
FINITE TIME EXTINCTION FOR A CRITICALLY DAMPED
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Abstract

This paper completes some previous studies by several authors on

the finite time extinction for nonlinear Schrödinger equation when the

nonlinear damping term corresponds to the limit cases of some “saturating

non-Kerr law” F (|u|2)u = a
ε+(|u|2)α u, with a ∈ C, ε > 0, 2α = (1−m) and

m ∈ [0, 1). Here we consider the sublinear case 0 < m < 1 with a critical

damped coefficient: a ∈ C is assumed to be in the set D(m) =
{
z ∈

C; Im(z) > 0 and 2
√
mIm(z) = (1 − m)Re(z)

}
. Among other things,

we know that this damping coefficient is critical, for instance, in order

to obtain the monotonicity of the associated operator (see the paper by

Liskevich and Perel′muter [16] and the more recent study by Cialdea and
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Maz′ya [14]). The finite time extinction of solutions is proved by a suitable

energy method after obtaining appropiate a priori estimates. Most of the

results apply to non-necessarely bounded spatial domains.

1 Introduction

In this paper, we are interested by the existence, uniqueness and finite time

extinction of solutions of the damped nonlinear Schrödinger equation



i
∂u

∂t
+ ∆u+ V (x)u+ a|u|−(1−m)u = f(t, x), in (0,∞)× Ω,

u|∂Ω = 0, on (0,∞)× ∂Ω,

u(0) = u0, in Ω,

(1.1)

(1.2)

(1.3)

where i2 = −1, 0 < m < 1, a ∈ C satisfies

2
√
m Im(a) = (1−m)Re(a) > 0,

Ω ⊆ RN non-necessarely bounded, f ∈ L1
loc

(
[0,∞);L2(Ω)

)
, V ∈ L1

loc(Ω;R)

and u0 ∈ L2(Ω). The finite time extinction of the solutions was first establihed

in Carles and Gallo [11] in the following case: a = i, 0 6 m < 1, V = 0,

f = 0 and Ω is a compact manifold without boundary. In the same paper,

existence and uniquess of H1 and H2-solutions, in the sense quite close to the

Definition 2.3 and 5.1 below, are shown by using a compactness method. In

Carles and Ozawa [12], the authors obtain existence and uniqueness of H1 and
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H2-solutions for some additional nonlinearities. The closest case to our study

is the following: a = iλ, 0 6 m 6 1, V = −
N∑
j=1

ωj |xj |2, λ, ω1, . . . ωN > 0, f = 0,

Ω = RN and N ∈ {1, 2} with also 1
2 6 m 6 1, if N = 2.

In this paper, we are interested by establishing existence and uniqueness results

for the equation (1.1) with m ∈ (0, 1), set in an arbitrary open subset Ω ⊆ RN

and for the largest range of a as possible. For m ∈ [0, 1], let us introduce the

following sets of complex numbers:

C(m) =
{
z ∈ C; Im(z) > 0 and 2

√
mIm(z) > (1−m)|Re(z)|

}
, (1.4)

D(m) =
{
z ∈ C; Im(z) > 0 and 2

√
mIm(z) = (1−m)Re(z)

}
. (1.5)

Note that D(0) = C(0), D(1) = ∅ and

C(0) =
{
z ∈ C; Re(z) = 0 and Im(z) > 0

}
,

C(1) =
{
z ∈ C; Im(z) > 0

}
.

Here and after, for z ∈ C, Re(z), Im(z) and z denote the real part, the imaginary

part and the conjugate of z, respectively. Existence and uniqueness have been

established in the following cases.

1) For 0 < m < 1.

a) a ∈ C(m), V = 0 and |Ω| <∞ ([7]);

b) a ∈ C(m) \D(m), V = 0 and Ω = RN ([3]);

c) a ∈ C(m) \D(m) ([8]).

2) For m ∈ {0, 1}.

a) m = 0, a ∈ C(0) and |Ω| <∞ ([8]);
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b) m = 1, a ∈ C(1) and V = 0 ([7]);

c) m = 1 and a ∈ C(1) ([8]).

In a nutshell, the cases

Ω arbitrary, 0 < m < 1 and a ∈ C(m) \D(m),

Ω arbitrary, m = 1 and a ∈ C(1),

|Ω| <∞, m = 0 and a ∈ C(0),

have been completely treated. It remains the cases

Ω arbitrary, 0 < m < 1 and a ∈ D(m), (1.6)

|Ω| =∞, m = 0 and a ∈ C(0), (1.7)

where (1.6) can be viewed as a limit case:

for 0 < m < 1 and a ∈ D(m), a = lim{
ã→a
ã∈C(m)\D(m)

ã.

In this paper, we are interested by (1.6), while (1.7) could be the subject of a

future work.

A fundamental argument in our approach is the fact that

(1.1) ⇐⇒ du

dt
+Au = f.

Then, we are interested in the application of the abstract theory of maximal

monotone operator to the corresponding operator on the Hilbert space L2(Ω).

In [7] it was directly shown that (D(A), A) is maximal monotone by using the

embedding Lp(Ω) ↪→ L2(Ω), for any p > 2, once we assume |Ω| <∞.
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A different point of view was followed in [3]. It was shown there that (D(A), A)

is maximal monotone in the following way. First, constructing solutions com-

pactly supported in H2(RN ) to (A+ I)u = F with help of the results in [5, 6].

Second, obtaining a priori esimates in H2 with [3, Lemma 4.2]. Third, showing

that (D(A), A) is maximal monotone by approximations with solutions com-

pactly supported.

