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Abstract. We establish the existence of bounded very weak solutions to a

large class of stationary diffusive logistic equations with weights by constructing
suitable sub and supersolutions. This class of problems corresponds to the

case in which the absorption term dominates over the forcing term. The case

of simultaneous singular nonlinearities and singular weights is also considered.
This shows that if limitations in the growth of a population are distributed

and unbounded, but satisfy some mild integrability assumption in terms of the

distance to the boundary, solutions can still be bounded. The results extend
several papers in the literature.

1. Introduction. The stationary diffusive logistic equation, also called as station-
ary Fisher-KPP equation, is a very well-known example of semilinear elliptic equa-
tion arising in applications, in particular in population dynamics. Moreover, the
same type of nonlinear terms arise in other equations or systems, mostly in the
Lotka-Volterra systems (predator-prey, competition, symbiosis) in mathematical
biology.

The semilinear elliptic equation{
−∆u+ q(x)up = λm(x)u in Ω,

u = 0 on ∂Ω,
(1)

where Ω is a smooth bounded domain in RN , p > 1, m and q are positive (or non-
negative) functions and λ is a real parameter, covers different variants of the logistic
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equation (see, e.g. the monograph [11], the paper [30] and their many references).
A stochastic version was considered in [34].

The coefficient m(x) represents the intrinsic growth rate of the population and
it is thus positive (resp. negative) on the favorable (resp. unfavorable) domain.
We point out that in this framework the forcing term λm(x)u dominates over the
absorption nonlinearity term up for small values of u (remember that p > 1). Thus
this type of problems are of a different nature than the case of problems in which
the absorption dominates over the forcing (which corresponds to the case p < 1:
see, e.g., the survey [15]).

In the paper [30] the second author extended the study of (1), mostly dealing with
bounded coefficients in the previous literature, to the case of q ≡ 1 and m ∈ Lr(Ω)
where r > N

2 , references to previous work can be found there. In this case one cannot

expect to get classical solutions but it was proved that weak solutions in H1
0 (Ω),

with some additional regularity, exist by using general existence theorems with sub
and supersolutions. In particular, we obtain bounded positive solutions even if the
coefficient m(x) is unbounded. This shows that if limitations are distributed and
unbounded, but satisfy some mild integrability assumptions, solutions can still be
bounded.

The main goal of this paper is to extend and improve the results in [30] to
the class of very weak solutions and provide existence results for other variants.
In particular, we show that if the singular weights are of the kind d(x)−α, with
d(x) = d(x, ∂Ω) and suitable α > 0, we get bounded solutions as well.

In Section 2 we present a general result on the existence of very weak solutions
improving the result on weak solutions given in [30]. An application to nonlinear
problems improving the results in [30] and [3] is given, and the same happens
in Section 4 dealing with the case of m(x) changing sign, the special case of a
superharmonic weight m(x) and the case of a nonlinear diffusion. Finally, Section 5
describes some improvements of the results for the case of singular weights obtained
in [31].

2. Very weak solutions of a general semilinear problem. In this section we
study the existence and uniqueness of positive (and non-negative) solutions to the
semilinear elliptic problem {

−∆u = f(x, u) in Ω,

u = 0 on ∂Ω,
(2)

where Ω is a smooth bounded domain in RN (N ≥ 1) and f : Ω × R→ R is a
Carathéodory function such that f(x, 0) = 0 for a.a. x ∈ Ω.

We will present some improvement of the assumptions made in Section 2 of [30]
dealing with the existence of weak solutions of (2). They are functions required
to be in H1

0 (Ω) (the usual Sobolev space with the standard equivalent norm), so,
by the Sobolev imbedding H1

0 (Ω) ↪→ L2∗(Ω) with 2∗ = 2N
N−2 , the notion of weak

solution ensures that the equation takes place on the dual space H−1(Ω):

Definition 1. We say that u ∈ H1
0 (Ω) is a (weak) solution to (2)) if f(x, u) ∈

L
2N
N+2 (Ω) when N > 3 (f(x, u) ∈ L1+ε(Ω), for some ε > 0 if N = 2, and f(x, u) ∈

L1(Ω), if N = 1) ∫
Ω

∇u · ∇ϕ =

∫
Ω

f(x, u)ϕ (3)
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for any ϕ ∈ H1
0 (Ω).

Definition 2. We say that u0 ∈ H1(Ω) is a subsolution (resp. a supersolution) to
(2) if ∫

Ω

∇u0 · ∇ϕ−
∫

Ω

f(x, u0)ϕ ≤ 0 (4)

(resp. ≥ 0 for u0) for any ϕ ∈ H1
0 (Ω) such that ϕ ≥ 0 and u0 ≤ 0 (resp. 0 ≤ u0)

on ∂Ω, in the usual sense of traces for functions in H1(Ω).

A more general point of view started with a famous 1971 unpublished paper by
H. Brezis (later collected in [7]) dealing with a larger class of solutions in which the
equation takes place in the weighted space

L1(Ω, d) =

{
w : Ω→ R Lebesgue measurable :

∫
Ω

|w(x)| d(x) <∞
}
,

where d(x) = d(x, ∂Ω). The key idea is that now the test functions must be more

regular but in the natural space W 2,∞(Ω)∩W 1,∞
0 (Ω) (or simply C2(Ω)∩C1,0

0 (Ω)).

Definition 3. We say that u ∈ L1(Ω) is a very weak solution to (2)) if f(·, u)d(·) ∈
L1(Ω) and

−
∫

Ω

u∆ϕ =

∫
Ω

f(x, u)ϕ (5)

for any ϕ ∈W 2,∞(Ω) ∩W 1,∞
0 (Ω).

