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Abstract. We consider the convergence of solutions and cost functional in some

optimal control problems arising in the study of the adsorption chemical phenomenon

in which some microscopic reactant particles are placed over an internal manifold  of

the chemical reactor 
. The chemical reaction is given by some Robin-type boundary

condition on the boundary of the periodic set of particles. We consider the special case

in which there is a critical relation between the coe¢ cient of the reaction, the size of the

particles and the dimension of the space. This gives rise to a �strange term�, which is

not occurring for other scales, and thus the limit cost functional must be suitably de�ned.

In a last section, we use this type of technique to prove a similar �energy convergence�

result (improving the H1
0 (
)�weak convergence) for the problem without control for the

critical scale case.
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1 Introduction

It is well-known that the extension P"u" of the solution u" of some homogenization prob-

lems, given by a second order equation with some Robin-type boundary condition on the

boundary of a set of periodic particles, merely converges in the weak topology of H1
0 (
);

to the solution u0 2 H1
0 (
) of associated homogenized problem (see, e.g. the exposition

made in the monograph [2]). This fact creates some natural di¢ culties for the treatment
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of the convergence of some control problems in which a cost functional J"(v) must be

minimized. In order to know in which sense the homogenized problem is optimized, by

taking a family of controls v", we must show, not only the convergence of the controls

v" to a macroscopic control function v0, but also the convergence of the cost functional

sequence J"(v) to some global cost functional J0(v). This type of question is especially

interesting in the case in which the �microscopic� cost function J"(v) depends on the

gradient of the �microscopic�states u" and when the scale of the particles is critical and

some �strange term�arises in the homogenized equation ([6], [1] and [2]).

Among the possible formulations in which the above problem can be considered, our

interest in this paper will be concentrated on the case in which the set of particles (or

equivalently, of perforations) are placed along an internal manifold : This type of problem

arises very often in many applied contexts, for instance in adsorption processes in chemical

engineering in which the reactant medium is located merely on some kind of grill (or

perforated surface); see, e.g. the presentation on the modeling made in [5] and [7].

The spatial domain is given by


" = 
 nG";

and we distinguish the di¤erent parts of the boundary by means of the notation

@
" = @

[

S"; S" = @G":

Let us indicate now the structure of the periodic distribution and size of the particles.

We assume that 
 is a bounded domain in Rn, n � 3, with smooth boundary @
,

 = 
\fx1 = 0g is an (n�1) �dimensional domain in the plane x1 = 0, Y = (�1=2; 1=2)n

and G0 is the unit ball fjxj < 1g. We set �B = fx : ��1x 2 Bg, � > 0. We denote by Z
0

the set of n - dimensional vectors of the form z = (0; z2; : : : ; zn), zj 2 Z, j = 2; : : : ; n. Let
" be a small positive parameter. We set a" = C0"

k, and assume that k takes the critical

value given in (1) below, with C0 > 0 a given constant. We de�ne the set G" =
S
j2�"

Gj",

where Gj" = a"G0 + "j, j 2 Z
0
, �" = fj 2 Z

0
: Gj" � 
 and �(Gj"; @
) � 2"g, so that

we have the estimate on the cardinality j�"j �= d"1�n, for some constant d > 0. De�ne

Y j
" = "Y +"j, P j" = "j, j 2 �". Note that Gj" � Y j

" and the center of the cube Y
j
" coincides

with the center of the ball Gj" = "G0+"j. For a generic set A � Rn, A+ = f(x1; � � � ; xn) 2
A : x1 > 0g (and similarly for A�) and moreover, A0 = f(x1; � � � ; xn) 2 A : x1 = 0g. So,
 = 
 \ fx1 = 0g = 
0. We will use the space

H1(
"; @
) = fu 2 C1(
") : u vanishes on a neighborhood of @
g
H1(
")

:

The starting formulation of the optimal control problem is the following: For a given

control v 2 L2(
"), and data f 2 L2(
), a 2 C1(
), a(x) � a0 = const > 0 and under

the crucial assumption

k =
n� 1
n� 2 ; (1)
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we denote by u"(v) 2 H1(
"; @
) to the state associated to this control as the unique

weak solution of the problem8><>:
��u"(v) = f + v; x 2 
";
@�u"(v) + "�ka(x)u"(v) = 0; x 2 S";
u"(v) = 0; x 2 @
;

(2)

where � is the unit outward normal vector to S". We consider the cost functional J" :

L2(
")! R; given by

J"(v) =
�

2
kru"(v)�ruTk2L2(
") +

N

2
kvk2L2(
"); (3)

where

uT 2 H1
0 (
) (4)

is a given target function and �; N are given positive parameters. It is well known (see,

e.g., [8]) that there exist a unique optimal control v" 2 L2(
") such that

J"(v") = inf
v2L2(
")

J"(v): (5)

A �rst goal of this paper is to study the limit, as " ! 0, of the optimal control

v" and of the limit value of the cost functional J"(v"). We point out that when the

parameter � is large enough we get the approximate controllability property inH1(
"; @
)

(in the sense that the associated state u"(v) is as close as we want to the target function,

kru"(v)�ruTk2L2(
") � �; for any � > 0 arbitrarily small: see, e.g. [3], Section 1.6).

Since the exponent k is critical we know (see, e.g. [14] and [2]) that in the absence

of controls (v = 0) and if P"u" is the extension of u" on 
 n 
", such that P"u" 2 H1
0 (
)

then P"u" * u0weakly inH1
0 (
); as "! 0; where u0 2 H1

0 (
) is the weak solution of the

problem involving some transmission conditions over the internal manifold  :8>>>><>>>>:
��u0 = f x 2 
+ [ 
�;�
u0
�
= 0; x 2 ;h

@x1u0

i
= AnHn(x)u0 x 2 ;

u0 = 0; x 2 @
:

(6)

where Hn(x) =
a(x)

a(x)+Cn
, An = (n � 2)Cn�20 !n, Cn = n�2

C0
and !n is the surface area of

the unit sphere in Rn. Notice that we are using the following notation for the jump of a
general function v across :

[v](x) = lim
h!0+

(v(x+ he1)� v(x� he1)) ;

where e1 is the �rst element of the basis of Rn. Notice also that now the notion of

weak solution of (6) is given in the following terms (see, e.g. Section 5.1 of [2]): for any
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 2 C10 (
) Z



ru0r dx+ An

Z


Hn(bx)u0 dbx = Z



f dx:

We point out that the assumption (1) is the main reason why the value of the function

Hn(x) is unexpected, corresponding to what in other similar frameworks is denoted as a

�strange term�(see, e.g. [6], [1] and the monograph [2]). Some strong convergence results

are also possible under additional assumptions (see, e.g., [14] and Section 4.7.1.4 of [2])

but the strong convergence needs to be stated with the help of certain auxiliary functions.

As a matter of fact, we will show the convergence of the extension of the optimal

controls ev" * v0, weakly inH1
0 (
); where v0 is the associated optimal control for the

homogenized problem (where the right hand side f must be replaced by f + v0) and v0 is

optimal in the sense that

J0(v0) = inf
v2L2(
)

J0(v)

where now in the cost function J0 gives rise to a new term on :

J0(v) =
�

2

Z



jru(v)�ruT j2dx+
�An
2

Z


H2
n(bx)u2(v)dbx+ N

2

Z



v2dx: (7)

Notice that the target function uT may correspond, for instance, to the case in which

there is a desired distribution of the chemical products having some special transmission

over the grill. The optimization of the transmission pro�le is possible thanks to the

assumption uT 2 H1
0 (
) and the fact that the di¤erence between u0 and uT is estimated

in the norm of H1
0 (
). As a matter of fact, we will prove that

lim
"!0

J"(v") = J0(v0): (8)

In a �nal Section, we will use this type of technique to prove a similar convergence

result (improving the H1
0 (
)�weak convergence) for the problem without control (2 [with

v = 0 and uT � 0]) for the critical scale case (1). We will prove (see Theorem 2 below)

that if u0 2 H1
0 (
) is the weak limit of the extension P"u" satisfying (6) then we have the

�energy convergence�Z

"

jru"(x)j2 dx!
Z



jru0(x)j2 dx+ An

Z


�
a(bx)

a(bx) + Cn

�2
u0(bx)2dbx: (9)

As mentioned before, stronger convergence results to the mere weak convergence

P"u" * u0; weakly in H1
0 (
) usually requires an additional assumption on the data in or-

der to know that u" satis�es some additional regularity properties (see, e.g. the exposition

made in Section 4.7.1.4 of [2] and its references).