A second different argument was used in [8]. First, approximating (D(A), A)

by a nice maximal monotone operator (D(Aε), Aε). Second, obtaining a priori

estimates in H2 with [3, Lemma 4.2]. Third, passing to the limit in the equation

(I +Aε)uε = F, to prove that (D(A), A) is maximal monotone.

It is important to point out that if a ∈ D(m) then [3, Lemma 4.2] is no more

valid. Then, a third argument could be apply by approximating (D(A), A) by

a nice maximal monotone operator (D(Aε), Aε) and, by passing to the limit,

to show that (D(A), A) is maximal monotone in antoher way than in [8], by

choosing D(A) bigger than that of [8] (see 3 in Section 7).

Notice that we are interested in the case in which Re(a) > 0. When a ∈ R and

a > 0 the general nonlinear Schrödinger equation is called as “the focusing case”

(see, e.g. the exposition made by Weinstein in [22], p.41-79) then, depending

of the value of the power in the nonlinearity, global existence in time or blow

up in finite time occur. Here, by the contrary, a ∈ C and Im(a) 6= 0. As a

consequence, the conservations laws (mass and energy) are broken and then the

solution, which is global in time, goes to 0 at infinity in the L2-norm (the so

called mass of the solution).
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This paper is organized as follows. In Section 2 we present several results on

the existence and uniqueness of different types of solutions. The statements of

the results on finite time extinction and asymptotic behaviour of solutions are

collected in Section 3. The proofs of the existence of solutions theorems are

given in Section 4. The special case of H2-solutions is considered in Section 5.

Section 6 contains the proofs of the finite time extinction and asymptotic be-

havior theorems. Finally, some open problems and other remarks are collected

in Section 7.

To end this introduction, we collect here some notations which will be used

along with this paper. Let Ω be an open subset of RN . Unless if specified,

all functions are complex-valued (H1(Ω)
def
= H1(Ω;C), etc) and all the vec-

tor spaces are considered over the field R. For p ∈ [1,∞], p′ is the conju-

gate of p defined by 1
p + 1

p′ = 1. For a (real) Banach space X, we denote by

X? def
= L (X;R) its topological dual and by 〈 . , . 〉X?,X ∈ R the X? −X dual-

ity product. When X is endowed of the weak topology σ(X,X?) (respectively,

the weak? topology σ(X?, X)), it is denoted by Xw (respectively, by Xw?).

For p ∈ (0,∞], u ∈ Lploc

(
[0,∞);X

)
means that u ∈ Lploc

(
(0,∞);X

)
and for

any T > 0, u|(0,T ) ∈ Lp
(
(0, T );X

)
. In the same way, we will use the notation

u ∈ W 1,p
loc

(
[0,∞);X

)
. The scalar product in L2(Ω) between two functions u, v

is, (u, v)L2(Ω) = Re
∫

Ω
u(x)v(x)dx. L0(Ω) is the space of measurable functions

u : Ω −→ C such that |u| <∞, almost eveywhere in Ω. Auxiliary positive con-

stants will be denoted by C and may change from a line to another one. Also

for positive parameters a1, . . . , an, we shall write C(a1, . . . , an) to indicate that
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the constant C depends only and continuously on a1, . . . , an.

2 Existence and uniqueness of solutions

The following assumptions will be needed to construct solutions.

Assumption 2.1. We assume the following.

Ω is any nonempty open subset of RN , (2.1)

0 < m < 1, (2.2)

a ∈ D(m), (2.3)

V ∈ L∞(Ω;R) + LpV (Ω;R), (2.4)

where,

pV =



2, if N = 1,

2 + β, for some β > 0, if N = 2,

N, if N > 3.

(2.5)

Remark 2.2. The assumption (2.5) on pV is needed to have that V u ∈ L2(Ω),

for any u ∈ H1
0 (Ω) (see (4.5) below). The proof relies on Hölder’s inequality

and the Sobolev embeddings (see [8, Lemma 4.1] for the complete proof). But

the same proof works if V satisfies the assumption

V ∈ L∞(Ω;R) + LqV (Ω;R), (2.6)
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where

qV ∈



[2,∞], if N = 1,

(2,∞], if N = 2,

[N,∞], if N > 3,

(2.7)

which seems to be weaker since if V satisfies (2.4)–(2.5) then it satisfies (2.6)–

(2.7) with qV = pV . But actually, it is not. Indeed, we claim that,

L∞(Ω;R) + LqV (Ω;R) ⊂ L∞(Ω;R) + LpV (Ω;R),

where it is understood that pV = qV , if N = 2 and qV < ∞. The claim beeing

clear if qV = ∞, we are brought back to the case where N 6= 2 and qV < ∞.

Let then V = V1 + V2 ∈ L∞(Ω;R) + LqV (Ω;R), where qV satisfies (2.7). To

prove the claim, it is sufficient to show that V2 ∈ L∞(Ω;R) + LpV (Ω;R). Since

pV 6 qV , we have that,

∣∣V21{|V2|>1}
∣∣ 6 |V2|

qV
pV ∈ LpV (Ω;R),

so that,

|V2| =
∣∣V21{|V2|61}

∣∣+
∣∣V21{|V2|>1}

∣∣ ∈ L∞(Ω;R) + LpV (Ω;R).

Hence the claim.

Here and after, we shall always identify L2(Ω) with its topological dual. Let

us recall some important results of functional analysis. Let E and F be locally

convex Hausdorff topological vector spaces. If E
e
↪→ F with dense embedding

then F ?
e?

↪→ E?, where e? is the transpose of e :

∀L ∈ F ?, ∀x ∈ E, 〈e?(L), x〉E?,E = 〈L, e(x)〉F?,F . (2.8)
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If, furthermore, E is reflexive then the embedding F ?
e?

