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1 Introduction

The paper deals with the homogenization of the optimal control problem associated to the

Poisson state equation in a domain perforated by holes of an arbitrary shape and with a

cost functional which is assumed to be dependent on the gradient of the state and on the

usual L2 norm of the control. On the boundary of the holes we assume that a Robin-type

boundary conditions holds. There are many papers devoted to similar purposes in the

literature (see, e.g., [4], [7] for the critical scales). All of them were related to the special

case in which the perforations are represented by balls. The general shape assumed here

on the holes is a source of difficult questions and the so called ”strange terms” (see. e.g.

[1] and the general exposition made in the book [2]) must be correctly identified such

as it was shown in [2], [3], [11]). Inspired in those papers, we use here some capacity

type problems to study the optimal control problem and to prove the appearance of a

”strange” terms in the limit of the cost functionals. Curiously enough, we prove that this

strategy can be suitably adapted to get the convergence of energies in the case of the

direct problem (i.e., without any associated control formulation). This allows to improve

some previous estimates presented in [2]). The formulation can be also understood by

replacing the holes by isolated particles, such as it appears in application in Chemical

Engineering (see,e.g.[2] and its references).

1



2 Problem Statement: the adjoint problem

Let Ω be a bounded domain in Rn, n ≥ 3 with smooth boundary ∂Ω. In the cube

Y = (−1/2, 1/2)n consider a subdomain G0, G0 ⊂ Y , which is star-shaped with respect

to a ball T 0
ρ ⊂ Y of radius ρ with center at the origin. Let δB = {x : δ−1x ∈ B}, δ > 0.

For ε > 0 let

Ω̃ε = {x ∈ Ω : ρ(x, ∂Ω) > 2ε}.

Denote by Zn the set of all vectors j = (j1, . . . , jn) with integer coordinates jk, k =

1, . . . , n. Consider the set

Gε =
⋃
j∈Υε

(aεG0 + εj) =
⋃
j∈Υε

Gj
ε,

where Υε = {j ∈ Zn : Gj
ε ⊂ Y j

ε = εY + εj,Gj
ε ∩ Ω̃ε 6= ∅}, aε = C0ε

α, α = n
n−2

. It easy to

see that |Υε| ∼= dε−n, d = const > 0. Note that Gj
ε ⊂ T jaε ⊂ T jε/4 ⊂ Y j

ε , where T jr is a ball

in Rn radius r centered at the point P j
ε = εj.

We introduce

Ωε = Ω \Gε, Sε = ∂Gε, ∂Ωε = Sε ∪ ∂Ω.

In Ωε we consider the optimal problem: for a given control v ∈ L2(Ωε) and data

f ∈ L2(Ω), a ∈ C∞(Ω), a(x) ≥ a0 > 0 and under the critical assumption γ = n
n−2

, n ≥ 3,

we denote by uε(v) ∈ H1(Ωε, ∂Ω) the unique weak solution of the problem
−∆uε(v) = f + v, x ∈ Ωε,

∂νuε(v) + ε−γa(x)uε(v) = 0, x ∈ Sε,
uε(v) = 0, x ∈ ∂Ω,

(1)

where ν is the unit outward normal vector to Sε.

We consider the cost functional Jε : L2(Ωε)→ R given by

Jε(v) ≡ η

2
‖∇(uε(v)− uT )‖2

L2(Ωε) +
N

2
‖v‖2

L2(Ωε), (2)

where uT is a target given function, uT ∈ H1
0 (Ω), and η,N are positive given constants. We

point out that when the parameter η is large enough we get the approximate controllability

property in H1(Ωε, ∂Ω) (in the sense that the associate state uε(v) is so close as we want

to the target function, i.e. ‖∇(uε(v)− uT )‖L2(Ωε) ≤ δ for any δ > 0 arbitrary small (see,

e.g. [5], Section 1.6). It is well known (see [6]) that there exist an unique optimal control

vε ∈ L2(Ωε) such that

Jε(vε) = inf
v∈L2(Ωε)

Jε(v). (3)

