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Abstract. We investigate the logarithmically improved regularity criteria in terms of
the velocity, or the vorticity, for the Navier–Stokes equations in homogeneous Besov
spaces. To be more precise, we prove that if the weak solution u satisfies either∫ T

0

∥u(t)∥
2

1−α

Ḃ−α
∞,∞

1 + log+ ∥u(t)∥Ḣs0

dt < ∞, or

∫ T

0

∥w(t)∥
2

2−α

Ḃ−α
∞,∞

1 + log+ ∥w(t)∥Ḣs0

dt < ∞ ,

where w = rotu, then u is regular on (0, T ]. Those conclusions improve some results by
Fan et al., [5].

1. Introduction

Our main purpose of this paper is to investigate the logarithmically improved regularity
criteria of solutions to the Navier–Stokes equations in Rn, n ≥ 3: ∂tu−∆u+ u · ∇u+∇p = 0, x ∈ Rn, t ∈ (0, T ),

div u = 0,
u(x, 0) = u0(x),

(1.1)

where u(x, t) = (u1(x, t), ..., un(x, t)), and p denote the velocity vector and the pressure,
respectively, of the fluid at the point (x, t) ∈ Rn× (0, T ) and u0 is a given initial velocity.

Since the pioneering works by Leray [17] and Hopf [8], the existence of global weak solu-
tions for an arbitrary initial data u0 ∈ L2(Rn) was well-known. However, the uniqueness
and regularity of weak solutions are still open. Notice that the studying of blow-up of
solutions to (1.1) plays a crucial role not only in nonlinear analysis, but also in the study
of the regularity of weak solutions. Also, it is known that for each regular u0, there exists
t0 > 0 such that u is regular for 0 ≤ t ≤ t0 (see e.g. [16]). Different regularity criteria
for the weak solutions have been proposed. For example, the Prodi–Serrin conditions
([22, 23]) states that if the weak solution u satisfies

u ∈ Lr(0, T ;Lp(Rn)) with
2

r
+

n

p
≤ 1, n < p < ∞, 2 < r < ∞,

then u is smooth on Rn × (0, T ). The limiting case, p = n and r = ∞, was obtained in
Escauriaza et al. [4]. A logarithmically improved regularity criterion was introduced by
Montgomery–Smith [18]. That is, if∫ T

0

∥u(t)∥rLp

1 + log+ ∥u(t)∥Lp

dt < ∞,
2

r
+

3

p
= 1, 3 < p < ∞,

then u is smooth (in the sense that u is at least in the Sobolev spaces W n,q for some
q ∈ [2,+∞) and all positive integers n).
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On the other hand, in 1995, Beirão da Veiga [2] established a Serrin’s type regularity
criterion on the gradient of velocity field: ∇u ∈ Lr(0, T ;Lp(Rn)) with 2

r
+ n

p
≤ 2. Beale–

Kato–Majda [1] and Kato–Ponce [11] showed that the L∞-norm of the vorticity, denoted
by w = rotu, controls the breakdown of smooth solutions to the Euler and Navier–Stokes
equations. To be more precise, if∫ T

0

∥w(τ)∥L∞ dτ < ∞ ,

then the smooth solution u, in C([0, T );W s,p(Rn)), with s > n/p + 1, can be continued
beyond t = T . That was improved by Kozono–Taniuchi [14, 15] in BMO(Rn):

Theorem 1.1. Let s > n
2
− 1 and let u0 ∈ Hs(Rn) with div u0 = 0. Suppose that u is a

strong solution of (1.1) in the class

ST := C ((0, T );Hs(Rn)) ∩ C1 ((0, T );Hs(Rn)) ∩ C
(
(0, T );Hs+2(Rn)

)
.

If ∫ T

δ0

∥w(τ)∥BMO dτ < ∞ , (1.2)

for some δ0 ∈ (0, T ), then u can be continued as solution in the class ST ′ for some T ′ > T .