↪→ E? is dense. In most of

the cases, e is the identity function, so that e? is nothing else but the restriction

to E of continuous linear forms on F. In particular, if X is a Banach space such

that X ↪→ Lp(Ω) with dense embedding, for some p ∈ [1,∞), then Lp
′
(Ω) ↪→ X?

and for any u ∈ Lp′(Ω) and v ∈ X,

〈u, v〉X?,X = 〈u, v〉Lp′ (Ω),Lp(Ω) = Re

∫
Ω

u(x)v(x)dx. (2.9)

For more details, see Trèves [20, Corollary 5; Corollary, p.199; Theorem 18.1]

and [4]. Let A1 and A2 be two Banach spaces such that A1, A2 ⊂ H for some

Hausdorff topological vector space H. Then A1 ∩ A2 and A1 + A2 are Banach

spaces where,

‖a‖A1∩A2
= max

{
‖a‖A1

, ‖a‖A2

}
and ‖a‖A1+A2

= inf{
a=a1+a2
(a1,a2)∈A1×A2

(
‖a1‖A1

+ ‖a2‖A2

)
.

If, in addition, A1 ∩A2 is dense in both A1 and A2 then,

(
A1 ∩A2

)?
= A?1 +A?2 and

(
A1 +A2

)?
= A?1 ∩A?2. (2.10)

See, for instance, Bergh and Löfström [9] (Lemma 2.3.1 and Theorem 2.7.1).

Let 1 < q < ∞ and X be a Banach space such that X ↪→ L2(Ω) with dense

embedding. We have by [7, Lemma A.4] that,

Lqloc

(
[0,∞);X

)
∩W 1,q′

loc

(
[0,∞);X?

)
↪→ C

(
[0,∞);L2(Ω)

)
. (2.11)

Let Y be a Banach space such that D(Ω) ↪→ Y with dense embedding. Then,

L1
loc

(
(0,∞);Y ?

)
↪→ D ′

(
(0,∞)× Ω

)
. (2.12)
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See, for instance, Droniou [15, Lemme 2.6.1]. Finally, another result which

will be useful is the following (Strauss [18, Theorem 2.1]). Let X ↪→ D ′(Ω)

be a reflexive Banach space. Let I be an interval and u ∈ C
(
I; D ′(Ω)

)
. If

u ∈ L∞(I;X) then,

∀t ∈ I, u(t) ∈ X and u ∈ Cw

(
I;X

)
. (2.13)

Here and after, Cw(I;X) denotes the space of (weakly) continuous functions

from I to Xw.

We recall the definition of solution ([3, 7]).

Definition 2.3. Assume (2.1), (2.4) and (2.5). Let a ∈ C, 0 < m 6 1, f ∈

L1
loc

(
[0,∞);L2(Ω)

)
and u0 ∈ L2(Ω). We shall say that u is an H1

0 -solution of

(1.1)–(1.3), if u satisfies the following assertions.

1. We have,

u ∈ Lm+1
loc

(
[0,∞);X

)
∩W 1,m+1

m

loc

(
[0,∞);X?

)
↪→ C

(
[0,∞);L2(Ω)

)
,

with X = H1
0 (Ω) ∩ Lm+1(Ω).

2. u satisfies (1.1) in D ′
(
(0,∞)× Ω

)
.

3. u(0) = u0, in L2(Ω).

We shall say that u is an L2-solution or a weak solution of (1.1)–(1.3) is there

exists,

(fn, un)n∈N ⊂ L1
loc

(
[0,∞);L2(Ω)

)
× C

(
[0,∞);L2(Ω)

)
, (2.14)
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such that for any n ∈ N, un is an H1
0 -solution of (1.1)–(1.2) where the right-

hand side member of (1.1) is fn, and if

(fn, un)
L1((0,T );L2(Ω))×C([0,T ];L2(Ω))−−−−−−−−−−−−−−−−−−−−−→

n−→∞
(f, u), (2.15)

for any T > 0.

Remark 2.4. Let us comment the Definition 2.3.

1. In [3, 7, 8], there is also a notion of H2-solutions. Such solutions u satisfy

Properties 1–3 of Definition 2.3 with, additionally, u ∈W 1,m+1
m

loc

(
[0,∞);L2(Ω)+

L
m+1
m (Ω)

)
and ∆u(t) ∈ L2(Ω), for almost every t > 0 ([7, Definition 4.1]).

Unfortunately, we are not able to construct such solutions because of the

lack of a priori estimates of solutions in the H2-norm. Indeed, theses esti-

mates are obtained by a rotation of a ∈ C(m)\D(m) in the complex plane,

to get a 7−→ ã ∈ C(m). The crucial tool is Lemma 4.2 in Bégout [3], which

is no more valid if a ∈ D(m) (read the proof of Bégout [3, Corollary 4.5]

to see how this lemma is applied). As a consequence, we had to modify

the notion of L2-solutions. Indeed, in our paper, an L2-solution is a limit

of H1
0 -solutions while in [3, 7, 8], it is a limit of H2-solutions. Despite

this definition which seems to be weakened, such solutions do not lose any

property. Indeed, the conditions (2.14) and (2.15) to be an L2-solution

are common to these four papers. As a consequence, we have not changed

the terminology here. Finally, notice that H2-solutions exist in the special

case in which Ω has a finite measure (see Theorem 5.2 below).

2. The boundary condition u(t)|∂Ω = 0 is implicitely included in the assump-
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tion u(t) ∈ H1
0 (Ω), for the H1

0 -solutions. For the L2-solutions, this has to

be understood in a generalized sense by using the limit of H1
0 -solutions.