We point out that this approach (building some arti�cial complementary system to

get the energy convergence) can be applied to other homogenization problems (see, e.g.,

[10] and its references).
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The structure of this paper is the following: Section 2 is devoted to the considera-

tion of the above-mentioned control problem, while Section 3 contains the proof of the

convergence result in absence of any control argument.

2 The optimal control problem

Although the existence of a unique optimal control v" 2 L2(
") satisfying (5) is today

a standard matter, the associate optimality conditions are not usually mentioned in the

literature since, quite often, the cost functional is stated in terms of ku"(v)�uTk2L2(
")
and not in terms of the gradient of the di¤erence. The following result shows a possible

particularization of the abstract version of the Pontryagin maximum principle applied to

elliptic PDEs mentioned in Section 1.3 of Lions [8].

Proposition 1. Assume (4) and let v" 2 L2(
") and u"(v") 2 H1(
"; @
) be the optimal

control and the associate optimal state. Let p" 2 H1(
"; @
) be the unique solution of the

problem 8><>:
��p" = ��u"(v") + �uT ; x 2 
";
@�(p" � u"(v") + uT ) + "�ka(x)p" = 0; x 2 S";
p" = 0; x 2 @
:

(10)

Then the optimal control is given by

v" = �
�

N
p": (11)

Proof. Since v" is the optimal control we know that for any other control v 2 L2(
")

lim
�!0

1

�
(J"(v" + �v)� J"(v")) = 0:

It is easy to see that if, for a given � 2 R, we de�ne

w"(v) =
1

�
(u"(v" + �v)� u"(v"))

then

jru"(v" + �v)�ruT j2 � jru"(v")�ruT j2 = 2�(rw"(v);ru"(v")�ruT ) + o(�); �! 0:

In consequence, we have

0 = lim
�!0

1

�
(J"(v" + �v)� J"(v")) = �

Z

"

rw"(v)(ru"(v")�ruT )dx+N

Z

"

v"vdx: (12)

On the other hand, w" = 1
�
(u"(v" + �v)� u"(v")) 2 H1(
"; @
) is a weak solution of the

problem:
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8><>:
��w" = v; x 2 
";
@�w" + "�ka(x)w" = 0; x 2 S";
w" = 0; x 2 @
;

so that, for any test function  2 H1(
"; @
) we getZ

"

rw"r dx+ "�k
Z
S"

a(x)w" ds =

Z

"

v dx:

Then, if p" 2 H1(
"; @
) is the unique solution of (10) we know that for any test function

� 2 H1(
"; @
) we haveZ

"

rp"r�dx+ "�k
Z
S"

a(x)p"�ds =

Z

"

(ru"(v)�ruT )r�dx:

Then, by taking  = p" and � = w"(v) we get that (12) is equivalent to the condition

0 =

Z

"

(�p" +Nv")vdx = 0 8v 2 L2(
"):

So, we conclude that v" = ��N�1p".�
Concerning the homogenization (as "! 0) we will use the usual continuous extension

operator P" : H1(
"; @
)! H1
0 (
) (see, e.g. Section 3.1.1 of [2] and its references).