In addition, Kozono et al. [12] improved Theorem 1.1 in the homogeneneous Besov
space (for the definition of this and other spaces we will mention in this Introduction we
send, for instance, to the exposition made in the monographs [24] and [16]):∫ T

0

∥w(τ)∥Ḃ0
∞,∞

dτ < ∞ . (1.3)

A version of this, as a logarithmically improved regularity criterion of (1.3), was given in
Fan et al. [6]: ∫ T

0

∥w(τ)∥Ḃ0
∞,∞√

1 + log+ ∥w(τ)∥Ḃ0
∞,∞

dτ < ∞ . (1.4)

Recently, Nakao–Taniuchi [19] proved a different logarithmically improved regularity cri-
terion as follows: ∫ T

0

∥w(τ)∥BMO

1 + log+ ∥u(τ)∥C1+α

dτ < ∞ (1.5)

for some α ∈ (0, 1). We point out that these authors obtained (1.4) by using the Brézis–
Gallouët–Wainger type inequality.

Concerning the logarithmically improved regularity criterion on the homogeneous Besov
space Ḃ−α

∞,∞, Fan et al. [5] proved the following results.

Theorem 1.2 ([5]). Let u0 ∈ L2n(Rn) with div u0 = 0. Let u ∈ L∞ (0, T ;L2(Rn)) ∩
L2 (0, T ;H1(Rn)) be a weak solution of (1.1). Assume that one of the following conditions
is satisfied: ∫ T

0

∥u(t)∥
2

1−α

Ḃ−α
∞,∞

1 + log+ ∥u(t)∥Ḃ−α
∞,∞

dt < ∞, with 0 < α < 1 , (1.6)

∫ T

0

∥w(t)∥
2

2−α

Ḃ−α
∞,∞

1 + log+ ∥w(t)∥Ḃ−α
∞,∞

dt < ∞, with n = 3, and 0 < α < 1 . (1.7)

Then u is smooth on (0, T ].
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The main goal of this paper is to improve (1.6) and (1.7). Our main results are as
follows.

Theorem 1.3. Let u0 ∈ L2n(Rn) with div u0 = 0. Let u ∈ L∞ (0, T ;L2(Rn))∩L2 (0, T ;H1(Rn))
be a weak solution of (1.1). Suppose that∫ T

0

∥u(t)∥
2

1−α

Ḃ−α
∞,∞

1 + log+ ∥u(t)∥Ḣs0

dt < ∞ (1.8)

holds true for some α ∈ (0, 1), with s0 =
n
2
− α. Then, u is smooth on (0, T ].

As a consequence of Theorem 1.3 and the Sobolev embedding, we have the following
corollary.

Corollary 1.1. Let u0 ∈ L2n(Rn) with div u0 = 0. Let u ∈ L∞ (0, T ;L2(Rn)) ∩
L2 (0, T ;H1(Rn)) be a weak solution of (1.1). If in addition∫ T

0

∥u(t)∥
2

1−α

Ḃ−α
∞,∞

1 + log+ ∥u(t)∥
L

n
α

dt < ∞ , (1.9)

for some α ∈ (0, 1), then u is smooth on (0, T ].

Remark 1.1. It is clear that (1.6) is weaker than (1.9) (see Proposition 2.2 below).

Our last result in this paper improves condition (1.7).

Theorem 1.4. Let u0 ∈ L6(R3) with div u0 = 0. Let u ∈ L∞ (0, T ;L2(R3))∩L2 (0, T ;H1(R3))
be a weak solution of (1.1). If∫ T

0

∥w(t)∥
2

2−α

Ḃ−α
∞,∞

1 + log+ ∥w(t)∥Ḣs0

dt < ∞ (1.10)

for 0 < α < 1, s0 =
3
2
− α, then u is smooth on (0, T ].

