;
b = w = 0 on @
;

(17)

which can be written as 8<: ��b�b+ �(x)b = �wb(1� b) in 
;
��w�w = p(x)� bw � Ebw in 
;
b = w = 0 on @
:

(18)

Let us see �rst if the system is cooperative (in the sense of the associate dynamical system; see, e.g., [25]
and [29]). First

@

@w
(�wb(1� b)) = �b(1� b) � 0,

since b 2 [0; 1]: For the second equation we need

@

@b
(p(x)� bw � Ebw) = �w +

��w

(1 + �b)2
� 0, 8b 2 [0; 1];

i.e. �� > (1 + �b)2; which holds if
�� > (1 + b)2;

for any b 2 [0; 1], in particular if
�� > 4. (19)

Notice that in the framework of activator/inhibitor reaction-di¤usion systems this means that b is an
activator ([24]). Now let us check that (b0; w0) = (0; 0) is a subsolution and that (b0; w0) = (1; w�), with
w� > 0 the unique solution of the linear problem�

��w�w� + w� + E1w� = p(x) in 
;
w� = 0 on @
;

(20)

is a supersolution. Indeed,8>><>>:
��b�b0 + �(x)b0 � �w0b0(1� b0) = 0
��b�b0 + �(x)b0 � �w0b0(1� b0) = �(x) > 0
��w�w0 + b0w0 + Eb0w0 � p(x) = �p(x) � 0
��w�w0 + b0w0 + Eb0w0 � p(x) = 0

and then there exists at least a solution (b; w) such that 0 � b � 1 and 0 � w � w�:
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Proposition 7 Under condition (19) there exists at least a solution (b; w) of the system (8) with �h � 0:

Remark 8 Apparently the usual �concavity�condition giving uniqueness of solutions for systems is not
satis�ed.

If condition (19) is not satis�ed we should follow a di¤erent approach, e.g., coupled sub and superso-
lutions or Schauder �xed point theorem.
If (19) is not satis�ed we use Schauder�s �xed point theorem with T : K ! K, K = [0; 1]� [0;W �] �

C(
)2 de�ned by T (b; w) = (B;W ) given by8<: ��b�B + �(x)B = �wb(1� b) in 
;
��w�W + bW + EbW = p(x) in 
;
B =W = 0 on @
;

(21)

and where W � is the unique solution of�
��w�W � = p(x) in 
;
W � = 0 on @
:

(22)

It is clear that 0 � B � 1 and we have�
��w�(W � �W ) = bW + EbW > 0 in 
;
W �W � = 0 on @
:

(23)

Hence, W � W � by the Maximum Principle. We do not prove that T is compact. The reason is that a
similar result will be proved later in a more involved framework.

2.5 Solutions with �w � 0
In this case bw + Ebw = Ib

p
h, which gives w = Ib

p
h

b+Eb and the corresponding problem is8><>:
��b�b+ �(x)b = �Ib

p
h

b+Eb b(1� b) in 
;
��h�h+ Ib

p
h = p(x) in 
;

b = h = 0 on @
:
(24)

The system is not cooperative since

@

@b
(p(x)� Ib

p
h) = �I 0b

p
h < 0:

Again we should use Schauder�s �xed point theorem. We will take K = [0; 1]� [0; h�] where h� is given
by �

��h�h� = p(x) in 
;
h� = 0 on @
;

(25)

and de�ne T (b; h) = (B;H) from the system8><>:
��b�B + �(x)B = �Ib

p
h

b+Eb b(1� b) in 
;
��h�H + Ib

p
H = p(x) in 
;

B = H = 0 on @
:
(26)

As above, 0 � B � 1 and �
��h�(h� �H) = Ib

p
H > 0 in 
;

H � h� = 0 on @
;
(27)

gives H � h�:
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2.6 Solutions with h �xed

In this case the system (8) is reduced to8>><>>:
��b�b+ �(x)b = �wb(1� b) in 
;
��w�w = �bw � Ebw + Ib

p
h in 
;

��h�h+ Ib
p
h = p(x) in 
;

b = w = 0 on @
:

(28)

Once again, we check if this system is cooperative. First we have that @
@w (�wb(1 � b)) � 0 8b 2 [0; 1]:

However @
@b (�bw � Ebw + Ib

p
h) = �w � E 0bw + I 0b

p
h which is positive if �E 0bw >  8b 2 [0; 1], which

holds as above under condition (19).
Now we can see that (0; 0) is a subsolution and (1; w�), where w� is the unique solution of�

��w�w� = I1
p
h in 
;

w� = 0 on @
;
(29)

is a supersolution. Indeed, 8b 2 [0; 1]

��w�w� + bw� + Ebw� � I1
p
h = (I1 � Ib)

p
h+ bw� + Ebw� > 0;

since Ib is increasing. Thus we have proved

Proposition 9 Under condition (19) there exists at least a solution of system (28) for h > 0 given.