The aim of this paper is to study the limit as ε → 0 of the optimal control vε and of

the cost functional Jε(vε).
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Note that the function uε ∈ H1(Ωε, ∂Ω) is a weak solution of the problem (1) if it

satisfies an integral identity∫
Ωε

∇uε(v)∇φdx+ ε−γ
∫
Sε

a(x)uε(v)φds =

∫
Ωε

(f + v)φdx, (4)

where φ is an arbitrary function from H1(Ωε, ∂Ω). By H1(Ωε, ∂Ω) we denote the closure

in H1(Ωε) of the set of infinitely differentiable functions in Ωε such that vanish near the

boundary ∂Ω.

The adjoint problem which connected with the optimal control vε is formulated in the

following terms 
∆pε = ∆(uε(vε)− uT ), x ∈ Ωε,

∂ν(pε − uε(vε) + uT ) + ε−ka(x)pε = 0, x ∈ Sε,
pε = 0, x ∈ ∂Ω,

(5)

(see [4] and [7]) where pε ∈ H1(Ωε, ∂Ω) is a weak solution of this problem. It is well

known that

vε = − η

N
pε. (6)

So the optimal pair (uε,− η
N
pε) ∈ H1(Ωε, ∂Ω) ×H1(Ωε, ∂Ω) is a weak solution of the

coupled system 

−∆uε = f − η
N
pε, x ∈ Ωε,

∆pε = ∆(uε − uT ), x ∈ Ωε,

∂νuε + ε−γa(x)uε = 0, x ∈ Sε,
∂ν(pε − uε + uT ) + ε−γa(x)pε = 0, x ∈ Sε,
uε = pε = 0, x ∈ ∂Ω.

(7)

For uε, pε we have the estimate ( see [4], [7])

‖uε‖H1(Ωε,∂Ω) + ‖pε‖H1(Ωε,∂Ω) ≤ K(‖f‖L2(Ω) + ‖uT‖H1
0 (Ω)), (8)

where K here and below is independent of ε. From estimate (8) we conclude

‖Pεuε‖H1
0 (Ωε) ≤ K, ‖Pεpε‖H1

0 (Ω) ≤ K, (9)

where Pε : H1(Ωε, ∂Ω)→ H1
0 (Ω) is H1 - extension operator, such that

‖Pεu‖H1
0 (Ω) ≤ K‖u‖H1(Ωε,∂Ω), ‖∇Pεu‖L2(Ω) ≤ K‖∇u‖L2(Ωε). (10)

From estimations (8)-(10) as usual we derive that there is a subsequence (still denoted

by ε) such that as ε→ 0

Pεuε ⇀ u0, Pεpε ⇀ p0, weakly in H1
0 (Ω), (11)
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In order to formulate and to prove a homogenization result on the optimal problem

we need to introduce some auxiliary functions which become explicit when the perforated

by holes have not an arbitrary shape but they are symmetric balls.

3 Auxiliary capacity type problems

Let us define wjε(x) ∈ H1(T jε/4 \ G
j
ε, ∂T

j
ε/4), (j ∈ Υε), as a weak solution of the boundary

value problem 
∆wjε = 0, x ∈ T jε/4 \G

j
ε,

∂νw
j
ε + ε−γa(x)(wjε − 1) = 0, x ∈ ∂Gj

ε,

wjε = 0, x ∈ ∂T jε/4.
(12)

We define

Wε(x) =

 wjε(x), x ∈ T jε/4 \G
j
ε, j ∈ Υε,

0, x ∈ Rn \
⋃
j∈Υε

T jε/4.
(13)

Below we formulate some statements, proved in [2], [3], [11].