We give an improved result from the previous paper [8] on how weak solutions

satisfy (1.1) and recall a continuous dependence result.

Proposition 2.5. Assume (2.1), (2.4) and (2.5). Let 0 < m 6 1, a ∈ C

and f ∈ L1
loc

(
[0,∞);L2(Ω)

)
. Let u be a weak solution to (1.1). Let (fn, un)n∈N

satisfy (2.15), where each un is an H1
0 -solution to (1.1)–(1.2) with fn instead

of f. Then,

u ∈W 1,1
loc

(
[0,∞);H−2(Ω) + L

2
m (Ω)

)
, (2.16)

and u solves (1.1) in L1
loc

(
[0,∞);H−2(Ω) +L

2
m (Ω)

)
and so in D ′

(
(0,∞)×Ω

)
.

In adddition,

un
W 1,1((0,T );H−2(Ω)+L

2
m (Ω))−−−−−−−−−−−−−−−−−−−→

n→∞
u. (2.17)

for any T > 0.

Proposition 2.6 (Uniqueness and continuous dependance). Let Assump-

tion 2.1 be fulfilled, let f, f̃ ∈ L1
loc

(
[0,∞);L2(Ω)

)
and X = H1

0 (Ω) ∩ Lm+1(Ω).

Finally, let

u, ũ ∈ Lploc

(
[0,∞);X

)
∩W 1,p′

loc

(
[0,∞);X?

)
↪→ C

(
[0,∞);L2(Ω)

)
, (2.18)

for some 1 < p <∞, be solutions in D ′
(
(0,∞)× Ω

)
to,

iut + ∆u+ V u+ a|u|−(1−m)u = f,

iũt + ∆ũ+ V ũ+ a|ũ|−(1−m)ũ = f̃ ,
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respectively. Then,

‖u(t)− ũ(t)‖L2(Ω) 6 ‖u(s)− ũ(s)‖L2(Ω) +

t∫
s

‖f(σ)− f̃(σ)‖L2(Ω)dσ, (2.19)

for any t > s > 0. Finally, (2.19) also holds true for the weak solutions.

Theorem 2.7 (Existence and uniqueness of L2-solutions). Let Assump-

tion 2.1 be fulfilled and let f ∈ L1
loc

(
[0,∞);L2(Ω)

)
. Then for any u0 ∈ L2(Ω),

there exists a unique weak solution u to (1.1)–(1.3). In addition,

u ∈ Lm+1
loc

(
[0,∞);Lm+1(Ω)

)
, (2.20)

1

2
‖u(t)‖2L2(Ω) + Im(a)

t∫
s

‖u(σ)‖m+1
Lm+1(Ω)dσ 6

1

2
‖u(s)‖2L2(Ω) + Im

t∫∫
s Ω

f(σ, x)u(σ, x) dxdσ,

(2.21)

for any t > s > 0. If |Ω| <∞ then the inequality in (2.21) is an equality.

Remark 2.8. Using (2.19)–(2.21) and Hölder’s inequality, uniform continuous

dependance with respect to the initial data and the right hand side member

of (1.1) may be obtain in

Cb

(
[0,∞);L2(Ω)

)
∩ L

p(1−m)
2−p

(
(0,∞);Lp(Ω)

)
,

for any p ∈ (m+ 1, 2). See [3, Remark 2.5] for more details.

Theorem 2.9 (Additional regularity in H1
0 for weak solutions). Let

Assumption 2.1 be fulfilled with additionally V ∈ W 1,∞(Ω;R) + W 1,pV (Ω;R).

Let f ∈ L1
loc

(
[0,∞);H1

0 (Ω)
)
. Then for any u0 ∈ H1

0 (Ω), the weak solution u

14



satisfies, additionally, that
u ∈ C

(
[0,∞);L2(Ω)

)
∩ Cw

(
[0,∞);H1

0 (Ω)
)
,

u ∈W 1,1
loc

(
[0,∞);H−1(Ω) + L

m+1
m (Ω)

)
,

(2.22)

and u satisfies (1.1) in L1
loc

(
[0,∞), H−1(Ω)+L

m+1
m (Ω)

)
. Furthermore, u verifies,

‖u(t)‖H1
0 (Ω) 6

‖u(s)‖H1
0 (Ω) +

t∫
s

‖f(σ)‖H1
0 (Ω)dσ

 eC‖∇V ‖L∞+LpV (t−s),

(2.23)

for any t > s > 0, where C = C(N, β). Finally, if ∇V = 0 then u satisfies the

better estimate below.

‖∇u(t)‖L2(Ω) 6 ‖∇u(s)‖L2(Ω) +

t∫
s

‖∇f(σ)‖L2(Ω)dσ, (2.24)

for any t > s > 0.

If u is a weak solution given by Theorem 2.9 and if, in addition, f ∈ L
m+1
m

loc

(
(0,∞);X?

)
,

where X = H1
0 (Ω) ∩ Lm+1(Ω), then u becomes an H1

0 -solution, as shows the

following result.

Theorem 2.10 (Existence and uniqueness of H1
0 -solutions – I). Let

Assumption 2.1 be fulfilled with additionally V ∈ W 1,∞(Ω;R) + W 1,pV (Ω;R).

Let

f ∈ L1
loc

(
[0,∞);H1

0 (Ω)
)
∩ L

m+1
m

loc

(
[0,∞);H−1(Ω) + L

m+1
m (Ω)

)
. (2.25)

Then for any u0 ∈ H1
0 (Ω), there exists a unique H1

0 -solution u to (1.1)–(1.3).