3 Existence when min(�b; �w; �h) > 0: the local system

We study now the full version of the system8>><>>:
��b�b+ �(x)b = �wb(1� b) in 
;
��w�w = �bw � Ebw + Ib

p
h in 
;

��h�h = �Ib
p
h+ p(x) in 
;

b = w = h = 0 on @
:

(30)

Since I 0b > 0; the right hand side of the last equation is not increasing in b, the system is not cooperative.
We apply Schauder�s �xed point theorem. For this, we de�ne the nonlinear operator T : E ! E; where
E = C(
)3 by

T (b; w; h) = (B;W;H);

where (B;W;H) is the solution of the system8>><>>:
��b�B + �(x)B = �wb(1� b) in 
;
��w�W + bW + EbW = Ib

p
h in 
;

��h�H + Ib
p
H = p(x) in 
;

B =W = H = 0 on @
:

(31)

It is clear that this system has a unique solution from the linear theory and Lemma 2. Now, we look for
K � E, K convex, bounded, closed and such that T (K) � K with T continuous and compact. To de�ne
K we take H0 as the unique solution H0 > 0 of�

��h�H0 = p(x) in 
;
H0 = 0 on @
;

(32)
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(recall that I1 > 0) and with W 0 > 0 the unique solution to�
��w�W 0 = I1

p
h in 
;

W 0 = 0 on @
:
(33)

We de�ne K =[0; 1] � [0;W 0] � [0;H0], which is convex, bounded and closed in E. Let us check that
T (K) � K. We have already seen that 0 � B � 1 if 0 � b � 1: Next we have, from (28)�

��h�(H0 �H) = Ib
p
H in 
;

H0 �H = 0 on @
;
(34)

and by the Maximum Principle H0 � H. Finally, we also have�
��w�(W 0 �W ) = +bW + (I1

p
H0 � Ib

p
H) > 0 in 
;

W 0 �W = 0 on @
;
(35)

and again, from the Maximum Principle W 0 �W follows.
The proof of the compactness of the operator K follows from the fact that when the right hand side

data (b; w; h) are uniformly bounded in E = C(
)3 then we know that the solutions are also uniformly
bounded in E which implies the same property for (�B;�W;�H). Then by the linear theory (see, e.g.,
the exposition made in [5]) (B;W;H) are uniformly bounded in W 2;p(
) for any p � 1 which implies
the equicontinuity and the Ascoli-Arzela result leads to the compactness of K. In order to prove the
continuity of the operator T it su¢ ces to apply Proposition 6 of [6]) and then, if f(b) = b(1� b),

kB1 �B2kL1(
) � C1 kf(b1)� f(b2)kL1(
) � C1! kb1 � b2kL1(
) ;

where C1 = �maxi=1;2 kwikL1(
) and ! is the Lipschitz constant of the nonlinear function f(b): Analo-
gously,

kW1 �W2kL1(
) � C2

ph1 �ph2
L1(
)

� C2
q
kh1 � h2kL1(
)

where C2 = maxi=1;2 kIbikL1(
). Finally, since Ib is a Lipschitz function of b we have

��h�(H1 �H2) + Ib1(
p
H1 �

p
H2) = (Ib2 � Ib1)

p
H2 � C3C4 kb1 � b2kL1(
) ;

where C3 is the Lipschitz constant of function Ib and C4 � kH2k1=2L1(
). Then, arguing as in the proof
of Proposition 6 of [6] we get

kH1 �H2kL1(
) � C3C4 kb1 � b2kL1(
)

(notice that the above inequalities are connected with the accretiveness in L1(
) of each one of the
scalar operators associated to the equations of W and H, and with the !�accretiveness in L1(
) of the
operator associated to B: see, e.g., [4]). Thus, since, in fact, (bi; wi; hi); (B;W;H) 2 E, for i = 1; 2, we
get the continuity of T:

4 Existence: the non-local system when min(�b; �w; �h) > 0

We study now the original non-local system8>><>>:
��b�b+ �(x)b = Gbb(1� b) in 
;
��w�w +Gww + Ebw = Ib

p
h in 
;