Notation: Through this paper, we use the following general abbreviation X = X(Rn).
So, for instance, Lp ≡ Lp(Rn), and Hs ≡ Hs(Rn).
Moreover, we denote by C a positive constant which can change from line to line.

2. Definitions and preliminary results

Let us first define a weak solution, introduced by Leray [17].

Definition 2.1. Let u0 ∈ L2 with div u0 = 0 in Rn. Then, u is called a weak solution of
(1.1) if u ∈ L∞ (0, T ;L2(Rn)) ∩ L2 (0, T ;H1(Rn)) satisfies the equation in distributional
sense and the following inequality

∥u(t)∥2L2 + 2

∫ t

0

∥∇u(τ)∥2L2 dτ ≤ ∥u0∥2L2 (2.1)

for all t ∈ (0, T ).

Then, the following results (see e.g. [10, Theorem 4], [7]) will be repeatedly used:

Proposition 2.1.

(i) Suppose that u0 ∈ Lγ, for some γ ≥ n with div u0 = 0 in Rn. Then, there exists a
time T0 > 0 and a unique solution of (1.1) on [0, T0) such that

u ∈ BC ([0, T0);L
γ) ∩ Ls (0, T0;L

r) , t1/su ∈ BC ([0, T0);L
r) , (2.2)
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with 2
s
+ n

r
= n

γ
, s, r > n, and BC denotes the space of bounded and continuous functions.

(ii) Let (0, T ∗) be the maximal interval such that u solves (1.1) in C ((0, T ∗), Lγ), with
γ > n. Then

∥u(t)∥Lγ ≥ C(T ∗ − t)
n−γ
2γ , (2.3)

where constant C > 0 is independent of T ∗ and t.

(iii) Let u be a solution of (1.1) on (0, T0) in the functions class (2.2). Suppose that
u0 ∈ L2. Then u is also a weak solution in Definition 2.1.

(iv) Let u be a weak solution of (1.1) satisfying u ∈ Ls (0, T ;Lr(Rn)), for some r > n,
with 2

s
+ n

r
≤ 1. Then, u ∈ C∞ (Rn × (0, T )).

To define the homogeneous Besov spaces, we recall the Littlewood-Paley decomposition
(see, e.g., [24]). Let ϕj(x) be the inverse Fourier transform of the j-th component of the
dyadic decomposition i.e., ∑

j∈Z

ϕ̂(2−jξ) = 1

except ξ = 0, where supp
(
ϕ̂
)
⊂
{

1
2
< |ξ| < 2

}
.

Let

Z(Rn) =
{
f ∈ S(Rn), Dαf̂(0) = 0, ∀α ∈ Nn, multi-index

}
.

Definition 2.2. For every s ∈ R, and for every 1 ≤ q, r ≤ ∞, the homogeneous Besov
space is denoted by

Ḃs
q,r =

{
f ∈ Z ′(Rn) : ∥f∥Ḃs

q,r
< ∞

}
,

with

∥f∥Ḃs
q,r

=



(∑
j∈Z

2jsr∥ϕj ∗ f∥rLq

) 1
r

, if 1 ≤ r < ∞,

sup
j∈Z

{
2js∥ϕj ∗ f∥Lq

}
, if r = ∞ ,

where ϕj(x) = 2jnϕ(2jx).

Proposition 2.2. For any 0 < σ ≤ n, we have

L
n
σ (Rn) ↪→ Ḃ−σ

∞,∞(Rn) .

Proof of Proposition 2.2. From Young’s inequality, for any j ∈ Z, we have

2−jσ∥ϕj ∗ f∥L∞ ≤ C2−jσ∥ϕj∥L n
n−σ

∥f∥
L

n
σ
≤ C∥f∥

L
n
σ
.