Lemma 1. For Wε ∈ H1(Ωε, ∂Ω) the estimates are valid

‖∇Wε‖2
L2(Ωε) + ε−γ‖Wε‖2

L2(Sε) ≤ K, ‖Wε‖2
L2(Ωε) ≤ Kε2, (14)

0 ≤ Wε ≤ 1, ∀x ∈ Ωε. (15)

Hence, as ε→ 0 for some subsequence we have

PεWε ⇀ 0 weakly in H1
0 (Ω), PεWε → 0 strongly in L2(Ω). (16)

Let w0(x, y) be a solution of the exterior problem
∆yw0 = 0, y ∈ Rn \G0,

∂νw0 + C0a(x)(w0(x, y)− 1) = 0, y ∈ ∂G0,

w0(x, y)→ 0, |y| → ∞,
(17)

where x ∈ Ω is a parameter. Following the paper [3], [11] and [2] we define by C the

space of functions φ ∈ C∞(Rn \G0) for which there exists positive constant R > 0 such

that φ = 0 outside T 0
R, where T 0

R is a ball of radius R with the center at the origin of

coordinates. For any u ∈ C we have

‖|y|−1u‖L2(Rn\G0) ≤ K(n)‖∇u‖L2(Rn\G0). (18)

In the space C we can introduce the norm
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‖v‖C ≡ ‖∇v‖L2(Rn\G0). (19)

Denoting by V the closure of C with respect to this norm, it is easy to see that V is a

Hilbert space.

The function w0 ∈ V is a weak solution to the exterior problem (17) if it satisfies the

integral identity ∫
Rn\G0

∇w0∇φdy + C0

∫
∂G0

a(x)(w0 − 1)φds = 0, (20)

for an arbitrary φ ∈ V .

We have ( see [3], [11] and [2])

Lemma 2. There exist a unique weak solution w0 ∈ V to the problem (17) and it satisfies

the estimate

0 ≤ w0 ≤ 1, max
x∈Ω
|w0(x, y)| ≤ K

|y|n−2
, ∀y ∈ Rn \G0. (21)

The following lemma addresses the relation between the functions wjε and w0(P j
ε ,

x−P j
ε

aε
)

(see [3], [11] and [2]).

Lemma 3. We set vjε(x) = wjε − w0(P j
ε ,

x−P j
ε

aε
). Then

‖∇vjε‖2

L2(T j
ε/4
\Gj

ε)
+ ε−γ‖vjε‖2

L2(∂Gj
ε)
≤ Kεn+2, ‖vjε‖2

L2(T j
ε/4
\Gj

ε)
≤ Kεn+2, (22)

|vjε| ≤ max
x∈∂T j

ε/4

|w0(P j
ε ,
x− P j

ε

aε
)|. (23)

Define the function

H0(x) =

∫
∂G0

∂νw0(x, y)dsy = C0|∂G0|a(x)(1− 〈w0(x, y)〉∂G0), (24)

where by 〈w〉∂G0 we denote the mean-value of the function w on ∂G0. Notice the depen-

dence H0 = H0(x : ∂G0, a).

We also define another auxiliary function θjε as the solution of the following boundary-

value problem of capacity type
∆θjε = 0, x ∈ T jε/4 \G

j
ε,

∂νθ
j
ε + ε−γa(x)(θjε − wjε) = 0, x ∈ ∂Gj

ε,

θjε = 0, x ∈ ∂T jε/4.
(25)

We introduce the extension function

5



Θε(x) =

{
θjε(x), x ∈ T jε/4 \G

j
ε, j ∈ Υε,

0, x ∈ Ω \
⋃
j∈Υε

T jε/4.
(26)

Is it easy to see that θε ∈ H1(Ωε, ∂Ω).

Lemma 4. The function Θε defind in (26) satisfies the following estimates

‖∇Θε‖2
L2(Ωε) + ε−γ‖Θε‖2

L2(Sε) ≤ K, ‖Θε‖2
L2(Ωε) ≤ Kε2, (27)

0 ≤ Θε ≤ Wε. (28)

Proof. Taking θjε as a test function in the integral identity for the problem (25), we get∫
T j
ε/4
\Gj

ε

|∇θjε|2dx+ ε−γ
∫
∂Gj

ε

a(x)|θjε|2ds = ε−γ
∫
∂Gj

ε

a(x)θjεw
j
εds. (29)

From here, we derive

‖∇θjε‖2

L2(T j
ε/4
\Gj

ε)
+ ε−γ‖θjε‖2

L2(∂Gj
ε)
≤ Kε−γ‖wjε‖2

L2(∂Gj
ε)
. (30)

Now, the estimations immediately follow from the Lemma 1.