��h�h+ Ib
p
h = p in 
;

b = w = h = 0 on @
:

(36)
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We have already seen that the system (36) is not cooperative. We proceed in a very similar way as
in the non-local case. The nonlinear operator T : E ! E; where E = C(
)3; is de�ned by

T (b; w; h) = (B;W;H);

where (B;W;H) is the solution of the system8>><>>:
��b�B + �(x)B = Gb(x)b(1� b) in 
;
��w�W +Gw(x)W + EbW = Ib

p
h in 
;

��h�H + Ib
p
H = p(x) in 
;

B =W = H = 0 on @
:

(37)

The system (37) has a unique solution: this follows from linear theory (coe¢ cients Gb(x) and Gw(x)
are smooth enough) and Lemma 2. Again, the Maximum Principle yields 0 � B � 1 if 0 � b � 1: We
de�ne H0 > 0 as above, the same for W 0 > 0. Both are positive by the Maximum Principle (notice that
Gb(x), Gw(x) � 0).
We consider K =[0; 1]� [0;W 0]� [0;H0] again. The proof that H0 � H is the same. It is only slightly

di¤erent for W 0 �W . We have�
��w�(W 0 �W ) = Gw(x)W + EbW + (I1

p
H0 � Ib

p
h) > 0 in 
;

W 0 �W = 0 on @
;
(38)

and the comparison follows. The proof of the compactness and continuity of the operator T is exactly
the same than the one given in the above sections since only a priori estimates in the coe¢ cients of the
system were used in the arguments of the proof.

5 Multiplicity of solutions when �b > 0 and �w = 0

We study in this Section the existence of positive solutions to the system when �b > 0 and �w = 0:
Let us start by assuming also that �h = 0 and we will consider the case �h > 0 to the end of the

Section. As above, � and p are smooth functions such that 0 � �(x) � �� and p(x) > 0 on 
. By
simplicity we assume �b = 1: We introduce a real parameter � in the equation�

��b+ �(x)b = �p(x)f(b) in 
;
b = 0 on @
;

(39)

where

f(b) =
�b(1� b)(1 + �b)
� + b(1 + �b)

;

with �; ; � > 0. It is clear that f(0) = f(1) = 0, f 0(0) = 1 and f(b) < 0 for b > 1: As above solutions
satisfy 0 � b � 1 and, by the Strong Maximum Principle, if b � 0 is a solution b > 0 in 
 and @b

@n < 0 on
@
.
We have a �rst existence result by using sub and supersolutions. The linear eigenvalue problem�

��'+ �(x)' = �p(x)' in 
;
' = 0 on @
;

(40)

has a �rst positive eigenvalue �1 > 0 with eigenfunction '1 > 0 such that k'1kL1 = 1: We point out
that this holds even if p(x) vanishes on @
 (a case which will be considered in Section 6 below): see, e.g.,
[17] and its references.

Theorem 10 For any � > �1 there exists at least a positive solution of (39).
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Proof. It is easy to see that b0 � 1 is a supersolution. We look for subsolutions of the form b0 = c'1,
c > 0. We have

��b0 + �(x)b0 � �p(x)f(b0) = c�1p(x)'1 � �p(x)f(b0)
= c�1p(x)'1 � �p(x)c'1 � �p(x)(f(c'1)� c'1)
= (�1 � �)p(x)c'1 + o(c'1) < 0

for c > 0 small.
We study the uniqueness of the positive solutions. For this we try to check if the well-known �con-

cavity�condition ([7],[8]) holds. This condition reads�
f(b)

b

�0
=
��2b2 � 2�(� + )b+ �(�� 1)� 

(� + b+ �b2)2
< 0 8b 2 [0; 1];

or equivalently
�2b2 + 2�(� + )b+ �(1� �) +  > 0, 8b 2 [0; 1]: (41)

We consider two cases, the �rst is when

�(1� �) +  > 0. (42)

This means that both real roots of (41) have the same sign, which is actually negative. Hence
�
f(b)
b

�0
< 0

8b 2 [0; 1] and we get uniqueness. The second case is when

�(1� �) +  < 0. (43)

Now both roots of (41) have opposite sign and the uniqueness condition is not satis�ed. We have thus
proved the �rst part of the

Theorem 11 If (42) holds there exists a unique positive solution for any � > �1 and there is no solution
if � � �1: Moreover, this unique solution is linearly stable.