Theorem 1. Assume (4) and let f 2 L2(
) and (u"; p") 2 H1(
"; @
)
2 be the weak

solution of the coupled system8>>>>>><>>>>>>:

��u" = f � �N�1p" x 2 
";
��p" = ��u" +�uT x 2 
";
@�u" + "�ka(x)u" = 0; x 2 S";
@�p" + "�ka(x)p" = @�u"(v")� @�uT ; ; x 2 S";
u" = p" = 0; x 2 @
:

(13)

Let P"u" and P"p" be the extensions of the functions u" and P" on 
 n 
", such that
P"u"; P"p" 2 H1

0 (
). Then

kP"u"kH1
0 (
)

� Kku"kH1(
";@
); krP"u"kL2(
) � Kkru"kL2(
"); (14)

kP"p"kH1
0 (
)

� Kkp"kH1(
";@
); krP"p"kL2(
) � Kkrp"kL2(
"); (15)

where the constant K here and below is independent of ". Then as "! 0 we have

P"u" * u0; weakly in H1
0 (
); (16)

P"p" * p0; weakly in H1
0 (
); (17)
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for some (u0; p0) 2 H1
0 (
)�H1

0 (
) satisfying, in a weak sense, the system8>>>>>>>>>><>>>>>>>>>>:

��u0 = f � �N�1p0 x 2 
+ [ 
�;
��p0 = ��u0 +�uT x 2 
+ [ 
�;�
u0
�
=
�
p0
�
= 0; x 2 ;h

@x1u0

i
= AnHn(x)u0 x 2 ;h

@x1(p0 � u0 + uT )
i
= AnHn(x)(p0 �Hn(x)u0); x 2 ;

u0 = p0 = 0; x 2 @
:

(18)

where Hn(x) =
a(x)

a(x)+Cn
, An = (n � 2)Cn�20 !n, Cn = n�2

C0
with !n the surface area of the

unit sphere in Rn.

On the other hand, if we consider the optimal control of the optimization problem

J0(v0) = inf
v2L2(
)

J0(v);

for the functional J0(v) given by (7), where, for a given control v 2 L2(
) the function

u(v) is the weak solution of the problem8>><>>:
��u(v) = f + v; x 2 
+ [ 
�;�
u(v)

�
= 0;

h
@x1u(v)

i
= AnHn(x)u(v); x 2 ;

u(v) = 0; x 2 @
;
(19)

Then we can prove the following result.

Proposition 2. Under the above assumptions, the optimal control v0 2 L2(
) is given by
v0 = ��N�1p0. Moreover, we have (8), i.e. lim

"!0
J"(v") = J0(v0):

2.1 Proof of the homogenization theorem

Before to start with the proof we point out the following convergence lemma already

proved in [9] (see also [4]):

Lemma 1. Let P j" be the center of the ball G
j
" and let T

j
"=4 denote the ball of radius "=4

with center P j" , j 2 �". Then, there exists a constant K > 0 such that���X
j2�"

Z
@T j

"=4

wds� 22�2n!n
Z


wdx̂
��� � K

p
"kwkH1(
); w 2 H1

0 (
): (20)

The proof of the homogenization theorem will be divided in several steps.
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2.1.1 Step1. Uniform in " estimates of u" and p"

Let us prove the following a priori estimate

ku"kH1(
";@
) � K; kp"kH1(
";@
) � K;

for a generic constant K > 0. Taking p" as test function in the variational formulation of

problem (10) and applying Cauchy-Schwartz we obtain

krp"k2L2(
") + "�k
R
S"

a(x)p2"ds =
R

"

rp"(ru"�ruT )dx

� krp"kL2(
")(kru"kL2(
") + kruTkL2(
")):
(21)

Taking into account the variational form of the problem on u"(v") we haveZ

"

rp"ru"dx+ "�k
Z
S"

a(x)u"p"ds =

Z

"

(f � �N�1p")p"dx (22)

and using the function u"(v") as a test function in (10) we deriveZ

"

ru"rp"dx+ "�k
Z
S"

a(x)u"p"ds =

Z

"

jru"j2dx�
Z

"

ru"ruTdx: (23)

This, together with equation (22) and Hölder�s inequality leads to

kru"k2L2(
") =
Z

"

(fp" � �N�1p2")dx+

Z

"

ru"ruTdx �

�
Z

"

jf jjp"jdx+
1

2
kru"k2L2(
") +

1

2
kruTk2L2(
")