This completes the proof. □

3. Proof of the main Theorems

Proof of Theorem 1.3. Since u ∈ L2n, by applying Proposition 2.1, we obtain a weak
solution u which is smooth in (0, T0). Therefore, for any T > 0, we can assume that u is
smooth on (0, T ).
For s ∈ (s0,

n
2
), applying (−∆)s/2 to (1.1), and using (−∆)s/2u as a test function to the

resulting equation we get

1

2

d

dt

∫
|(−∆)s/2u(t)|2 dx+

∫
|∇(−∆)s/2u|2 dx = −

∫
(−∆)s/2(u · ∇u) · (−∆)s/2u dx
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= −
∫

(−∆)s/2 div(u⊗ u) · (−∆)s/2u dx

= −
∫

(−∆)
s−α
2 div(u⊗ u) · (−∆)

s+α
2 u dx

≤ ∥u⊗ u∥H1+s−α∥(−∆)
s+α
2 u∥L2

≤ ∥u∥Ḃ−α
∞,∞

∥(−∆)
s+1
2 u∥L2∥(−∆)

s
2u∥1−α

L2 ∥(−∆)
s+1
2 u∥αL2

≤ δ∥(−∆)
s+1
2 u∥2L2 + Cδ∥u∥

2
1−α

Ḃ−α
∞,∞

∥(−∆)
s
2u∥2L2 ,

where δ > 0 is small enough.
Notice that we have used the inequality ([13])

∥u⊗ u∥H1+s−α ≤ C∥u∥Ḃ−α
∞,∞

∥(−∆)
s+1
2 u∥L2 ,

the Gagliardo–Nirenberg inequality ([3]), and the Young inequality.
Thus,

1

2

d

dt
∥(−∆)

s
2u(t)∥2L2 ≤ C∥u(t)∥

2
1−α

Ḃ−α
∞,∞

∥(−∆)
s
2u(t)∥2L2

≤ C
∥u(t)∥

2
1−α

Ḃ−α
∞,∞

1 + log+ ∥(−∆)
s0
2 u(t)∥L2

∥(−∆)
s
2u(t)∥2L2

(
1 + log+ ∥(−∆)

s0
2 u(t)∥L2

)
. (3.1)

Thanks to the Gagliardo–Nirenberg inequality, we obtain

∥(−∆)
s0
2 u(t)∥L2 ≤ ∥u(t)∥1−

s0
s

L2 ∥(−∆)
s
2u(t)∥

s0
s

L2 ≤ ∥u∥1−
s0
s

L∞(0,T ;L2)∥(−∆)
s
2u(t)∥

s0
s

L2

for t ∈ (0, T ).
Since u ∈ L∞ (0, T ;L2(Rn)), it follows from the last inequality that

1 + log+ ∥(−∆)
s0
2 u(t)∥L2 ≤ C log

(
e+ ∥(−∆)

s
2u(t)∥2L2

)
. (3.2)

Combining (3.1) and (3.2) we get

d

dt
∥(−∆)

s
2u(t)∥2L2 ≤ C

∥u(t)∥
2

1−α

Ḃ−α
∞,∞

1 + log+ ∥(−∆)
s0
2 u(t)∥L2

∥(−∆)
s
2u(t)∥L2 log

(
e+ ∥(−∆)

s
2u(t)∥2L2

)
,

which implies
∥u∥L∞(0,T ;Hs) ≤ C .

Hence, from the Sobolev embedding, we deduce that

u ∈ L∞(0, T ;L
2n

n−2s (Rn)) .

This and Proposition 2.1 imply that u is smooth on [0, T ], and the proof of Theorem 1.3
is complete. □

Proof of Theorem 1.4. It is not difficult to verify that w satisfies the equation:

wt + u · ∇w −∆w = w · ∇u . (3.3)

Testing (3.3) with −∆w, and using that div u = 0 we get

1

2

d

dt
∥∇w(t)∥2L2 + ∥∆w(t)∥2L2 =

∫
(u · ∇)w ·∆w dx−

∫
(w · ∇)u ·∆w dx

=
∑
i,j

∫
ui∂iw · ∂2

jw dx+

∫
(−∆)