Proof. First, it remains to show that there is no solution if � < �1. Indeed, assume that b > 0 is a

solution. Since
�
f(b)
b

�0
< 0, f(b) � b for 0 � b � 1: If we multiply (39) by b and integrate by parts on 


we get Z



(jrbj2 + �(x)b2) = �

Z



p(x)f(b)b � �

Z



p(x)b2

and hence

�1 �
R


(jrbj2 + �(x)b2)R



p(x)b2

= �:

If b is a solution to (39), the corresponding linearized eigenvalue problem is�
��z + �(x)z � �p(x)f 0(b)z = �z in 
;
z = 0 on @
:

(44)

If �1 is the �rst eigenvalue to (44) with eigenfunction  1 > 0, k 1kL1 = 1, we have�
�� 1 + �(x) 1 � �p(x)f 0(b) 1 = �1 1 in 
;
 1 = 0 on @
:

(45)

Multiplying (39) by  1 and (45) by b and integrating on 
 with Green�s formula we obtainR


rb � r 1 +

R


�(x)b 1 �

R


�p(x)f(b) 1 = 0

=
R


rb � r 1 +

R


�(x)b 1 � �

R


p(x)bf 0(b) 1 � �1

R


b 1

11



and hence

�1 =
�
R


p(x)

�
f(b)� bf 0(b)

�
 1R



b 1

: (46)

Since
�
f(b)� bf 0(b)

�
> 0 from the uniqueness condition, �1 > 0, which ends the proof.

Remark 12 Actually the above computation in the proof of Theorem 11 shows that 0 is not an eigenvalue
of the linearization along a solution b of (39). This, together with an application of the well-known
Crandall-Rabinowitz local inversion theorem ([9]) at the simple eigenvalue �1 and the Implicit Function
Theorem shows that the branch of solutions � ! b(�) is a smooth mapping in some function space. We
skip the details.

It remains to study the case (43). We start by showing the existence of an unbounded continuum of
positive solutions bifurcating from �1 in both cases (42) and (43).
Since solutions satisfy 0 � b � 1, we replace f by the continuous function f(b) = f(b) if 0 � b � 1,

f(b) = 0 if b > 1. It is clear that the associate Nemitskii operator F : C(
)! C(
), F (u)(x) = f(u(x))
is well-de�ned and continuous. If we denote by K the solution operator of�

��u+ �(x)u = �p(x)h(x) in 
;
u = 0 on @
;

(47)

for any h 2 C(
), i.e., K = (�� + �(x)I)�1 : C(
) ! C(
) is well-de�ned and continuous as follows
easily from the classical linear theory and (39) can be written equivalently as b = �KF (b) in C(
).
Since KF is a compact and positive operator and right-di¤erentiable at b = 0, we can apply the global
bifurcation result (Theorem 18.3 in [2], see also [11]) and get the following

Theorem 13 There exists an unbounded continuum of positive solutions of (39) bifurcating from the
line of trivial solutions at the point (�1; 0).

Now we see that if (42) holds this continuum coincides with the branch of positive solutions for
� > �1, previously obtained.
Next we study the case where (43) holds. Let us consider �rstly the associate heuristics. The McLaurin

expansion of the function f is actually

f(b) = b+ ((�� 1)� 

�
)b2 + :::

By the way,
f 00(0) = 2((�� 1)� 

�
):

We see immediately that (42) (resp. (43)) holds if (�� 1)� 
� < 0 (resp. (�� 1)�


� > 0). Heuristics

tells us that for �small�solutions the equation (39) can be �approximated�by�
��b+ �(x)b = �p(x)

�
b+ ((�� 1)� 

� )b
2
�

in 
;
b = 0 on @
:

(48)

If (42) holds, (48) is the logistic equation and we have obtained the corresponding results in Theorems
10 and 11.
If (43) holds, (48) is the well-known semilinear subcritical equation with a branch of positive solutions

�bifurcating�to the left at � = �1. Since the continuum in Theorem 13 should go to in�nity as �! +1
(see Lemma 15 below), it seems that there should be at least two solutions in a left-neighborhood of �1.
Moreover, if (43) holds it is easy to see that, if b2 > 0 is the only positive solution of

�2b2 + 2�(� + )b+ �(1� �) +  = 0; (49)
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we have 0 < b2 < 1. Indeed, if not

1 <
�2�(� + ) +

p
4�2(� + )2 � 4�2(�(1� �) + )

2�2

is equivalent to
�2 + 2(� + ) < �(1� �) +  < 0;

a contradiction since all coe¢ cients are positive. Hence the integral in (46) is negative if kbkL1 < b2;
i.e., such �small�solutions (if they exists !) should be linearly unstable, something which �ts well with
the left bifurcation above argument.