Let us show that Θε ≤ Wε. Taking in the integral identity for the weak solution of the

problem (25) as a test-function (θjε−wjε)+ = sup(θjε−wjε, 0) ∈ H1(T jε/4 \G
j
ε, ∂T

j
ε/4) we get∫

T j
ε/4
\Gj

ε

∇θjε∇(θjε − wjε)+dx+ ε−γ
∫
∂Gj

ε

a(x)
(

(θjε − wjε)+
)2

ds = 0.

From the integral identity for the function wjε we obtain∫
T j
ε/4
\Gj

ε

∇wjε∇(θjε − wjε)+dx = −ε−γ
∫
∂Gj

ε

a(x)(wjε − 1)(θjε − wjε)+ds ≥ 0.

Hence, we have

0 ≤
∫

T j
ε/4
\Gj

ε

|∇(θjε − wjε)+|2dx+ ε−γ
∫
∂Gj

ε

a(x)
(

(θjε − wjε)+
)2

ds =

= ε−γ
∫
∂Gj

ε

a(x)(wjε − 1)(θjε − wjε)+ds ≤ 0.

Thus, we derive that (θjε − wjε)+ = 0 in T jε/4 \ G
j
ε. The rest inequalities can be obtain in

the similar way.
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Hence. we have

PεΘε ⇀ 0, weakly in H1
0 (Ω). (31)

Also we introduce θ(x, y) as a solution to the exterior problem
∆yθ = 0, y ∈ Rn \G0,

∂νθ + C0a(x)(θ(x, y)− w0(x, y)) = 0, y ∈ ∂G0,

θ(x, y) ⇀ 0, |y| → ∞,
(32)

where x ∈ Ω is a parameter.

This problem is similar to the (17), so we have that there exist a unique weak solution

of the problem (32) in the space V that satisfies the estimation (21). Moreover, we have

0 ≤ θ ≤ w0. In addition we note that statement similar to the Lemma 3 is also valed.

Lemma 5. The function hjε = θjε − θ(P j
ε ,

x−P j
ε

aε
) satisfies estimates

‖∇hjε‖2

L2(T j
ε/4
\Gj

ε)
+ ε−γ‖hjε‖2

L2(∂Gj
ε)
≤ Kεn+2, ‖hjε‖2

L2(T j
ε/4
\Gj

ε)
≤ Kεn+2. (33)

We define a function

H1(x) =

∫
∂G0

∂νθdsy = C0|∂G0|a(x)(〈w0(x, y)〉∂G0 − 〈θ(x, y)〉∂G0). (34)

Once again, we point out the implicit dependence H1 = H1(x : ∂G0, a).

4 Main result

The next theorem gives the description of the limit functions u0, p0, obtained in (11).

Theorem 1. Let n ≥ 3, α = γ = n
n−2

and let (uε, pε) be a weak solution to the system

(7). Then, the pair (u0, p0) defined in (11) is a weak solution of the coupled system
−∆u0 + Cn−2

0 H0(x)u0 = f − η
N
p0, x ∈ Ω,

−∆p0 + Cn−2
0 H0(x)p0 = −∆(u0 − uT ) + Cn−2

0 H1(x)u0, x ∈ Ω,

u0 = p0 = 0 x ∈ ∂Ω,

(35)

where H0(x), H1(x) are defined, respectively, by (24)and (34).