Furthermore, the map t 7−→ ‖u(t)‖2L2(Ω) belongs to W 1,1
loc

(
[0,∞);R

)
and we have,

1

2

d

dt
‖u(t)‖2L2(Ω) + Im(a)‖u(t)‖m+1

Lm+1(Ω) = Im

∫
Ω

f(t, x)u(t, x) dx, (2.26)
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for almost every t > 0.

Theorem 2.11 (Existence and uniqueness of H1
0 -solutions – II). Let

Assumption 2.1 be fulfilled and f ∈W 1,1
loc

(
[0,∞);L2(Ω)

)
. Then for any

u0 ∈ H1
0 (Ω) ∩ Lm+1(Ω) for which ∆u0 + a|u0|−(1−m)u0 ∈ L2(Ω),

there exists a unique H1
0 -solution u to (1.1)–(1.3). Furthermore,

u satisfies (1.1) in L∞loc

(
[0,∞);H−1(Ω) + L

m+1
m (Ω)

)
as well as the following properties.

1. u ∈ Cw

(
[0,∞);H1

0 (Ω) ∩ Lm+1(Ω)
)
∩W 1,∞

loc

(
[0,∞);L2(Ω)

)
.

2. For any t > s > 0,



‖u(t)− u(s)‖L2(Ω) 6 ‖ut‖L∞((s,t);L2(Ω))|t− s|,

‖u(t)‖L2(Ω) 6 A(t),

‖ut‖L∞((0,t);L2(Ω)) 6 B(t),

‖∇u(t)‖2L2(Ω) + Im(a)‖u(t)‖m+1
Lm+1(Ω) 6 C(t)A(t),

(2.27)

(2.28)

(2.29)

(2.30)

where,

A(t) = ‖u0‖L2(Ω) +

∫ t

0

‖f(s)‖L2(Ω)ds,

B(t) = ‖∆u0 + V u0 + ag(u0)− f(0)‖L2(Ω) +

∫ t

0

‖f ′(σ)‖L2(Ω)dσ,

C(t) = C
(
A(t), B(t), ‖f(t)‖L2(Ω), ‖V1‖L∞(Ω), ‖V2‖LpV (Ω), N,m, β

)
.

3. The map t 7−→ ‖u(t)‖2L2(Ω) belongs to W 1,∞
loc

(
[0,∞);R

)
and (2.26) holds

for almost every t > 0.
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4. If f ∈ W 1,1
(
(0,∞);L2(Ω)

)
then u ∈ L∞

(
(0,∞);H1

0 (Ω) ∩ Lm+1(Ω)
)
∩

W 1,∞((0,∞);L2(Ω)
)
.

Remark 2.12. Below are some comments about Theorem 2.11.

1. The solution u obtained in Theorem 2.11 could be called an almost H2-

solution since it verifies all the conditions of Definition 5.1 below, except

the property,

for almost every t > 0, ∆u(t) ∈ L2(Ω), (2.31)

which need not be satisfied ([7, Definition 4.1]). It merely satisfies that,

for almost every t > 0, ∆u(t) ∈ L2
loc(Ω).

The property (2.31) may be obtained in the particular case in which Ω

has a finite measure (see Theorem 5.2 below).

2. Since f ∈ W 1,1
loc

(
[0,∞);L2(Ω)

)
↪→ C

(
[0,∞);L2(Ω)

)
, f(0) in the function

B makes sense.

3. For any p ∈
(
m+ 1, 2N

N−2

)
(p ∈ (m+ 1,∞] if N = 1),

u ∈ C0,α
(
[0,∞);Lp(Ω)

) (
u ∈ C0,α

b

(
[0,∞);Lp(Ω)

)
, if f ∈W 1,1

(
(0,∞);L2(Ω)

))
,

where α = 2N−p(N−2)
2p if p > 2, and α = 2p−(1+m)

p(1−m) if p 6 2. Indeed,

this comes from Property 1 and (2.27), with also Gagliardo-Nirenberg’s

inequality, if p > 2, and Hölder’s inequality, if p < 2.
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3 Finite time extinction and asymptotic behav-

ior

Assumption 3.1. Assumption 2.1 holds true and u0 ∈ H1
0 (Ω). We have that(

f ∈ L1
(
(0,∞);H1

0 (Ω)
)

and ∇V = 0
)

or
(
f ∈ W 1,1

(
(0,∞);L2(Ω)

)
, u0 ∈

Lm+1(Ω) with ∆u0 + a|u0|−(1−m)u0 ∈ L2(Ω)
)
, and u is the unique solution to

(1.1)–(1.3) given by Theorems 2.7 or 2.11. Finally, there exists a T0 ∈ [0,∞)

such that

for almost every t > T0, f(t) = 0. (3.1)

Asymptotic behavior of the L2-solutions

Theorem 3.2. Let Assumption 2.1 be fulfilled, f ∈ L1
(
(0,∞);L2(Ω)

)
, u0 ∈

L2(Ω) and let u be the unique weak solution to (1.1)–(1.3) given by Theorem 2.7.

Then,

lim
t↗∞

‖u(t)‖L2(Ω) = 0.

Finite time extinction and asymptotic behavior

of the H1
0 -solutions

Theorem 3.3 (Finite time extinction and time decay estimates). Let

Assumption 3.1 be fulfilled.
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1. If N = 1 then

∀t > T?, ‖u(t)‖L2(Ω) = 0, (3.2)

where,

T? 6 C‖u(T0)‖
1−m

2

L2(Ω)‖∇u‖
1−m

2

L∞((0,∞);L2(Ω)) + T0, (3.3)

for some C = C(Im(a),m).