1−α
2 (w · ∇u) · (−∆)

1+α
2 w dx
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= −
∑
i,j

∫
∂jui∂iw · ∂jw dx+

∫
(−∆)

1−α
2 (w · ∇u) · (−∆)

1+α
2 w dx

= −
∑
i,j

∫
∂i(∂juiw) · ∂jw dx+

∫
(−∆)

1−α
2 (w · ∇u) · (−∆)

1+α
2 w dx

= −
∑
i,j

∫
(−∆)

−α
2 ∂i(∂juiw) · (−∆)

α
2 ∂jw dx+

∫
(−∆)

1−α
2 (w · ∇u) · (−∆)

1+α
2 w dx .

(3.4)

By Hölder’s inequality and the Plancherel theorem, we obtain∣∣∣∣∫ (−∆)
−α
2 ∂i(∂juiw) · (−∆)

α
2 ∂jw dx+

∫
(−∆)

1−α
2 (w · ∇u) · (−∆)

1+α
2 w dx

∣∣∣∣
≤ C∥(−∆)

1−α
2 (w · ∇u)∥L2∥(−∆)

1+α
2 (w)∥L2 . (3.5)

On the other hand, we recall the following inequalities obtained in [13] and [9]:{
∥fg∥Ḣs ≤ C

(
∥f∥Ḃ−α

∞,∞
∥g∥Ḣs+α + ∥g∥Ḃ−α

∞,∞
∥f∥Ḣs+α

)
,

∥∇u∥Ḃ−α
∞,∞

≤ C∥w∥Ḃ−α
∞,∞

.

Then,

∥(−∆)
1−α
2 (w · ∇u)∥L2 ≤ C∥w · ∇u∥Ḣ1−α

≤ C
(
∥w∥Ḃ−α

∞,∞
∥∇u∥Ḣ1 + ∥∇u∥Ḃ−α

∞,∞
∥w∥Ḣ1

)
≤ C

(
∥w∥Ḃ−α

∞,∞
∥∆u∥L2 + ∥w∥Ḃ−α

∞,∞
∥∇w∥L2

)
≤ C∥w∥Ḃ−α

∞,∞
∥∇w∥L2 .

Then we deduce, from (3.4) and the interpolation inequality, that

1

2

d

dt
∥∇w(t)∥2L2 + ∥∆w(t)∥2L2 ≤ C∥w(t)∥Ḃ−α

∞,∞
∥∇w(t)∥L2∥(−∆)

1+α
2 (w)∥L2

≤ C∥w(t)∥Ḃ−α
∞,∞

∥∇w(t)∥L2∥∇w(t)∥1−α
L2 ∥∆w(t)∥αL2

≤ C∥w(t)∥
2

2−α

Ḃ−α
∞,∞

∥∇w(t)∥2L2 +
1

2
∥∆w(t)∥2L2 .

Thus,

d

dt
∥∇w(t)∥2L2 ≤ C∥w(t)∥

2
2−α

Ḃ−α
∞,∞

∥∇w(t)∥2L2

= C
∥w(t)∥

2
2−α

Ḃ−α
∞,∞

1 + log+ ∥w(t)∥Ḣs0

(
1 + log+ ∥w(t)∥Ḣs0

)
∥∇w(t)∥2L2 .

By Gronwall’s inequality, we obtain

∥∇w(t2)∥2L2 ≤ ∥∇w(t1)∥2L2 exp

C log

(
e+ sup

t∈[t1,t2]
∥w(t)∥Ḣs0

)∫ t2

t1

∥w(τ)∥
2

2−α

Ḃ−α
∞,∞

1 + log+ ∥w(τ)∥Ḣs0

dτ


(3.6)
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for all 0 < t1 < t2 < T .
Moreover, it follows from (1.10) that for every ε > 0, there exists 0 < T ∗ < T such that∫ T

T ∗

∥w(t)∥
2

2−α

Ḃ−α
∞,∞

1 + log+ ∥w(t)∥Ḣs0

dt < ε .