Remark 1. If G0 = {|y| < 1}, we can find the explicit formula for solutions w0(x, y) and

θ(x, y) and then for the auxiliary functions H0(x), H1(x):

w0(x, y) =
a(x)

a(x) + n−2
C0

|y|2−n, θ(x, y) =
( a(x)

a(x) + n−2
C0

)2

|y|2−n, (36)

H0(x) = (n− 2)ωn
a(x)

a(x) + n−2
C0

, H1(x) = (n− 2)ωn

( a(x)

a(x) + n−2
C0

)2

, (37)
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where ωn is the surface area of the unit sphere in Rn. This special case was considered

in a different way in [7], for the volume perforated domain, and in [4] (for the critical

scales) for the case in which the domain is perforated along a internal manifold.It can be

proved that in the case in which the parameters are in the critical case then the auxiliary

functions H0(x), H1(x) are not need to identify the optimal limit problem.

Proof. First we prove, that the function u0 is a weak solution of the problem{
−∆u0 + Cn−2

0 H0(x)u0 = f − ηN−1p0, x ∈ Ω,

u0 = 0, x ∈ ∂Ω.
(38)

Consider the function φ = ψ − Wεψ, where Wε defined in (13), ψ ∈ C∞0 (Ω), as a

test-function in the integral identity for uε. We get

∫
Ωε

∇uε∇(ψ−Wεψ)dx+ ε−γ
∫
Sε

a(x)uε(ψ−Wεψ)ds =

∫
Ωε

(f − ηN−1pε)(ψ−Wεψ)dx. (39)

Using (16), we have

−
∫
Ωε

∇uε∇(Wεψ)dx = −
∫
Ωε

∇(uεψ)∇Wεdx+ αε =

= −
∑
j∈Υε

∫
T j
ε/4
\Gj

ε

∇(uεψ)∇wjεdx+ αε = −
∑
j∈Υε

∫
∂T j

ε/4
∪∂Gj

ε

∂νw
j
εuεψds+ αε =

= ε−γ
∑
j∈Υε

∫
∂Gj

ε

a(x)wjεuεψds− ε−γ
∑
j∈Υε

∫
∂Gj

ε

a(x)uεψds− (40)

−
∑
j∈Υε

∫
∂T j

ε/4

∂νw
j
εuεψds+ αε = −ε−γ

∫
Sε

a(x)uε(ψ −Wεψ)ds−
∑
j∈Υε

∫
∂T j

ε/4

∂νw
j
εuεψds+ αε,

where alphaε → 0 as ε→ 0.

From (39) and (40) we derive∫
Ωε

∇uε∇ψdx−
∑
j∈Υε

∫
∂T j

ε/4

∂νw
j
εuεψds =

=

∫
Ωε

(f − ηN−1pε)(ψ −Wεψ)dx+ αε. (41)

Using that (see [3], [11], [2])

lim
ε→0

∑
j∈Υε

∫
∂T j

ε/4

∂νw
j
εψuεds =

8



= lim
ε→0

∑
j∈Υε

∫
∂T j

ε/4

∂νw0(P j
ε ,
x− P j

ε

aε
)ψuεds = −Cn−2

0

∫
Ω

H0(x)u0ψ(x)dx, (42)

we get (41) and (42) the integral identity for u0∫
Ω

∇u0∇ψdx+ Cn−2
0

∫
Ω

H0(x)u0ψ(x)dx =

∫
Ω

(f − ηN−1p0)ψdx. (43)

Next, we prove that the function p0 is a weak solution of the problem{
−∆p0 + Cn−2

0 H0(x)p0 = −∆(u0 − uT ) + Cn−2
0 H1(x)u0, x ∈ Ω,

p0 = 0, x ∈ ∂Ω.
(44)

Let us take in the integral identity to the problem (5) as a test function φ = ψ−Wεψ.

We obtain∫
Ωε

∇pε∇(ψ −Wεψ)dx+ ε−γ
∫
Sε

a(x)(ψ −Wεψ)pεds =

∫
Ωε

∇(uε − uT )∇(ψ −Wεψ)dx =

=

∫
Ω

∇(u0 − uT )∇ψdx−
∫
Ωε

∇uε∇(Wεψ)dx+ βε, (45)

where βε →, as ε→ 0.