Definition 4. We say that u0 ∈ L1(Ω) is a subsolution (resp. a supersolution) to
(2) if ∫

Ω

∇u0 · ∇ϕ−
∫

Ω

f(x, u0)ϕ ≤ 0

(resp. ≥ 0 for u0) for any ϕ ∈W 2,∞(Ω) ∩W 1,∞
0 (Ω) such that ϕ ≥ 0.

Notice that since any function ϕ ∈ W 2,∞(Ω) ∩W 1,∞
0 (Ω) satisfies that |ϕ(x)| ≤

Cd(x) for any x ∈ Ω, for some C > 0, then the identity in (5) makes sense. The
definition (4) can be extended to functions such that u0 ≤ 0 (resp. 0 ≤ u0) on ∂Ω,
in a weak sense of traces which we will refer later (see Remark 2). Moreover, notice
that any weak solution is a very weak solution.

The existence of solutions will be obtained by the method of sub and super solu-
tions which was used by many authors in the last fifty years. It is well-known that
such method has many applications to chemical reactions, Lotka-Volterra systems,
combustion, . . . , mostly in order to obtain positive classical solutions: see the book
by Pao [39] and its many references. Weak solutions were studied as well, proving
the existence of minimal and maximal solutions (see many references in [30]).

Here we will follow the approach given for very weak solutions (also called as
L1
d−solutions) showing that f(·, u)d(·) ∈ L1(Ω) as made in Montenegro and Ponce

[38] (see also [22]) getting minimal and maximal solutions (obtained by combining
Schauder’ s fixed point theorem and some equi-integrability argument).

Theorem 1 ([38]). . Let u0 and u0 be a sub and a supersolution of (2), respectively.
Assume that u0 ≤ u0 a.e. on Ω and

f(·, v)d(·) ∈ L1(Ω) for every v ∈ L1(Ω) such that u0 ≤ v ≤ u0 a.e. on Ω. (6)

Then, there exists a minimal (resp. maximal) very weak solution u (resp.u) such
that u0 ≤ u ≤ u ≤ u0 a.e. on Ω.
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Remark 1. It was proved also in [38] (see its Corollaries 5.2 and 5.3 ) that i) if u0,
u0 ∈ L1(Ω) and f is a Carathéodory function such that

f(x, v) ∈ L
2N
N+2 (Ω) for every v ∈ L1(Ω) such that u0 ≤ v ≤ u0 a.e. on Ω (7)

then (2) has a solution u ∈ H1
0 (Ω) such that u0 ≤ u ≤ u0 a.e. on Ω, and

ii) if u0, u0 ∈ L∞(Ω) and f ∈ C(Ω×R) then (2) has a solution u ∈ C1,γ(Ω) such
that u0 ≤ u ≤ u0 a.e. on Ω.
Notice that i) implies that, in fact, u and .u are weak solutions. This improves
Theorem 1 of [30] where it was assumed that f(x, v) ∈ Lγ(Ω), for every v ∈ L1(Ω)
such that u0 ≤ v ≤ u0 a.e. on Ω, for some γ > 2N

N+2 , besides of other additional
conditions. Notice that in that case we also get that u and u are in the Sobolev
space W 2,γ(Ω) ∩W 1,γ

0 (Ω) and that if γ > N
2 (respect. γ > N) then u and u are in

C(Ω) (respect. in C1,ν(Ω) for some ν ∈ (0, 1)).This can be proved by applying the
classical Lp and Cν regularity theorems collected in [28] and Sobolev imbeddings.

An useful auxiliary tool, used in the proof of Theorem 1 of [30], is to have the
existence and uniqueness of solutions for the special case of problem{

−∆z + p(x, z) = h in Ω,

z = 0 on ∂Ω.
(8)

when p(x, z) is a Carathéodory function satisfying

p(x, 0) = 0 a.a. x ∈ Ω, (9)

sup
|w|≤α

|p(x,w)| d(x) ≤ φα(x) ∈ L1(Ω), ∀α > 0, (10)

p(x, u)u ≥ 0 u for a.a. x ∈ Ω. (11)

Lemma 1 ([22]). Assume (9), (10) and (11). Then, for any h ∈ L1(Ω, d) there
exists a unique very weak solution z ∈ L1(Ω), with p(x, z)d ∈ L1(Ω), to{

−∆z + p(x, z) = h in Ω,

z = 0 on ∂Ω.
(12)

Moreover z ∈ LN ′,∞(Ω) ∩W 1,r
0 (Ω, d), 1 ≤ r < 2N

2N−1 .

Remark 2. For the definition of the Lorentz space LN
′,∞(Ω) we send the reader

to [36] and [22]. It is also proved there that, if in addition, h ∈ L1(Ω, dα) ={
w: Ω→ R ,

∫
Ω
|w(x)| dα(x) <∞

}
for some α ∈ [0, 1) then |∇z| ∈ L

N
N−1+α ,∞(Ω).

Notice that the above gradient estimates, jointly with the compact Sobolev imbed-
dings for the weighted spaces implies useful compactness arguments. In particular,
the application P : L1(Ω, d) → L2(Ω) given by P (h) = z is compact (which is an
alternative to the compactness argument used in the proof of Theorem, 1 in [30]).
Moreover the gradient estimates allow to give a sense to the trace of very weak so-
lutions and thus the notion of sub and super very weak solutions given in Definition
4 can be extended to the case in which u0, u

0 ∈W 1,r(Ω, d), for some 1 ≤ r < 2N
2N−1

and u0 ≤ 0 ≤ u0 on ∂Ω in the sense of traces (see [36]).