Next, we give a rigorous proof of the heuristic results.

Theorem 14 If (43) holds, then there exists a smooth curve of positive solutions of (39) bifurcating to
the left from �1 and there exists a positive value �

� < �1 such that no positive solution b is possible if
� 2 [0; ��). Solutions on this branch of small norm are linearly unstable.

Let us start by proving that the possible bifurcation branch does not touch the axis � = 0 since no
positive solution b is possible if � is small enough. That was already shown when (42) holds. Let us prove
it for the case in which (43) is satis�ed

Lemma 15 Assume (43). Then there exists a positive value �� < �1 such that no positive solution b is
possible if � 2 [0; ��):

Proof. Multiplying the equation by �1 with�
���1 = e�1�1 in 
;
�1 = 0 on @
:

(50)

and integrating on 
 we get

e�1 Z



b�1 +

Z



�(x)b�1 = �

Z



p(x)f(b)�1:

Thus, necessarily Z



�1

h
(e�1 + �(x))b� �p(x)f(b)i = 0: (51)

But from (59) 0 � p(x) � kpkL1(
) := p, for any x 2 
: Then, (51) is clearly impossible if

�p
f(b)

b
� e�1 for b 2 (0; 1):

Moreover, since we can assume (thanks to (43)) that f(b)b �M for b 2 (0; 1); for some M > 1,
we get that no positive solution may exists if

0 � � �
e�1
pM

:

To prove the rest of conclusions of Theorem 14 we will apply a local inversion result by Crandall-
Rabinowitz [10]:
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Theorem 16 [10]. Let X and Y be real Banach spaces, let I � R be a bounded interval and F : I�X !
Y , F 2 C2, let �0 2 I and assume that satis�es
i) F (�; 0) = 0 for every � 2 I;
ii) dim Ker Fx(�0; 0) = codimR(Fx(�0; 0)) = 1;
iii) F�x(�0; 0)x0 =2 R(Fx(�0; 0)), where Ker Fx(�0; 0) = [x0].
Let Z be a complementary subespace of [x0] in X. Then there exists an interval J such that 0 2 J and
C1 functions � : J ! R and  : J ! Z such that �(0) = �0,  (0) = 0 and x(s) = sx0 + s (s) implies
F (�(s); x(s)) = 0. Moreover F�1(0) is uniquely formed (in a neighborhood of (�0; 0)) by the curves x = 0
and (�(s); x(s)), s 2 J .

Proof of Theorem 14. To complete the proof we use Theorem 16 with �0 = �1, X = C2;�0 (
) = fu 2
C2;�(
) j u = 0 on @
g, Y = C�(
), for some � 2 (0; 1) and

F (�; u) = ��u+ �(x)u� �p(x)f(u):

It is easy to see that F 2 C2 (actually C1). We have

Fu(�; u)v = ��v + �(x)v � �p(x)f 0(u)v
F�u(�; u)v = �p(x)f 0(u)v

Fu u(�; u)(v; w) = ��p(x)f
00
(u)vw:

Also, we can see that Ker Fu(�1; 0) = ['1] and R(Fu(�1; 0)) = fu 2 C�(
) j
R


u'1 = 0 g. Moreover

F�u(�1; 0)'1 =2 R(Fu(�1; 0)) since
R


p(x)'21 6= 0. Hence �1 is a bifurcating point with a smooth curve

bifurcating from �1 with u(s) > 0 for 0 < s < s0, for some s0 > 0.
That this curve bifurcates to the left follows, e.g., from the results in [1, pp. 96-97] since the curve is
given by

� = �1 �
b

a
s+ o(s)

with
a = hF�u(�1; 0)'1; '1i = �

R


p(x)'21 < 0;

b = 1
2 hFu u(�1; 0)('1; '1); '1i = �

1
2

R


p(x)f 00(0)'31 < 0,

since f 00(0) < 0 by (43).
That these solutions are linearly unstable if kukL1 � b2 (b2 de�ned above: see (49)) follows from (46).

Remark 17 If �(1 � �) +  = 0 it is necessary to use the local bifurcation results in, e.g., [1, p. 97]
involving f

000
(0).