We have that

−
∫
Ωε

∇pε∇(Wεψ)dx = −
∫
Ωε

∇Wε∇(pεψ)dx+ α̂ε =

= −
∑
j∈Υε

∫
∂Gj

ε

∂νw
j
εpεψds−

∑
j∈Υε

∫
paT j

ε/4

∂νw
j
εpεψds+ α̂ε =

= ε−γ
∫
Sε

a(x)pεψ(x)(Wε − 1)ds−
∑
j∈Υε

∫
∂T j

ε/4

∂νw
j
εpεψds+ α̂ε. (46)

From (45) and (46) we derive that the left hand side of (45) has the form∫
Ωε

∇pε∇ψdx−
∑
j∈Υε

∫
∂T j

ε/4

∂νw
j
εpεψds+ α̂ε,

where α̂ε → 0 as ε→ 0.

Hence, we have that the limit as ε→ 0 of the left hand side of (45) equal to∫
Ω

∇p0∇ψdx+ Cn−2
0

∫
Ω

H0(x)p0ψdx. (47)

From here and (45) we conclude that to obtain the integral identity for p0 we have to

find the limit of the following term

9



∫
Ωε

∇uε∇(Wεψ)dx.

Applying the properties of the function Wε we get that∫
Ωε

∇uε∇(Wεψ)dx = −ε−γ
∫
Sε

a(x)uεWεψds+ κε, (48)

where κε → 0 as ε→ 0.

Taking in the integral identity for uε as a test function Θεψ, we obtain∫
Ωε

∇uε∇(Θεψ)dx+ ε−γ
∫
Sε

a(x)uεΘεψds =

∫
Ωε

(f − ηN−1pε)Θεψdx. (49)

Using that thetajε is a weak solution of the problem (25) and applying the Green’s

formula we deduce∫
T j
ε/4
\Gj

ε

∇θjε∇(uεψ)dx+ ε−γ
∫
∂Gj

ε

a(x)θjεuεψds−
∫

∂T j
ε/4

∂νθ
j
εuεψds =

= ε−γ
∫
∂Gj

ε

a(x)wjεuεψds. (50)

Summing up by j ∈ Υε we get∫
Ωε

∇Θε∇(uεψ)dx+ ε−γ
∫
Sε

a(x)Θεuεψds−

−
∑
j∈Υε

∫
∂T j

ε/4

∂νθ
j
εuεψds = ε−γ

∫
Sε

a(x)uεWεψds. (51)

Taking into account (31) and subtracting from (51) the equality (49), we obtain

ε−γ
∫
Sε

a(x)Wεuεψds = −
∑
j∈Υε

∫
∂T j

ε/4

∂νθ
j
εuεψds+ α̃ε, (52)

where α̃ε → 0 as ε→ 0.

From (48) and (52) we have

lim
ε→0

∫
Ωε

∇uε∇Wεψdx = − lim
ε→0

ε−γ
∫
Sε

a(x)Wεuεψds =

= lim
ε→0

∑
j∈Υε

∫
∂T j

ε/4

∂νθ
j
εuεψds = −Cn−2

0

∫
Ω

H1(x)u0(x)ψ(x)dx. (53)

Hence, the limit as ε→ 0 of the right hand side of (45) is equal to
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∫
Ω

∇(u0 − uT )∇ψdx+ Cn−2
0

∫
Ω

H1(x)u0ψdx. (54)

From (47), (54) we conclude that p0 ∈ H1
0 (Ω) is a weak solution of the problem (44).

5 Convergence of the cost functionals

Now we will find the limit of the cost functionals depending on ε

Jε(vε) = Jε(ηN
−1pε) ≡

η

2

∫
Ωε

|∇uε −∇uT |2dx+
η2

2N

∫
Ωε

p2
εdx. (55)

Theorem 2. The following limit holds

lim
ε→0

Jε(vε) =
η

2

∫
Ω

|∇(u0 − uT )|2dx+
ηCn−2

0

2

∫
Ω

H1(x)u2
0dx+

N

2

∫
Ω

v2
0dx ≡ J0(v0), (56)

where v0 = −ηN−1p0 is the optimal control for the problem

−∆u0(v0) + Cn−2
0 H0(x)u0(v0) = f + v0, x ∈ Ω, u0(v0) = 0, x ∈ ∂Ω, (57)

and

J0(v0) = inf
v∈L2(Ω)