2. If N = 2 then for any t > T0,

‖u(t)‖L2(Ω) 6 ‖u(T0)‖L2(Ω)e
−C(t−T0), (3.4)

where C = C(‖∇u‖L∞((0,∞);L2(Ω)), Im(a),m).

3. If N > 3 then for any t > T0,

‖u(t)‖L2(Ω) 6
‖u(T0)‖L2(Ω)(

1 + C‖u(T0)‖
(1−m)(N−2)

2

L2(Ω) (t− T0)

) 2
(1−m)(N−2)

, (3.5)

where C = C(‖∇u‖L∞((0,∞);L2(Ω)), Im(a), N,m).

4. If N = 1 and f ∈ L1
(
(0,∞);H1

0 (Ω)
)
∩Lm+1

m

(
(0,∞);H−1(Ω) +L

m+1
m (Ω)

)
then there exists ε? = ε?(|a|,m) satisfying the following property. If

‖u0‖2(1−δ1)
L2(Ω) 6 ε?T0,

‖∇u0‖L2(Ω) + ‖∇f‖L1((0,∞);L2(Ω)) 6 ε?,

‖f(t)‖2L2(Ω) 6 ε?
(
T0 − t

) 2δ1−1
1−δ1

+
,

(3.6)

for almost every t > 0, where δ1 = 3+m
4 , then (3.2) holds true with T? =

T0.
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4 Proofs of the existence of solutions theorems

Before proving the results of Section 2, we recall some results of our previous

paper we will need. Here and in the rest of the paper, we shall use the following

notations and conventions. Unless if specified, we assume (2.1)–(2.2). Since∣∣|z|−(1−m)z
∣∣ = |z|m, we extend by continuity at z = 0 the map z 7−→ |z|−(1−m)z

by setting,

|z|−(1−m)z = 0, if z = 0.

Let ε > 0. For any u ∈ L0(Ω) and almost every x ∈ Ω, we define

gmε (u)(x) = (|u(x)|2 + ε)−
1−m

2 u(x), 0 6 m 6 1, (4.1)

g(u)(x) = gm0 (u)(x). (4.2)

Let p ∈ [1,∞). We have that for any u, v ∈ Lp(Ω),

‖gm0 (u)− gm0 (v)‖
L
p
m (Ω)

6 3‖u− v‖mLp(Ω), (4.3)

In particular, gm0 ∈ C
(
Lp(Ω);L

p
m (Ω)

)
and gm0 is bounded on bounded sets.

Finally, if ε > 0 then gmε ∈ C
(
L2(Ω);L2(Ω)

)
and gmε is bounded on bounded

sets. See [8, Lemma 4.3].

Now, let us define the operator (Amε , D(Amε )) on L2(Ω) by,
D(Amε ) =

{
u ∈ H1

0 (Ω); ∆u ∈ L2(Ω)
}
,

Amε u = −i∆u− iV u− iagmε (u), ∀u ∈ D(Amε ).

We recall the following result.

20



Lemma 4.1 ([8, Corollary 5.11]). Assume (2.1). Let 0 6 m < 1 and a ∈

C(m). Then for any ε > 0, (Amε , D(Amε )) is maximal monotone on L2(Ω) with

dense domain.

Let V = V1 +V2 ∈ L∞(Ω;R) +LpV (Ω;R), where pV is given by (2.5). Then for

any u ∈ L2(Ω), V u ∈ H−1(Ω) and for any u ∈ H1
0 (Ω), V u ∈ L2(Ω). There exists

C = C(N, β) such that the following holds. Let u ∈ H1
0 (Ω) and v ∈ L2(Ω). We

have,

‖V v‖H−1(Ω) 6 C‖V ‖L∞(Ω)+LpV (Ω)‖v‖L2(Ω), (4.4)

‖V u‖L2(Ω) 6 C‖V ‖L∞(Ω)+LpV (Ω)‖u‖H1
0 (Ω), (4.5)

〈V v, u〉H−1(Ω),H1
0 (Ω) = (v, V u)L2(Ω), (4.6)

‖V1u‖L2(Ω) 6 ‖V1‖L∞(Ω)‖u‖L2(Ω), (4.7)

‖V2u‖L2(Ω) 6 Cρ1−γ‖V2‖2−γLpV (Ω)‖u‖
γ
L2(Ω) +

1

ρ
‖∇u‖2L2(Ω), (4.8)

for any ρ > 0, where γ = γ(N, β) ∈ [0, 1). See [8, Lemmas 4.1 and 4.2].

Let us recall that for any u ∈ H1
0 (Ω) such that ∆u ∈ L2(Ω), we have

‖∇u‖2L2(Ω) 6 ‖∆u‖L2(Ω)‖u‖L2(Ω). (4.9)

Finally, to prove Theorem 2.11, we introduce the following operator (A,D(A))

on L2(Ω).
D(A) =

{
u ∈ H1

0 (Ω) ∩ Lm+1(Ω); ∆u+ ag(u) ∈ L2(Ω)
}
,

Au = −i∆u− iV u− iag(u), ∀u ∈ D(A).

(4.10)

We have the following.
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Lemma 4.2. Assume (2.1)–(2.3). The operator (A,D(A)) is maximal mono-

tone on L2(Ω) with dense domain.

Before proving Lemma 4.2, we give three results we will need. Lemma 4.3 below

is stated in a more general case (in terms of m and a) because its proof is totally

unchanged and we think that it will be of interest for a future work.

Lemma 4.3. Assume (2.1). Let 0 6 m < 1 and a ∈ C(m). Let F ∈ L2(Ω).