Theorem 18 If (43) holds there exists 0 < � < �1 such that there are (at least) two positive solutions
to (39) for � < � < �1.

Proof. The result follows from Theorems 14, 13, Lemma 15 and the fact that 0 � b < 1.

We add another proof of existence of positive solutions to the left of �1. This is done under very
special conditions on the coe¢ cients �(x) and p(x). However we include it for the sake of completeness
concerning the application of di¤erent methods. We shall built a family of subsolutions of the form
b�(x) = k(�) 1(x); where k(�) 2 (0; 1) will be determined later and  1(x) is the normalized ( 1 > 0,
k 1kL1 = 1) �rst eigenfunction associated to the �rst eigenvalue b�1 of the auxiliary problem (without
absorption term) �

�� 1 = b�1p(x) 1 in 
;
 1 = 0 on @
:

(52)
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Notice that since � > 0 and

b�1 = inf
 6=0

R


jr j2R



p(x) 2

and �1 = inf
 6=0

R


(jr j2 + �(x) 2)R



p(x) 2

we obviously know that b�1 < �1. We shall assume now the stronger conditionb�1 + C�;p < �1; (53)

where

C�;p = max
x2


�(x)

p(x)
:

Since, �1�b�1 is essentially related to the expression R
 �(x) 2= R
 p(x) 2 and we have, for  2 H1
0 (
) �

L2
�
(
), 2� = 2n=(n� 2) if n � 2;R



�(x) 2R



p(x) 2

�
�
R


 2�R



p(x)q

� 1
q k k2L2�

, with q = 2�=(2� � 2),

then assumption (53) requires that p(x) is essentially concentrated in 
 around the maximum of � and
with p >> p; where p = minx2
 p(x) (notice that if p(x) and �(x) are constant functions then (53) cannot
be satis�ed). Analogously, if we assume p(x) almost a constant function then (53) requires that �(x) is
essentially concentrated on 
 around its minimum value � and with � << � where � = maxx2
 �(x):

Theorem 19 Assume (43) and (53). Then, for any � 2 (b�1+C�;p; �1) there exists at least one nontrivial
solution b of problem (39).

Proof. Since we know that b � 1 is a supersolution of problem (39), by applying the method of super
and subsolutions it is enough to built a branch of positive subsolutions for � 2 (b�1 + C�;p; �1). We try
with functions of the form b�(x) = k(�) 1(x): We have

��b� + �(x)b� = (b�1 + �(x)

p(x)
)kp(x) 1 � (b�1 + C�;p)kp(x) 1:

On the other hand, since 0 < b�(x) � k(�) < 1,

�p(x)f(b�) = �p(x)

�
�b�(1� b�)(1 + �b�)
� + b�(1 + �b�)

�
� �p(x) 1(x)

�
�k(1� k)

� + k(1 + �k)

�
:

Thus, if we take k(�) such that

(b�1 + C�;p)k = �
�k(1� k)

� + k(1 + �k)
(54)

then b�(x) becomes a subsolution since�
��b� + �(x)b� � �p(x)f(b�) in 
;
b� = 0 on @
:

(55)

That equation (54) admits a positive solution k(�) for � 2 (b�1 + C�;p; �1) is easy to check in the special
case  = 0, since then the equation leads simply to the expression

k(�) = 1�
b�1 + C�;p

�
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and by assumption (53) k(�) > 0 if � 2 (b�1 + C�;p; �1] (and k(b�1 + C�;p) = 0). The case  > 0 small
(such that (43) holds) is similar. Indeed, now condition (54) can be rewritten as

�

"b�1 + C�;p
�

#
k2 +

 


"b�1 + C�;p
�

#
+ �

!
k + �

"b�1 + C�;p
�

� 1
#
= 0

which have a positive root k(�), for � 2 (b�1 + C�;p; �1], given by
k(�) =

r�

hb�1+C�;p

�

i
+ �
�2
+ 4�

hb�1+C�;p
�

i
�
h
1� b�1+C�;p

�

i
�
�

hb�1+C�;p

�

i
+ �
�2

2�
hb�1+C�;p

�

i :

Thus, we can apply the method of super and subsolutions and we get the result.