Remark 3. We recall that when we replace (10) by

sup
|w|≤α

|p(x,w)| ≤ φα(x) ∈ L1(Ω), ∀α > 0, (13)



BOUNDED POSITIVE SOLUTIONS 5

then by Theorem 7 of Brezis and Browder [5]) for any h ∈ H−1(Ω) there exists a
weak solution z ∈ H1

0 (Ω) with p(x, z) and p(x, z)z in L1(Ω) satisfying the equation
in H−1(Ω) +L1(Ω), i.e. with test functions in H1

0 (Ω)∩L∞(Ω). On the other hand,
sharper regularity results (in Ls(Ω) and in W 1,s(Ω)) on very weak solutions for
problems of the type (12), when h ∈ Lr(Ω, d), where obtained in Proposition 2.3 of
[41]. In particular, if p(x, z) ≡ 0 then z ∈ L∞(Ω) if r > N+1

2 .

The uniqueness of (nontrivial ) positive very weak solutions to (2) under the
assumption (6) follows when f(x, u) is decreasing a.a. x ∈ Ω ([22]). It is also
well-known that under additional regularity conditions the uniqueness of positive
weak solutions holds when, in one way or another, f(x, u) satisfies some “concavity”
condition (see, e.g. [8], [29] and [32]). The following result is a slight extension of
some of the results in the Appendix II of [8]:

Theorem 2. i) Assume that f is a Carathéodory function satisfying (6),

f(x, u) is locally Lipschitz continuous in u for a.a. x ∈ Ω, (14)

and

f(x, u)/u is (strictly) decreasing a.a. x ∈ Ω. (15)

Then there exists a unique positive bounded very weak solution to (2) in the class
of functions v ∈ L∞(Ω) such that

0 ≤ v(x) ≤ cd(x) for some c > 0 and a.a. x ∈ Ω. (16)

ii) Assume that f is a Carathéodory function satisfying (6) and (15). Then there
exists a unique positive weak solution to (2) in the sense mentioned in Remark 3,
i.e. in the class of functions v ∈ H1

0 (Ω) such that f(·, v) ∈ L1(Ω) and for which (3)
holds for any test function in H1

0 (Ω) ∩ L∞(Ω).

Proof. i) We adapt to our framework the variant of Krasnoselkii’s presented in
[8]. The new tool used here is the strong maximum principle (or uniform Hopf
inequality): any very weak solution z ∈ L1(Ω) of{

−∆z = h in Ω,

z = 0 on ∂Ω,
(17)

for some h ≥ 0 with h(x)d ∈ L1(Ω), satisfies

z(x) ≥ C
[∫

Ω

h(y)d(y)

]
d(x) for some C = C(Ω) > 0.

This is an unpublished result by J. M. Morel and L. Oswald presented in [21] and
[6], and improved in [1]. Now, let u1 and u2 be two very weak solutions of (2). Let

Λ = {t ∈ [0, 1] : tu1 ≤ u2 on Ω} .

Obviously 0 ∈ Λ. Let us show that 1 ∈ Λ (then u1 ≤ u2 on Ω and by analogy
u2 ≤ u1 on Ω, which gives the uniqueness). Suppose not, that

t0 = sup Λ < 1.

Then

−∆(u2 − t0u1) = f(x, u2)− t0f(x, u1). (18)
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From condition (14) and the boundedness of u1 and u2 we know the existence of
a positive constant K such that f(x, s) + Ks is increasing, for a.a. x ∈ Ω, for any
s ∈ [0, ‖u2‖L∞(Ω)]. Then, using (15)

−∆(u2 − t0u1) +K(u2 − t0u1) = f(x, u2) +Ku2 − t0 [f(x, u1) +Ku1]

≥ f(x, t0u1) +Kt0u1 − t0 [f(x, u1) +Ku1] = f(x, t0u1)− t0f(x, u1) ≥ 0.

Then by the above mentioned strong maximum principle, if h(x) = f(x, t0u1) −
t0f(x, u1) is not identically zero on Ω then

u2 − t0u1 ≥ Cd > 0 on Ω, for some C > 0.

On the other hand, since u1 satisfies (16) there is some ε > 0 such that u2− t0u1 ≥
Cd ≥ εcd ≥ εu1. Thus t0 + ε ∈ Λ which is impossible. On the other hand, the case
u2 − t0u1 ≡ 0 is also impossible since from (18) f(x, u2) = t0f(x, u1) but from (15)
we get that f(x, t0u1) > t0f(x, u1), thus u1 ≤ u2 on Ω and the conclusion follows.
ii) We adapt to our framework the method II presented in [8]. We define an ap-
proximation of the sign+(s) function by taking a nondecreasing Lipschitz function
θ ∈ W 1,∞(R) such that θ(s) = 0 if s ≤ 0 and θ(s) = 0 if s ≥ 1 and then, for any
ε > 0, we take θε(s) = θ(s/ε). Then, if u1 and u2 are two weak solutions of (2) we
get (in a weak sense)

−(∆u1)u2 + (∆u2)u1 = u1u2

[
f(x, u1)

u1
− f(x, u2)

u2

]
.

Then θε(u1−u2) ∈ H1
0 (Ω)∩L∞(Ω) can be taken as a test function and integrating

by parts we get ∫
[(∇u1)u2 − (∇u2)u1] θ′ε(u1 − u2) · ∇ (u1 − u2)

=

∫
u1u2

[
f(x, u1)

u1
− f(x, u2)

u2

]
θε(u1 − u2).

It is clear that ∫
[(∇u1)u2 − (∇u2)u1] θ′ε(u1 − u2) · ∇ (u1 − u2)

≥ −
∫

(∇u2) (u1 − u2)θ′ε(u1 − u2) · ∇ (u1 − u2)

≥ −
∫
{0<u1−u2<ε}

|∇u2 · ∇ (u1 − u2)| .