Then there exist u ∈ H1
0 (Ω) ∩ Lm+1(Ω), with V u ∈ L2(Ω), and a sequence

(uεn)n∈N ⊂ D(Amεn), where (εn)n∈N ⊂ (0,∞) is a decreasing sequence converging

toward 0, satisfying the following properties. For each n ∈ N, un is the unique

solution to,

−i∆uεn − iV uεn − iagmεn(uεn) + uεn = F, in L2(Ω). (4.11)

Furthermore, we have that,

sup
n∈N
‖uεn‖H1

0 (Ω) + sup
n∈N
‖V uεn‖L2(Ω) <∞, (4.12)

Im(a)

∫
Ω

(|uεn |2 + εn)−
1−m

2 |uεn |2dx+ ‖uεn‖2L2(Ω) 6 ‖F‖
2
L2(Ω), (4.13)

for any n ∈ N. Finally,

uεn
D′(Ω)−−−−→
n→∞

u, (4.14)

V uεn
D′(Ω)−−−−→
n→∞

V u, (4.15)

uεn
a.e. in Ω−−−−−→
n→∞

u. (4.16)

Proof. Let F ∈ L2(Ω). Let ε > 0. By Lemma 4.1 and Brezis [10, Propo-

sition 2.2], there exists a unique solution uε ∈ D(Amε ) to (4.11) satisfying
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‖uε‖L2(Ω) 6 ‖F‖L2(Ω). We take the L2-scalar product of (4.11) with uε and

then with iuε. We get that,

Im(a)

∫
Ω

(|uε|2 + ε)−
1−m

2 |uε|2dx+ ‖uε‖2L2(Ω) = Re

∫
Ω

F uεdx, (4.17)

‖∇uε‖2L2(Ω) −
∫
Ω

V |uε|2dx− Re(a)

∫
Ω

(|uε|2 + ε)−
1−m

2 |uε|2dx = Im

∫
Ω

F uεdx.

(4.18)

Applying Cauchy-Schwarz’s inequality to (4.17), we obtain (4.13), for any se-

quence εn ↘ 0. We multiply (4.17) by Re(a)+
Im(a) , we sum the result with (4.18)

and we still apply Cauchy-Schwarz’s inequality. It follows that,

‖∇uε‖2L2(Ω) 6

(
1 +

Re(a)+

Im(a)

)
‖F‖2L2(Ω) + ‖V uε‖L2(Ω)‖F‖L2(Ω). (4.19)

By (4.7) and (4.8), there exists C = C(N, β) such that,

‖V uε‖L2(Ω) 6 C
(
‖V1‖L∞(Ω) + ‖V2‖2−γLpV (Ω)

)
‖F‖L2(Ω) +

1

2‖F‖L2(Ω)
‖∇uε‖2L2(Ω).

(4.20)

With help of (4.5), (4.13), (4.19) and (4.20), we obtain (4.12), also for any

sequence εn ↘ 0. As a consequence, there exist u ∈ H1
0 (Ω) and a decreasing

sequence (εn)n∈N ⊂ (0,∞) converging toward 0 such that, by (4.6), V u ∈ L2(Ω)

and such that (4.14)–(4.15) hold true. By the compact embedding H1
0 (Ω) ↪→

L2
loc(Ω) and the diagonal procedure, up to a subsequence, we get (4.16). Finally,

it follows from (4.13), (4.16) and Fatou’s Lemma that u ∈ Lm+1(Ω). This ends

the proof of the lemma.

Lemma 4.4. Let u1, u2 ∈ H1
0 (Ω), p ∈ [1,∞) and v1, v2 ∈ Lp

′
(Ω) be such that
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∆uj + vj ∈ L2(Ω), for any j ∈ {1, 2}. We then have,

(
(∆u1 + v1)− (∆u2 + v2), w1 − w2

)
L2(Ω)

= −
(
∇(u1 − u2),∇(w1 − w2)

)
L2(Ω)

+ 〈v1 − v2, w1 − w2〉Lp′ (Ω),Lp(Ω),

for any w1, w2 ∈ H1
0 (Ω) ∩ Lp(Ω).

Proof. Let X = H1
0 (Ω) ∩ Lp(Ω). We recall that since H1

0 (Ω) ∩ Lp(Ω) is dense

in both H1
0 (Ω) and Lp(Ω), we have by (2.10) that X? = H−1(Ω) + Lp

′
(Ω).

We also recall that we identify L2(Ω) with its own dual, so that, by (2.9), the

L2-scalar product is also the L2 − L2 duality product. Finally, by (2.8), since

the embeddings of X in L2(Ω), Lp(Ω) and H1
0 (Ω) are all continuous and dense,

it follows that for any j ∈ {1, 2}, ∆uj , vj ∈ X? and

(
(∆u1 + v1)− (∆u2 + v2), w1 − w2

)
L2(Ω)

= 〈(∆u1 + v1)− (∆u2 + v2), w1 − w2〉X?,X

= 〈∆(u1 − u2), w1 − w2〉X?,X + 〈v1 − v2, w1 − w2〉X?,X ,

= 〈∆(u1 − u2), w1 − w2〉H−1(Ω),H1
0 (Ω) + 〈v1 − v2, w1 − w2〉Lp′ (Ω),Lp(Ω),

from which we deduce the result.

Corollary 4.5. Assume (2.1)–(2.3). The operator (A,D(A)) is monotone on

L2(Ω).

Proof. Let u, v ∈ D(A). Let X = H1
0 (Ω)∩Lm+1(Ω). It follows from Lemma 4.4,

(2.9) and [8, Corollary 5.8] that,

(Au−Av, u− v)L2(Ω) = 〈−ia(g(u)− g(v)), u− v〉
L
m+1
m (Ω),Lm+1(Ω)

> 0.