Remark 20 It seems possible to get some similar results by taking other subsolutions as for instance
b�(x) = k(�) 1(x) with �� 1+� 1 = b�p 1 under some suitable additional assumption of the type (53).
Remark 21 In previous studies of the system, corresponding to Neumann boundary conditions (see [19],
[20], [14] and the computational examples in [18] and [23]), it was not indicated the starting value (from
�1) of the bifurcation diagram, neither its characterization as the supercritical (resp. subcritical) nature of
the bifurcation in terms of the positivity (resp. negativity) of the parameters balance expression �(1��)+.

Remark 22 The above study can be extended to the case of other kinds of weak solutions, for instance
when p(x) is assumed to be merely in h 2 L1(
; d), but we will not enter into the details.

Remark 23 Most of the existence results of this paper can be extended to the case in which instead of
Dirichlet boundary conditions we have Robin boundary conditions

@b

@n
+ !b(x)b = 0;

@w

@n
+ !w(x)w = 0,

@w

@n
+ !h(x)w = 0 on @
;

with !b; !w; !h > 0 given and smooth, and also when the boundary conditions are of mixed type (some
equations with Dirichlet boundary conditions and the rest with Robin ones). The main reason is that the
comparison of solutions remains valid and the rest of the arguments can be easily adapted to this case.
As a matter of fact, nonlinear boundary conditions given in terms of maximal monotone graphs are also
possible (see, e.g., [12] and its references) when dealing with other notions of weak solutions. The possible
extension of the multiplicity results of this paper to the case of other boundary conditions is more delicate
since the construction of subsolutions requires to be well adapted to the boundary conditions. In [14] this
was made by means of constant subsolutions b�(x) = k(�) but no so sharp information on the starting
point of the bifurcation diagram was given there.

Remark 24 Variational methods may also be applied to our problem (see [14] for the case of Neumann
boundary conditions). It is easy to see that the associated functional E : H1

0 (
)! R de�ned as

E(u) =
1

2

Z



(jruj2 + �(x)u2)� �
Z



p(x)F (u),

where F (u) =
R u
0
f(s)ds is coercive and that its minimum is 0 for � < �1 if (41) holds.

Finally, let us consider now the case �h > 0 (always under the assumption that �b > 0 and �w = 0):
As mentioned in Subsection 2.5, the equation satis�ed by is rather similar to the equation of (39) since
we arrive now to problem �

��b+ �(x)b = �
p
h(x)f�(b) in 
;

b = 0 on @
;
(56)
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where
f�(b) = f(b)Ib(b)

with Ib(b) given by (9). Notice that Ib(0) = 1
c < 1 and limb!+1 Ib(b) = 1. In addition

I 0b(b) > 0

so that the qualitative behaviour of f�(b) is very similar to the one of f(b) and thus the above treatment
for the case �h = 0 can be easely adapted to the case �h > 0 (as we will explain in the following sectionp
h(x) > 0 on 
 and thus this term behaves also entirely similar to the function p(x) arising in the

formulation of (39)).

6 Flat solutions for p = p(x) vanishing on @


It seems interesting to consider the case in which the precipitation rate p(x) is not completely constant
in 
, but in fact vanishes outside a closed subset ! of R2 (the study could be extended to Rn for any
n � 1).
Notice that the interesting case corresponds now to the case �h > 0 since if �h = 0 we get that

Ibh(x) = p(x) for any x 2 
;

and since Ib > 0 we conclude that h(x) = 0 if and only if p(x) = 0.
Thus, the rest of this Section concerns the case �h > 0. The special case in which p(x) = p�!(x)

on 
, where �! denotes the characteristic function of a subset ! �� 
 (and with Neumann boundary
conditions on @
) was considered in [14]. In this paper we will extend the mentioned study to the case
in which ! = 
, i.e. in addition to (59) we will assume that

p = 0 on @
: (57)

Let us consider the case in which min(�b; �w; �h) > 0. Notice that by the previous existence theorem
we can assume that b(x) 2 [0; 1] is a given positive solution of the corresponding equation of the local
problem (8). Moreover, we know that there exists a positive constant cb such that

cbd(x) � b(x) � 1 for any x 2 
;

where d(x) = d(x; @
). Indeed, it su¢ ces to apply the strong maximum principle to the equation satis�ed
by b:
We set

�(x) := �
b(x) + q=c

b(x) + q
in 
:

Then

�
(cbd(x) + q=c)

1 + q
� �(x) � �

(1 + q=c)

cbd(x) + q
in 
;

and the third equation of (8) can be written as8<: ��h+ �(x)

�h

p
h = �(x) in 
;

h = 0 on @
;
(58)

with �(x) :=
p(x)

�h
. As mentioned before, for b �xed (i.e., for a given �(x)) there is a unique solution h of

(58). The following result gives a su¢ cient condition on p(x) in order to get that h is a �at solution (in
the sense that also @h

@n = 0 on @
).
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Theorem 25 Let p(x) be satisfying (59). Then, h(x) > 0 a.e. x 2 
: If in addition p(x) is such that

0 � p(x) � �hKd(x)
2 in 
; (59)

for some K > 0 small enough, then there exists a constant C�� > 0 such that

0 � h(x) � C��d(x)
4 in 
: (60)

In particular, h is a �at solution.