Since |∇u2 · ∇ (u1 − u2)| ∈ L1(Ω) and meas {0 < u1 − u2 < ε} → 0 as ε→ 0, using

that
f(x, s)

u
is strictly decreasing we get that∫

u1u2

[
f(x, u1)

u1
− f(x, u2)

u2

]
+

≤ 0,

which implies that

f(x, u1)

u1
≤ f(x, u2)

u2
, i.e. u2 ≥ u1 in Ω.

Analogously we get that u2 ≤ u1 in Ω, which proves the result.

Remark 4. We recall that the exposition made in Appendix II of [8] is devoted to
solutions u such that ∆u ∈ L∞(Ω), for a bounded domain Ω. We also point out that
there are some special cases of function f(x, u) for which it is possible to prove the
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uniqueness of the positive very weak solution of (2) without condition (16): see [12]
and [1].

3. A sublinear indefinite equation. The sublinear indefinite equation{
−∆u = λm(x)uq in Ω,
u = 0 on ∂Ω,

(19)

when 0 < q < 1 and m changing sign on Ω,{
|Ω+| = |{x ∈ Ω | m(x) > 0}| > 0

|Ω−| = |{x ∈ Ω | m(x) < 0}| > 0,
(20)

can be considered in the class m ∈ L1(Ω : d), and even in a larger class of functions
m ∈ L1

loc(Ω), generalizing the results presented in Section 3.1 of [30].
It is useful to start by considering previously the case of m > 0, and more

specially, the linear eigenvalue problem with weight.{
−∆w = λm(x)w in Ω,

w = 0 on ∂Ω.
(21)

Such linear problem and its variants were intensively studied in the last thirty years
since they arise, naturally, in the study of the linearized stability of solutions of
problems {

−∆w = λg(w) in Ω,

w = 0 on ∂Ω,
(22)

(see, e.g. [2], [24], [31], [16] and their many references). Notice that if we expect to
have w ∈ H1

0 (Ω) then

µ(Ω,m) := inf
w∈H1

0 (Ω)

∫
Ω

|∇w|2∫
Ω

m(x)w2
> −∞ (23)

which is related with the study of the best constant in the Hardy-Sobolev with
weight. When

m ∈ Lr(Ω) with r >
N

2
. (24)

we know that there is a first eigenvalue λ1 > 0 which is simple and has a positive
eigenfunction ϕ1,m ∈ C(Ω). This follows from ([25]). Moreover, if r > N, ϕ1,m ∈
C1(Ω) and

∂ϕ1,m

∂n < 0 on ∂Ω (this follows from Theorem 2.3 of Brezis-Kato [9],
ϕ1,m ∈ Lt(Ω) for all 1 < t < ∞ and this yields easily mϕ1,m ∈ Ls(Ω) for all

1 < s < r, giving in turn ϕ1,m ∈ C(Ω)). In a similar way, if r > N, ϕ1,m ∈ C1(Ω)

and
∂ϕ1,m

∂n < 0 on ∂Ω (see Gilbarg-Trudinger [28].
A more interesting case arises when m(x) is singular near the boundary ∂Ω. It

was shown in [2] that if

m ∈ L∞loc(Ω), m(x) ≥ m0 > 0, (25)

m(x)d(x)2 →
d(x)→0

0, (26)

then condition (23) holds. So, this is the case if
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0 < lim inf m(x)d(x)γ ≤ lim supm(x)d(x)γ < +∞ for some 0 ≤ γ < 2. (27)

Moreover, it was proved in [37] that if Ω is convex m(x) = c
d(x)2 then µ(Ω,m) =

1/4c, λ = 1/4c is the infimum of the essential spectrum and problem (23) has no
minimizer. Nevertheless, if µ(Ω,m) < 1/4c then there exists a λµ(Ω,m) ∈ (0, 1/4)
which is the first eigenvalue of the problem (21), and so there is a positive solution
w of such problem. Notice that such choice of m does not satisfies (26).

As mentioned before, we know that (24) implies that the first eigenfunction ϕ1,m

of problem (21) is a bounded function: something that we know that may fail for
some m(x) more singular than condition (26) (see, [2], [24]). For our next result we
will assume

ϕ1,m ∈ L∞(Ω), (28)

which holds also for many cases in which m ∈ L1
loc(Ω) and for which (24) fails.

Coming back to the sublinear problem, we point out that this case was considered
in [3] by using an approximation method (see also the survey [35] for many other
references). Here we are interested in to follow a different method: the construc-
tion of suitable super and subsolutions. This will be useful also for other related
problems. We have the following generalization of Theorem 11 of [30].

Theorem 3. Assume 0 < q < 1, m ∈ L1(Ω : d), m > 0 such that conditions (23)
and (28) hold. Then, for any λ > 0 there exists a unique positive very weak solution
to (19). Moreover, u is a weak solution and u ∈ H1

0 (Ω) ∩ L∞(Ω).