(24)

Hence, we get

kru"k2L2(
") � K(

Z

"

jf jjp"jdx+ kruTk2L2(
")); (25)

for some K > 0. From (21), (25) we getZ

"

jrp"j2dx � C(

Z

"

jf jjp"jdx+ kruTk2L2(
")) � �

Z

"

p2"dx+ C�

Z

"

f 2dx+ 2kruTk2L2(
") �

� K�

Z

"

jrp"j2dx+ C�

Z

"

f 2dx+ 2kruTk2L2(
");

where � > 0 is an arbitrary positive number, for some constant C, C� > 0. Summarizing,

we have derived the estimates

krp"kL2(
") � K; kp"kL2(
") � K; (26)

for some generic constant K > 0. From (25), (26) we conclude

ku"kH1(
";@
) � K: (27)
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It follows from (26), (27) that the extensions P"u", P"p" of the functions u"; p" to the

entire domain 
 satisfy the estimates (14), (15).

Thus, from estimates (26) and (27) it follows that there is a subsequence (still denoted

by P"u" and P"p") such that, as "! 0;

P"u" * u0 weakly in H1
0 (
) and P"u" ! u0 strongly in L2(
); (28)

P"p" * p0 weakly in H1
0 (
) and P"p" ! p0 strongly in L2(
): (29)

2.1.2 Identi�cation of the limit problem for u0

Let us show that u0 is a weak solution of the problem8>><>>:
��u0 = f � �N�1p0; x 2 
+ [ 
�;�
u0
�
= 0;

h
@x1u0

i
= AnHn(x)u0; x 2 ;

u0(x) = 0; x 2 @
:
(30)

According to (16) and (17), we only need to �nd the limit as " ! 0 of the following

term in the variational form for the problem (2)

"�k
Z
S"

a(x)u"�ds; 8� 2 C10 (
):

As in Section 5.7 of [2], we introduce the term

H" �
Z

"

ru"r(W"�)dx;

where

W"(x) =

8>><>>:
wj"(x); x 2 T j"=4 nG

j
"; j 2 �";

1; x 2 Gj"; j 2 �";
0; x 2 Rn n [j2�"T

j
"=4;

T j"=4 is the ball of radius "=4 with the center in the point P
j
" , and with w

j
" the solution to

the cell problem 8>><>>:
�wj" = 0; x 2 T j"=4 nG

j
";

wj" = 1; x 2 @Gj";
wj" = 0; x 2 @T j"=4:

(31)

Since W"� is a good test function for the condition of weak solution satis�ed by u" we

have

H" = �"�k
Z
S"

a(x)u"�ds+

Z

"

f�W"dx� �N�1
Z

"

p"W"�dx:

Taking into account that W" * 0 weakly in H1
0 (
) as "! 0, we get

H" = �"�k
Z
S"

a(x)u"�ds+ �"; �" ! 0; "! 0: (32)
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On the other hand we have

H" =

Z

"

rW"r(u"�)dx+ �1;"; �1;" ! 0; "! 0:

From the de�nition of W", we derive

H" = "�kCn

Z
S"

u"�ds� (n� 2)Cn�20 22n�2
X
j2�"

Z
@T j

"=4

u"�ds+m"; (33)

where m" ! 0, as "! 0. Comparing expressions (32) and (33) we obtain

"�k
Z
S"

(a(x) + Cn)u"�ds = (n� 2)Cn�20 22n�2
X
j2�"

Z
@T j

"=4

u"�ds+ ~�"; (34)

where ~�" ! 0, "! 0.

We set � = a(x)
a(x)+Cn

 (x) in (34) as a test function, where  is an arbitrary function

from C10 (
): Then, passing to the limit we get

lim
"!0

"�k
R
S"

a(x)u" ds = (n� 2)Cn�20 lim
"!0

22n�2
P
j2�"

R
@T j

"=4

a(x)
a(x)+Cn

u" ds

= An
R


Hn(x)u0 dx̂:
(35)

Note that the last equality follows from the convergence lemma 1. Therefore, from

(35), the limit function u0 satis�es the variational formulationZ



ru0r dx+ An

Z


Hn(x)u0 dx̂ =

Z



(f � �N�1P0) dx; 8 2 C10 (
)

and thus, u0 is the weak solution of (30).