This and (3.6) imply that there exists a constant C0 > 0 (independent of w(t)) such that

∥∇w(t)∥2L2 ≤ ∥∇w(T ∗)∥2L2

(
e+ sup

t∈[T ∗,t]

∥w(t)∥Ḣs0

)C0ε

≤ C

(
e+ sup

t∈[T ∗,t]

∥w(t)∥Ḣs0

)C0ε

, (3.7)

for all T ∗ < t < T .
To obtain the conclusion, it suffices to prove that ∥w(t)∥Ḣs0 is bounded on [T ∗, T ].
We can proceed as the proof of Theorem 1.1 of [5] and get that

1

2

d

dt
∥∆w(t)∥2L2 ≤ C (1 + ∥∇w(t)∥L2)6 . (3.8)

We now divide the rest of our proof into the two following cases:

i) If α ∈ (0, 1
2
), then s0 ∈ (1, 3

2
), and it follows from the inequality of Gagliardo–

Nirenberg type that

∥w(t)∥Ḣs0 ≲ ∥w(t)∥2−s0
Ḣ1 ∥w(t)∥s0−1

Ḣ2 ≲ ∥∇w(t)∥2−s0
L2 ∥∆w(t)∥s0−1

L2 . (3.9)

Combining (3.7), (3.8), and (3.9) yields that there exists a constant C1 > 0 (independent
of w(t)) such that

∥∇w(t)∥2L2 ≤ C + C sup
τ∈[T ∗,t]

∥∇w(τ)∥C1ε
L2 , (3.10)

for all t ∈ [T ∗, T ).
This implies that ∥∇w(t)∥2L2 is uniformly bounded in (T ∗, T ) if ε > 0 is chosen such that
C1ε < 2.
Therefore,

w ∈ L∞(τ, T ;L6(R3)) , (3.11)

for any τ ∈ (0, T ).
Then, by the result by Beirão da Veiga [2], u is regular in (0, T ].

ii) If α ∈ (1
2
, 1] then s0 ∈ (1

2
, 1]. Applying the inequality of Gagliardo–Nirenberg type

we get

∥w(t)∥Ḣs0 ≲ ∥w(t)∥1−
s0
2

L2 ∥∆w(t)∥
s0
2

L2

≲ ∥∇u(t)∥1−
s0
2

L2 ∥∆w(t)∥
s0
2

L2

≲
(
∥u(t)∥1/2L2 ∥∆u(t)∥1/2L2

)1− s0
2 ∥∆w(t)∥

s0
2

L2

≤
(
∥u0∥1/2L2 ∥∆u(t)∥1/2L2

)1− s0
2 ∥∆w(t)∥

s0
2

L2

≲
(
∥u0∥1/2L2 ∥∇w(t)∥1/2L2

)1− s0
2 ∥∆w(t)∥

s0
2

L2 . (3.12)
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Notice that the last inequality was obtained by using the Biot–Savart law

u(x, t) = C

∫
R3

K(x− y)w(y, t) dy ,

where K(x) is homogeneous of degree −2. As a result, ∇K(x) is a singular kernel of
Calderón–Zygmund type.
Note that

∆u(x, t) = C

∫
R3

∇K(x− y) · ∇w(y, t) dy .

It follows from the standard Calderón–Zygmund theory that

∥∆u(t)∥L2 ≲ ∥∇w(t)∥L2 .

A combination of (3.7), (3.8), and (3.12) implies that there exists a constant C2 > 0 such
that

∥∇w(t)∥2L2 ≤ C + C sup
τ∈[T ∗,t]

∥∇w(τ)∥C2ε
L2 , for t ∈ (T ∗, T ) .

Therefore, we also obtain the conclusion as in (3.11).
This puts an end to the proof of Theorem 1.4. □
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