Proof. It suffices to apply the method of super and subsolutions given in Theorem
1. As a subsolution we can take u0 ≡ cϕ1,m, with c > 0 “small enough ” since we
have {

−∆ϕ1,m = λ1m(x)ϕ1,m in Ω,

ϕ1,m = 0 on ∂Ω,
(29)

with ϕ1,m > 0. We normalize ϕ1,m by ‖ϕ1,m‖L∞(Ω) = 1. Then

−∆u0 − λm(x)(u0)q = λ1mcϕ1,m − λmcq(ϕ1,m)q =

= mcq(ϕ1,m)q(c1−qλ1(ϕ1,m)1−q − λ) < 0
(30)

for c > 0 “small”.
As a supersolution we take u0 ≡ Cψ̃1 where ψ̃1 > 0 the eigenfunction of problem

(21) when we take as spatial domain Ω̃ , a smooth bounded domain such that Ω̃

⊃ Ω, and we extend m by zero out of Ω. Then, if λ̃1 > 0 is the first eigenvalue and

β = minΩ ψ̃1 > 0 then we have

−∆u0 − λm(x)(u0)q = λ̃1mCψ̃1 − λmCq(ψ̃1)q =

= mCq(ψ̃1)q(C1−qλ̃1(ψ̃1)1−q − λ) > 0
(31)

if C >
(

λ
λ1β1−q

) 1
1−q

.

Since ψ̃1 > 0 on Ω, it is easy to see that u0 ≤ u0 in Ω and this ends the proof. Notice
that condition (6) holds since u0 and u0 are bounded and m(x)d(·) ∈ L1(Ω).The
uniqueness follows from the usual “concavity” argument.
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Remark 5. If we assume m ∈ Lr(Ω) with r > N, then we can also take as super-
solution (a multiple of) ψ, where ψ is the solution of{

−∆ψ = m(x) in Ω,

ψ = 0 on ∂Ω.
(32)

Now ψ ∈ C1(Ω), ψ > 0 on Ω and ∂ψ
∂n < 0 on ∂Ω.

For the case of m changing sign we have

Theorem 4. Assume 0 < q < 1, m ∈ L1(Ω : d), with (20) such that conditions (23)
and (28) hold for m+as a weight. Assume also that m+ ∈ Lr(Ω, d) with r > N+1

2 .
Then, for any λ > 0 there exists a positive very weak solution to (19) which, in fact,
is a weak solution and such that u ∈ H1

0 (Ω) ∩ L∞(Ω).

Proof. Again, it suffices to apply Theorem 1. To built a subsolution we pick a

smooth Ω
′

such that Ω′ ⊂ Ω+ and consider µ1 > 0 and ψ1 > 0 the first eigenvalue
and eigenfunction on Ω

′
associated to the weight m+, i.e., ψ1 = ϕ1,m+ , with ϕ1,m+

the first eigenfunction of{
−∆ψ1 = µ1m

+(x)ψ1 in Ω
′
,

ψ1 = 0 on ∂Ω
′
.

(33)

Now, reasoning as in [3], it is possible to show that u0 ≡ cψ̃1, where ψ̃1 = ψ1 on Ω′

and ψ̃1 = 0 in Ω− Ω′ , is a subsolution for c > 0 “small”.
As supersolution we pick u0 ≡ Cψ, C > 0, where ψ is the unique solution of{

−∆ψ = m+(x) in Ω,
ψ = 0 on ∂Ω,

and C >
(
λ ‖ψ‖qL∞(Ω)

) 1
1−q

. Indeed, we have

−∆u0 − λm(x)(u0)q = Cm+ − λmCq(ψ)q ≥
≥ Cqm+(C1−q − λψq) > 0

(34)

if C >
(
λ ‖ψ‖qL∞(Ω)

) 1
1−q

.

Since supp(u0) ⊂ Ω, it is easy to see that we can choose u0 ≤ u0 and we have that
condition (6) holds since 0 ≤ u0, u0 is bounded and m(x)d(·) ∈ L1(Ω).

Remark 6. Notice that the assumption on m− is weaker than the conditions assumed
on m+.

Remark 7. One could think about replacing Ω′ by Ω+ in Theorem 4 by applying
some approximation of Ω by interior subdomains Ω′, but we don’ t intend to pursue
this matter here.

Remark 8. The result of Theorem 4 improves the results in [30] and [35]. But
problem (19) has been treated from long time ago, mostly concerning existence of
solutions with compact support if m is indefinite. See [31], the survey [35] and their
bibliographies.

4. The generalized logistic equation with indefinite unbounded weight.



10 J.I. DÍAZ AND J. HERNÁNDEZ

4.1. The generalized logistic equation with indefinite weight. The study of
the generalized logistic equation{

−∆u+ up = λm(x)u in Ω,

u = 0 on ∂Ω,
(35)

when p > 1 can be also treated in the framework of m ∈ L1(Ω : d) as an alternative
to Section 3.2 of [30].

A first auxiliary result shows that non-negative solutions to (35) are actually
positive. This will allow later to use subsolutions with compact support in Ω getting
however positive solutions.

Lemma 2. If u ≥ 0 is a bounded subsolution to (35) then u > 0 on Ω.

Proof. In this case we can write{
−∆u+ (up−1 + λm−(x))u = λm+(x)u in Ω,

u = 0 on ∂Ω,

and the Strong Maximum Principle for weak solutions (see, e.g., [28]) gives u > 0 on
Ω (recall that p > 1). Indeed, notice that we have −∆u+(Mp−1+λm−(x))u ≥ 0 , if
0 ≤ u ≤M on Ω, and thus the classical version of this principle for linear operators
can be applied when m− ∈ C(Ω). For the case in which m ∈ L1(Ω : d) it suffices to
introduce a regularization m−n ∈ C(Ω) of function m− (for instance by convolution
with a sequence of mollifiers) such that m−n → m− uniformly on compact sets of Ω.
Then −∆u + (Mp−1 + λm−n (x))u + λ(m−(x) −m−n (x))u ≥ 0 and on any compact
subset K of Ω we get that −∆u+ λ(m−n (x) + ε)u ≥ 0. Hence, the local proof given
in [28] allows to conclude that u > 0 on Ω (notice that in the local argument used
in [28] we can work with a local subsolution and thus, without loss of generality,
that assume that u ∈ C2(K), u ≥ 0 and −∆u + (Mp−1 + λ(m−n (x) + ε))u = 0 in
K).