2.1.3 Identi�cation of the limit problem for p0

Let us �nd the equation satis�ed by p0. De�ne

I" �
Z

"

rp"r(�W")dx; where � 2 C10 (
):

From the variational formulation for p" it follows that

I" + "�k
Z
S"

a(x)p"�ds =

Z

"

r(u" � uT )r(�W")dx: (36)

Taking into account the variational formulation for u" we obtainZ

"

ru"r(�W")dx = �"�k
Z
S"

a(x)u"�ds+

Z

"

(f � �N�1p")�W"dx:
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From (35) and properties of the function W" we derive

lim
"!0

Z

"

ru"r(�W")dx = �An
Z


Hn(x)u0�dx̂: (37)

Thus, from (36) we deduce

I" = �"�k
Z
S"

a(x)p"�ds� An

Z


Hn(x)u0�dx̂+ �̂"; (38)

where �̂" ! 0 as " ! 0. On the other hand, using that wj" is a weak solution to the

problem (31), we get

I" =
R

"

rW"r(p"�)dx+ �"

= "�kCn
R
S"

p"�ds� (n� 2)Cn�20 22n�2
P
j2�"

R
@T j

"=4

p"�ds+ �";
(39)

where �"; �" ! 0 as "! 0. Comparing (38) and (39) we derive

"�k
R
S"

(a(x) + Cn)p"�ds

= �An
R


Hn(x)u0�dx̂+ (n� 2)Cn�20 22n�2
P
j2�"

R
@T j

"=4

p"�ds+ e�"; (40)

where e�" ! 0 as " ! 0. Setting � = Hn(x) in (40), where  is an arbitrary function

from C10 (
), passing to the limit as "! 0 and applying Lemma 1, we get

lim
"!0

"�k
Z
S"

a(x)p" ds = �An
Z


H2
n(x)u0 dx̂+ An

Z


Hn(x)p0 dx̂: (41)

Consequently, using (41) we get that p0 satis�es the following identityZ



r(p0 � u0+uT )r dx+ An

Z


Hn(x)p0 dx̂ = An

Z


H2
n(x)u0 dx̂; (42)

for 8 2 C10 (
). Hence, p0 is a weak solution of the problem

��p0 = ��u0+�uT ; x 2 
+ [ 
�;�
P0
�
= 0;

h
@x1(p0 � u0 + uT )

i
= AnHn(x)(p0 �Hn(x)u0); x 2 ;

p0 = 0; x 2 @
:

Thus, Theorem 1 is proved.�
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2.2 Proof of Proposition 2

The proof that the optimal control v0 2 L2(
) is given by v0 = ��N�1p0 is entirely

similar to the proof of Proposition 1. So, let us show the convergence result (8). For the

function v" = ��N�1p", we have

J"(��N�1p") =
�

2

Z

"

jr(u" � uT )j2dx+
�2

2N

Z

"

p2"dx:

From Theorem 1 we already know that

lim
"!0

1

2

Z

"

r(u" � uT )ruTdx =
1

2

Z



r(u0 � uT )ruTdx:

On the other hand, from (22), (23) and Theorem 1, it follows that

lim
"!0

1

2

Z

"

r(u" � uT )ru"dx = lim
"!0

1

2

Z

"

(f � �N�1p")p"dx =

=
1

2

Z



(f � �N�1p0)p0dx =
1

2

Z



(��u0)p0dx:

Notice that, by an abuse in the notation we are identifying

h��u0; p0iH�1(
)�H1
0 (
)

with
Z



(��u0)p0dx:

By taking p0 as test function in the variational formulation of the equation of u0, and by

taking u0 as test function in the variational formulation of the equation of p0, in (18), we

get the cancellation of the term An
R


Hn(bx)p0u0dbx, and thus
lim
"!0

1

2

Z

"

r(u" � uT )ru"dx =
1

2

Z



r(u0 � uT )ru0dx+
An
2

Z


H2
n(x)u

2
0dx:

Finally, using this expression, we derive

lim
"!0

J"(��N�1P") = lim
"!0

�

2

�Z

"

jr(u"�uT )j2dx+
�

N

Z

"

p2"dx
�
=

=
�

2

Z



jr(u0 � uT )j2 dx+
�An
2

Z


H2
n(bx)u20dbx+ �2

2N

Z



p20dx = J0(��N�1p0):�

Remark 1. It seems possible to generalize the above results to some variants of the
above optimal control problem: by including some transport terms and possible di¤erent

di¤usion coe¢ cients on 
� and 
+ (see a formulation in [5]), by modifying the cost

functional including other gradient expressions which are not necessarily the ones given

by the di¤usion coe¢ cients (in the style of the paper [13] for the case of Dirichlet boundary

conditions on the internal boundary S"), etc.
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3 Stronger convergence for the problem without con-

trol

In this last Section we will prove the energy convergence (by including in the limit energy

a part of the strange term of the homogenized problem) by introducing the arti�cial

complementary system (10) which corresponds formally to the case v � 0 and uT � 0:

Theorem 2. Let u" be the solution of (2) with v � 0 at the critical scale (1). Let

u0 2 H1
0 (
) be the weak limit of the extension P"u". Then we have the convergenceZ


"

jru"j2dx!
Z



jru0j2dx+ An

Z


� a(bx)
a(bx) + Cn

�2
u20(bx)dbx: (43)

Proof . It is known that u0 is a weak solution of the problem8>>>>><>>>>>:
��u0 = f; x 2 
� [ 
+;h
u0

i
= 0; x 2 ;h

@x1u0

i
= AnHn(x)u0; x 2 ;

u0(x) = 0; x 2 @
;

where Hn(x) =
a(x)

a(x)+Cn
, An = (n� 2)Cn�20 !n, Cn = n�2

C0
.

Let us introduce the weak solution p" of the problem8><>:
�p" = �u" x 2 
";
@�p" � @�u" + "�ka(x)p" = 0 x 2 S";
p" = 0 x 2 @
:

As in the proof of Theorem 1 we get that P"p" * p0 weakly in H1
0 (
) as " ! 0 with p0

the weak solution of the problem8>>>><>>>>:
��p0 = ��u0 x 2 
+ [ 
�;�
p0
�
= 0; x 2 ;h

@x1p0

i
= AnHn(x)(p0 �Hn(x)u0) +

h
@x1u0

i
; x 2 ;

p0 = 0; x 2 @
:

From the variational formulation to the problem (2), with v = 0, we haveZ

"

ru"rp"dx+ "�k
Z
S"

a(x)u"p"ds =

Z

"

fp"dx:

Similarly from the variational formulation to the problem on p" we deriveZ

"

rp"ru"dx+ "�k
Z
S"

a(x)p"u"ds =

Z

"

jru"j2dx:
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Thus we have Z

"

jru"j2dx =
Z

"

fp"dx!
Z



fp0dx =

=

Z



ru0rp0dx+ An

Z


Hn(bx)u0p0dbx =
=

Z



jru0j2dx+ An

Z


H2
n(bx)u20dbx;

which ends the proof. �

Remark 2. It is well known (see, e.g. Section 4.7.1.4 of [2] and the references indicated
there) that if we know that u0 2 W 1;1(
) then we can get some results implying the strong

convergence of u" plus a suitable correction. Notice that the conclusion presented in this

paper (9), follows completely di¤erent arguments.

Remark 3. In the case of Dirichlet boundary conditions some similar kind of convergence
was established already in the pioneering work [1]and in some of their multiple generaliza-

tions (see, e.g. [13] and its references). But it always was stated in terms of a �strange

term�given by a measure �. The interest of the convergence (9) is that there is no mea-

sure at all but a strange term given by a completely identi�ed function (in our case given

by the explicit expression AnHn(x)u0 on ):
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