J0(v). (58)

Proof. Taking in the integral identity for pε as a test function uε we obtain

η

∫
Ωε

∇(uε − uT )∇uεdx = η

∫
Ωε

∇pε∇uεdx+ ηε−γ
∫
Sε

a(x)pεuεds. (59)

Similarly, using pε as atest function in the integral identity for uε, we get

η

∫
Ωε

∇uε∇pεdx+ ηε−γ
∫
Sε

a(x)uεpεds = η

∫
Ωε

(f − ηN−1pε)pεdx. (60)

From (59), (60) we derive

lim
ε→0

η

2

∫
Ωε

∇(uε − uT )∇uεdx =
η

2

∫
Ω

(f − ηN−1p0)p0dx =

=
η

2

∫
Ω

∇u0∇p0dx+
η

2
Cn−2

0

∫
Ω

H0(x)u0p0dx =

=
η

2

∫
Ω

∇(u0 − uT )∇u0dx+
η

2
Cn−2

0

∫
Ω

H1(x)u2
0dx. (61)
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Taking into account that

lim
ε→0

η

2

∫
Ω

∇(uε − uT )∇uTdx =
η

2

∫
Ω

∇(u0 − uT )∇uTdx,

and using (61) we obtain the statement of the Theorem 2.

6 Convergence of the energy for the problem without

control

In this last section we will use this type of ideas to prove the energy convergence for a

direct problem, without any control formulation. As we will see, we must include in the

limit energy some strange term associated to the homogenized problem. To do that we

introduce the artificial complementary problem (5), which corresponds formally to the

case v = 0 and uT = 0. This improves the convergence result given in Section 4.7.1.4 of

[2].

Theorem 3. Let uε be the solution of (1) with v ≡ 0 at the critical scale. Let u0 ∈ H1
0 (Ω)

be the weak limit of the extension Pεuε. Then we have the convergence∫
Ωε

|∇uε|2dx→
∫
Ω

|∇u0|2dx+ Cn−2
0

∫
Ω

H1(x)u2
0dx. (62)

Proof. It is well known (see [3], [11] and [2]) that u0 ∈ H1
0 (Ω) is the unique weak solution

of the problem {
−∆u0 + Cn−2

0 H0(x)u0 = f, x ∈ Ω,

u0(x) = 0, x ∈ ∂Ω.
(63)

Let us introduce the weak solution pε of the problem
∆pε = ∆uε, x ∈ Ωε,

∂ν(pε − uε) + ε−γa(x)pε = 0, x ∈ Sε,
pε = 0, x ∈ ∂Ω.

(64)

It is known that Pεpε ⇀ p0 weakly in H1
0 (Ω) as ε→ 0 and p0 is a weak solution of the

problem {
−∆p0 + Cn−2

0 H0(x)p0 = −∆u0 + Cn−2
0 H1(x)u0, x ∈ Ω,

p0 = 0, x ∈ ∂Ω,
(65)

where H0 and H1 defined by formulas (24) and (34) respectively.

From the variational formulation to the problem (1) with v]equiv0, we have∫
Ωε

∇uε∇pεdx+ ε−γ
∫
Sε

a(x)uεpεds =

∫
Ωε

fpεdx.
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Similarly from the variational formulation to the problem on p]ee we deduce∫
Ωε

∇pε∇uεdx+ ε−γ
∫
Sε

a(x)pεuεds =

∫
Ωε

|∇uε|2dx.

Thus we have ∫
Ωε

|∇uε|2dx =

∫
Ωε

fpεdx→
∫
Ω

fp0dx =

=

∫
Ω

∇u0∇p0dx+ Cn−2
0

∫
Ω

H0(x)u0p0dx =

∫
Ω

|∇u0|2dx+ Cn−2
0

∫
Ω

H1(x)u2
0dx,

which ends the proof.
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