Theorem 5. Assume p > 1, m ∈ L1(Ω : d), with (20) such that conditions (23)

and (28) hold for m+as a weight and on some smooth set Ω
′

such that Ω′ ⊂ Ω+.

Assume also that m+(x) ∈ L
rp
p−1 (Ω : d) with r > (N+1)(p−1)

2p . Then, for any

λ > λ1(Ω
′
,m+) there exists a bounded positive very weak solution to (35). If, in

addition, m ∈ Lr(Ω), r > N
2 and

r >
Np

2(p− 1)
(36)

the existence holds for any λ > 0, any solution is in C(Ω), and if

r >
Np

(p− 1)
(37)

then solutions are in C1(Ω).

Proof. We apply Theorem 1). As a subsolution we take u0 ≡ cψ̃1 if λ > λ̃1 for

c > 0 “small”, which is the extension by zero on Ω−Ω′ of ψ1, the first eigenfunction
corresponding to the first eigenvalue µ1 > 0 of the problem{

−∆ψ1 = µ1m
+(x)ψ1 in Ω

′
,

ψ1 = 0 on ∂Ω
′
.

(38)
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By (23) and (28) we know that ψ1 > 0 on Ω
′

and u0 ∈ L∞(Ω). We have

−∆u0 + (u0)
p − λm(x)u0 = cλ̃1m

+(x)ψ̃1 + cp
(
ψ̃1

)p
−λcλ̃1m

+(x)ψ̃1 = c(λ̃1 − λ)m+(x)ψ̃1 + cp
(
ψ̃1

)p
= cψ̃1

[
(λ̃1 − λ)m+(x) + cp−1

(
ψ̃1

)p−1
]
≤ 0 on Ω

′
,

if λ > λ̃1 for c > 0 “small”. Moreover

−∆u0 + (u0)p − λm(x)u0 = 0 on Ω− Ω′ .

Thus u0 is a very weak subsolution of problem (35).
As a supersolution we take u0 ≡ ψ with{

−∆ψ = H(x) in Ω,

ψ = 0 on ∂Ω,

where H(x) = c0(λm+(x))
p
p−1 . By the regularity results of Proposition 2.3 of ([41]),

we have a better regularity on ψ than the one mentioned in Lemma 1 and Remark

3: ψ ∈ W 1,N
0 (Ω) ∩ L∞(Ω) since r > (N+1)(p−1)

2p . By the Hopf Strong Maximum

Principle for weak solutions (see, e.g. [21],[6] and [1]) we know that ψ > 0. We have
that, u0 ≡ ψ is a supersolution since

−∆ψ + ψp − λm(x)ψ = H(x) + ψp − λm+(x)u− λm−(x)ψ

≥ H(x) + ψp − λm+(x)ψ ≥
{

0 on Ω+

H(x) + ψp ≥ 0 on Ω− Ω+.

We need to show that u0 ≤ u0 and the proof depends on the smoothness of u0 ≡ ψ.

If ψ is continuous on Ω (what happens when r > (N+1)(p−1)
2p + ε for some ε > 0:

see Proposition 2.3 of ([41])), since supp(u0) ⊂ Ω, the proof is immediate. For the

general case it is enough to check that u0 ≡ ψ̃, the unique solution of{
−∆ψ = H(x) in Ω,

ψ = b > 0 on ∂Ω,

for any b > 0 is a supersolution satisfying u0 ≤ u0. This holds for λ > λ1(Ω
′
,m+)

for some Ω
′

smooth with Ω′ ⊂ Ω+ (notice that we cannot expect to have this for
some λ > λ+

1 (Ω+,m+) and that we know that λ1(Ω′,m+) < λ+
1 (m): see [25]), the

respective principal eigenvalues for the linear part.
Condition (6) holds since 0 ≤ u0, u0 are bounded and m(x)d(·)− up ∈ L1(Ω). The
additional regularity is obtained as in Remark 1 (see also [30]).

Remark 9. In the above argument, when introducing b > 0, one could try to replace
Ω
′

by Ω by using some kind of approximation argument, but we don’t intend to
pursue this point here. In any case, the above result is not the best possible result
(we include it in order to show how the method works in this case) and it could proved
(in the classical framework ) reasoning as in the paper [33] by Hess and Kato that
there exists an unbounded continuum of positive solutions bifurcating from λ+

1 (m),
the unique positive principal eigenvalue of the linear part. It is clear that we have
that λ1(Ω′,m+) > λ+

1 (m) for all such domains Ω
′
.
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It is not difficult to show that positive solutions provided by Theorem 5 are
unique and linearly stable.

Theorem 6. Problem (35) has a unique positive solution which is linearly stable.

Proof. Uniqueness is a particular case of Theorem 2 since λm(x)− up−1 is strictly
decreasing in u, a.a. x ∈ Ω.
For the stability we can write{

−∆u = λm(x)u− up in Ω,

u = 0 on ∂Ω,
(39)

for a solution u > 0 and the linearized associated eigenvalue problem{
−∆w + pup−1w − λm(x)w = µw in Ω,

w = 0 on ∂Ω.
(40)

This problem is well-defined and let µ1 and ψ1 > 0 the first eigenvalue and eigen-
function (see [31]). If we multiply (39) by ψ1 and (40) by u and substract we
obtain

µ1 =

(p− 1

∫
Ω

upψ1 ∫
Ω

uψ1 > 0,

which gives the result.