Proof. The proof that h(x) > 0 a.e. x 2 
 is an easy consequence of a result due to G. Stampacchia
(see, e.g. Lemma A.4 of [21]) since if h(x) = 0 on a positively measured subset E � 
 then �h = 0 on E
and thus Ibh(x) = p(x) for a a.e. x 2 E, which implies a contradiction since p(x) > 0 on 
. To complete
the proof we will apply the method of local supersolutions such as presented in [12]. Let x0 2 @
 and
de�ne 
x0;R = 
 \ BR(x0) for some R > 0 to be determined later. Observe that since d(x) � jx� x0j,
we have

��h+ �q

�hc(1 + q)

p
h � �(x) � K jx� x0j2 in 
x0;R:

Let h(x : x0) = C jx� x0j4 : As a consequence of Theorem 1.15 of [12], if we denote � =
�q

�hc(1 + q)
then

we know that
��h+ �

p
h = [�

p
C � (8 + 4N)C] jx� x0j2 ;

(in our model N = 2 but it is pedagogical to work with an arbitrary N � 1). The function

�(C) = �
p
C � (8 + 4N)C

takes nonnegative values for C 2 [0; CN;�] with

CN;� =
�2

(8 + 4N)2
;

(notice that �(CN;�) = 0). Moreover �(C) attains its maximum at

C�N;� =
�2

4(8 + 4N)2
=
CN;�
4

:

Then, a good choice of the constant K mentioned in (59) is

K =
�(C�N;�)

�h
:

In that case we know that
��h+ �

p
h � ��h+ �

p
h in 
x0;R:

Moreover, clearly h � h on @
x0;R \ @
 and we also have h � h on @
x0;R n @
 if, for instance,

khkL1(
) � C�N;�R
4: (61)

Finally, we assume R �large enough�so that

R �
"
khkL1(
)
C�N;�

#1=4
and then (61) holds. In conclusion, by the maximum principle

0 � h(x) � C�N;� jx� x0j
4 in 
x0;R;

and since x0 2 @
 is arbitrary this implies (60).
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7 Conclusions and some open problems

The local and non-local system (6) and (7) were considered for the biomass b, the soil-water content w
and the surface-water height h when we assume Dirichlet boundary conditions. The main results of this
paper concern the existence of positive solutions when �b > 0 and �w = 0 getting both uniqueness and
multiplicity results. In contrast to previous results dealing with Neumann boundary condition, we obtain
some bifurcation diagrams showing rigorously its starting value (from the �rst eigenvalue �1 of a linear
operator with the corresponding weights and with Dirichlet boundary conditions) and characterizing
the supercritical (resp. subcritical) nature of the branch (something unnoticed before in the literature)
depending on (for instance when �h = 0) the positivity (resp. negativity) of the parameters balance
expression �(1� �) + . Moreover, we study the case in which p(x) vanishes on @
 completing previous
results in the literature. We show (for �h > 0) that if p(x) grows near @
 as d(x; @
)2 then h(x) grows,
at most, as d(x; @
)4. In particular h is a ��at solution�, in the sense that h = @h

@n = 0 on @
; with h > 0
on 
 if p > 0 on 
.
Notice that, although the results on the bifurcation diagrams requires the assumption �w = 0, at

least for small positive values of �w we expect to have some similar behaviours, but we live it as an open
problem. Notice that the possibility of having a solution for � < �1 is something which is not evident
from the mere modeling arguments.
Several other open problems where mentioned in the paper, but we can also mention some related to

the consideration of the associated parabolic system. For instance, it would be interesting to analyze the
existence and behaviour of possible travelling waves, already in the one-dimensional framework, linking
the stationary states (for the Cauchy problem on the whole space (�1;+1)), b = 1 (for instance when
x! �1) with b = 0 (when x! +1). The presence of the slow di¤usion for the surface-water height h
presents some important technical di¢ culties.
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