4.2. The logistic equation with superharmonic weight. We consider now the
classical logistic equation (i.e. problem (35) with p = 2){

−∆u = u(λm(x)− u) in Ω,

u = 0 on ∂Ω,
(41)

with m(x) > 0 and assume now, for instance, that{
−∆m = h ≥ 0 in Ω,

m = 0 on ∂Ω.
(42)

with h ∈ Lr(Ω : d) such that r > (N+1)
2 . Then, by the regularity results of ([41])

we know that m ∈ L∞(Ω) and by the Strong Maximum Principle for very weak
solutions (see, e.g. [21], [6] and [1]) we have that m > 0 on Ω.

Theorem 7. Let m satisfying (42). Then, for any λ > 0 there exists a unique
positive very weak solution of (41). Moreover 0 < u(x) ≤ λm(x) in Ω.

Proof. It suffices to check that u0 ≡ λm(x) is a super supersolution since

−λ∆m ≥ 0 = λm(λm− λm).

Let us see what happens in the general case of problem (35) with p > 1. We
have then {

−∆u = u(λm(x)− up−1) in Ω,

u = 0 on ∂Ω.
(43)
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Now the “candidate” to a supersolution is u0 ≡ (λm(x))
1
p−1 . If we write α =

1
p−1 > 0 we have

−∆mα = −α(α− 1) (m(x))
α−2 |∇m|2 − α (m(x))

α−1
∆m ≥ 0

if (42) holds and 0 < α < 1. It is clear that 0 < α < 1 if and only if p > 2.

Theorem 8. Let m satisfying (42) and let p > 2. Then, for any λ > 0 there exists

a unique positive very weak solution of (41) such that 0 < u(x) ≤ (λm(x))
1
p−1 in Ω.

Proof. Again, it suffices to check that u0 ≡ (λm(x))
1
p−1 is a super supersolution

since

−∆
[
(λm(x))

1
p−1

]
≥ 0 = (λm(x))

1
p−1 (λm(x)− λm(x)).

Remark 10. The above argument still works for −∆β(u) diffusion operators if we
assume that −∆(β−1(λm(x)) ≥ 0.

4.3. The logistic equation with nonlinear diffusion. We study now a gener-
alization of the logistic equation with nonlinear diffusion{

−∆wn = λm(x)w − wk in Ω,

w = 0 on ∂Ω,
(44)

where Ω is as above,

n > 1 and k > 1, (45)

and m > 0 which was intensively studied in the literature (see, e..g, [20] and its
references). With the change of variable u = wn equation (44) is transformed into{

−∆u = λm(x)uq − up in Ω,

u = 0 on ∂Ω,
(46)

where q = 1
n , p = k

n . Then we study (46) with

0 < q < 1, 0 < q < p.

We have the following existence result.

Theorem 9. Assume 0 < q < 1, p > 1, m ∈ L1(Ω : d), m(x) ≥ m0 > 0 in Ω, for
some m0, such that conditions (23) and (28) hold. Then, for any λ > 0 there exists
a bounded positive very weak solution to (46). Moreover, if (24) holds then for any
λ > 0 there exists a positive weak solution u ∈ H1

0 (Ω) ∩ C(Ω).

Proof. We take as a subsolution u0 ≡ cϕ1,m, c > 0, for c > 0 “small” (thanks to
assumptions (23) and (28)) since

−∆u0 − λm(x)(u0)q + (u0)p = λ1mcϕ1,m − λmcq(ϕ1,m)q + cp(ϕ1,m)p =

= mcq(ϕ1,m)q(λ1c
1−q(ϕ1,m)1−q − λ+ 1

mc
p−q(ϕ1,m)p−q) ≤ 0

(47)

for c > 0 “small”.

As a supersolution one can take the positive very weak solution to (19) given by
Theorem 3, and show as before that we have u0 ≤ u0.
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Remark 11. Since 0 < q ≤ min(1, p), it is possible to get a monotone continuous
dependence of solutions u with respect to the weight m(x) (even if it is changing
sign on Ω). Indeed, it was proved in [14] (see Lemma 2.4 and its variants) that∥∥[up−q − ûp−q]+

∥∥
L2(Ω)

≤ ‖[m− m̂]+‖L2(Ω) , (48)

if û is the solution of problem (46) corresponding to the weight m̂.

Remark 12. We remark that in the subcase in which 0 < q < p < 1 in spite of to
having a “strong absorption with respect to the diffusion” we have that u > 0 on Ω.
This is in contrast with the reversed balance in which the absorption dominates over
the forcing (0 < p < q < 1): in that case positive flat solutions and nonnegative
solutions with compact support may arise (see, e.g., the survey [15] and its many
references). The situation may change radically if m(x) changes sign (see, e.g.,
Remark 2.8 of [14]).

5. A “generalized logistic” equation with singular weights. We consider
now the case of a “ generalized logistic” equation with singular weights{

−∆u+ k(x)up = λm(x)uq in Ω,

u = 0 on ∂Ω,
(49)

where Ω is a bounded domain in RN with C2,γ boundary for some γ > 0, and
k,m ∈ C1(Ω), k,m > 0 on Ω and satisfy

q < p

|m(x)| ≤ k1d(x)−β , |k(x)| ≤ k2d(x)−β
′

(50)

where d(x) = d(x, ∂Ω), with k1, k2 > 0 and

0 < β < 1 + q and 0 < β′ < 1 + p.

Let us concentrate in the singular forcing case in which

m(x)uq =
g(x)

uad(x)b
, with a > 0 and b ≥ 0

(so that q = −a and β = b) with

g ∈ L∞(Ω), g > 0,{
−∆u+ k(x)up = λ g(x)

uad(x)b
in Ω,

u = 0 on ∂Ω,
(51)

We will take as supersolution u0 = z where z > 0 is the unique solution of the
problem (19), i.e. {

−∆z = λ g(x)
zad(x)b

in Ω,

z = 0 on ∂Ω.
(52)

That problem was intensively studied in the literature since the pioneering paper
by Crandall, Rabinowitz and Tartar [12] (see also [4], when b = 0 and g ∈ Ls(Ω)
for different s > 1, [18] and their many references). The following conclusions were
proved in [18]:
i) Assume

a+ b > 1with b ∈ [0, 2). (53)

Then there exists a positive very weak solution z of (52). Moreover z ∈ C(Ω) ∩
W 2,s
loc (Ω) for any s ∈ [1,+∞).
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ii) Assume

a+ b < 1. (54)

Then there exists a very weak solution z of (52). Moreover z ∈W 1
0 (Ω, | · |N(γ),∞)∩

W 2,s
loc (Ω), for any γ ∈]0, 1[ and for any s ∈ [1,+∞) with N(γ) = N

N−1+γ .

iii) Let

a > 0

and denote h(x) = g(x)
d(x)b

. Assume h be such that there exist Ch > 0 and γ ∈ [0, 1[

such that

h(x) ≥ Ch a.e. x ∈ Ω and h ∈ L1(Ω : dγ−
2a

1+a ). (55)

Then there exists a positive very weak solution z of (52). Moreover z ∈ W 1
0 (Ω, | ·

|N(γ),∞) with N(γ) = N
N−1+γ .

Remark 13. We point out that if b ≥ 2 no very weak solution of (51) may exist ( see
[6] and [26]) and that the uniqueness of solutions holds. A sharper study was made
in [1] (specially for the case a = 1 and b = 0). Many other papers where devoted to

the case in which the forcing term is of the form λ( g(x)
zad(x)b

+ h(x, z)): see, e.g. [26]

and its references. On the other hand, we mention that there are also many studies
on different reaction-diffusion with singular terms in which the absorption term is
more singular than the forcing term (a balance which is not being regarded in this
paper), i.e., when q ≥ p and 0 > p (see, e.g., [21], [23], [40],[27], [13], [17] and
[19]).

Concerning the subsolution to problem (49) we can take u0 ≡ cϕ0, c > 0, with
ϕ0 given by {

−∆ϕ0 = λ0k(x)ϕ0 in Ω,

ϕ0 = 0 on ∂Ω,
(56)

so that ϕ0 > 0 and we will assume k(x) such that ϕ0 is bounded (we can normalize
ϕ0 by ‖ϕ0‖L∞(Ω) = 1). Then we assume that absorption dominates on the forcing

in the following way:

− 1 < q < 1, p > q and k(x) < k1
m(x)

d(x)p−1
for a.a. x ∈ Ω. (57)

The argument to check that, for λ > 0 fixed and c > 0 “small”, u0 is a subsolution
is the following

−∆u0 + k(x)(u0)p − λm(x)(u0)q = cq(ϕ0)q(λ0m(x)c1−q(ϕ0)1−q + cp−qk(x)(ϕ0)p−q

−λm(x)) ≤ cq(ϕ0)qm(x)(λ0c
1−q(ϕ0)1−q + c k(x)

m(x) (ϕ0)p−q − λ) ≤ 0

(58)
for λ > 0 fixed and c > 0 “small”, thanks to the assumption (57). As a supersolution
we take u0 = z where z > 0 is the unique solution of{

−∆u = λm(x)uq in Ω,

u = 0 on ∂Ω,
(59)

(see also Theorem 3.1 in [32]). We suppose now that the absorption term dominates
on the forcing term
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a > 0, p > −a, b ∈ [0, 2) and k(x) < k1
m(x)

d(x)p−1

g(x)

d(x)b
for any x ∈ Ω. (60)

Then by using (60) and the boundary estimates given in ([18]) we have that f(x, u)d =

(λ g(x)
uad(x)b

− k(x)up)d ∈ L1(Ω) and that u0 ≤ u0. Then, as conclusion, we have the

following result which generalizes Theorem 3.17 in [32].

Theorem 10. Assume that conditions (23) and (28) hold for k(x) as a weight, (60)
and that one of the following conditions holds: (54), (53) or (55). Then, for any
λ > 0 there exists a positive very weak solution to (51).

Remark 14. If we assume that Ω is a bounded domain in RN with C2,γ boundary
for some γ > 0, and k,m ∈ C1(Ω), k,m > 0 on Ω and satisfy

|m(x)| ≤ k1d(x)−β, |k(x)| ≤ k2d(x)−β
′

(61)

with k1, k2 > 0 and
0 < β < 1 + q and 0 < β′ < 1 + p.

Let us define δ2 = min {δ1, 1 + p− β′} , where δ1(γ) ∈ (0, 1) according the regularity
of ∂Ω. Then, if we assume (60) we can conclude that for any λ > 0 there exists
a positive solution to (49) u ∈ C1,δ(Ω) with 0 < δ < δ2. If p > 1 this solution is

unique for λ “large enough” and the mapping λ → u(x, λ) ∈ C1,δ
0 (Ω) is C∞ and

strictly increasing. That conclusion was proved in [32].

Remark 15. For uniqueness, the quantity Hλ(x, u) in Assumption 2.14 in Theorem
3.17 [32] is relevant. In particular, to get the uniqueness we use in Assumption 2.14
in [32] the auxiliary function

Hλ(x, u) = λ(1− q)m(x)uq − (1− p)k(x)up =

= up((1− q)m(x)uq−p + (p− 1)k(x)) > 0

if p > 1.
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