Hence the result.
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Proof of Lemma 4.2. The density is obvious. By Corollary 4.5 and Brezis [10,

Proposition 2.2], we only have to show that R(I +A) = L2(Ω). Let F ∈ L2(Ω).

Let u ∈ H1
0 (Ω) ∩ Lm+1(Ω) and (uεn)n∈N ⊂ D(Amεn) be given by Lemma 4.3.

It follows from (4.12) and (4.16) that
(
gmεn(uεn)

)
n∈N is bounded in L

2
m (Ω) and

that gmεn(uεn)
a.e. in Ω−−−−−→
n→∞

g(u). Thus by Strauss [19],

gmεn(uεn)
D′(Ω)−−−−→
n→∞

g(u). (4.21)

Passing to the limit as n −→ ∞ in (4.11), it follows from (4.14), (4.15) and

(4.21) that u satisfies

−i∆u− iV u− iag(u) + u = F, in D ′(Ω). (4.22)

But u ∈ H1
0 (Ω) ∩ Lm+1(Ω) and V u, F ∈ L2(Ω) so that, by (4.22),

u ∈ D(A) and u+Au = F, in L2(Ω).

This concludes the proof.

Proof of Proposition 2.5. Set Y = H2
0 (Ω) ∩ L

2
2−m (Ω). By (2.10), Y ? =

H−2(Ω) + L
2
m (Ω). By (2.15), (4.3) and (4.4), we have for any T > 0,

∆un
C([0,T ];H−2(Ω))−−−−−−−−−−−→

n→∞
∆u, (4.23)

V un
C([0,T ];H−1(Ω))−−−−−−−−−−−→

n→∞
V u, (4.24)

g(un)
C([0,T ];L

2
m (Ω))−−−−−−−−−−→

n→∞
g(u), (4.25)

Then it follows from the equation satisfied by each un, (2.15) and (4.23)–(4.25)

that for any T > 0, (un)n∈N is a Cauchy sequence in W 1,1
(
(0, T );Y ?

)
, so that

(2.16)–(2.17) hold true. We use (2.15), (2.17) and (4.23)–(4.25) to pass in the
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limit in the equation satisfied by each un. With help of (2.12), it follows that u

satisfies (1.1) in L1
(
[0,∞);Y ?

)
↪→ D ′

(
(0,∞)× Ω

)
.

Proof of Proposition 2.6. By [8, Proposition 2.5], we only have to show

(2.19) for the weak solutions. The H1
0 -solutions satisfying (2.18) with p = m+1,

and estimate (2.19) being stable by passing to the limit in L1
(
(0, T );L2(Ω)

)
×

C
(
[0, T ];L2(Ω)

)
, the result is then obtained by density of D

(
[0, T ];H1

0 (Ω)
)
×

D(Ω) in L1
loc

(
(0, T );L2(Ω)

)
× L2(Ω), for any T > 0, and Theorem 2.11.

Proof of Theorem 2.11. Let f and u0 be as in the theorem. By Lemma 4.2

and Barbu [1, Theorem 4.5] (see also Vrabie [21, Theorem 1.7.1]), there ex-

ists a unique solution u ∈ W 1,∞
loc

(
[0,∞);L2(Ω)

)
to (1.1)–(1.3) satisfying for

almost every t > 0, u(t) ∈ D(A) and (2.29), from which (2.27) follows. Since

u ∈ W 1,∞
loc

(
[0,∞);L2(Ω)

)
, it follows from Lemma A.5 in [7] that M : t 7−→

1
2‖u(t)‖2L2(Ω) belongs to W 1,∞

loc

(
[0,∞);R

)
and M ′(t) =

(
ut(t), u(t)

)
L2(Ω)

, for

almost every t > 0. Taking the L2-scalar product of (1.1) with iu, we get Prop-

erty 3, with help of Lemma 4.4. We apply the Cauchy-Schwarz inequality to

(2.26) and we inegrate in time to obtain (2.28). Now, we take again the L2-

scalar product of (1.1) with −u. We use Lemma 4.4 and the fact that a ∈ D(m).

We sum the result with
(

2
√
m

1−m + 1
)
× (2.26). Finally, we use again the Cauchy-

Schwarz inequality to infer that,

‖∇u‖2L2(Ω) + Im(a)‖u‖m+1
Lm+1(Ω) 6 C(m)

(
‖ut‖L2(Ω) + ‖V u‖L2(Ω) + ‖f‖L2(Ω)

)
‖u‖L2(Ω),
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almost everywhere on (0,∞). It follows from (4.7)–(4.8) that,

‖∇u‖2L2(Ω) + Im(a)‖u‖m+1
Lm+1(Ω)

6 C(N,m, β)
(
‖ut‖L2(Ω) +

(
‖V1‖L∞(Ω) + ‖V2‖2−γLpV (Ω)

)
‖u‖L2(Ω) + ‖f‖L2(Ω)

)
‖u‖L2(Ω),

(4.26)

from which (2.30) follows. Then Property 2 holds true, from which we deduce

Property 4. Moreover, since u ∈ C
(
[0,∞);L2(Ω)

)
, Property 1 comes from (2.30)

and (2.13). Finally, it follows from Property 1 that u is an H1
0 -solution and that

u satisfies (1.1) in L∞loc

(
[0,∞);H−1(Ω)+L

m+1
m (Ω)

)
. The theorem is proved.

Proof of Theorem 2.7. By Theorem 2.11, Proposition 2.6 and 1 of Re-

mark 2.4, the proof follows easily by density of D(Ω) × W 1,1
loc

(
[0,∞);L2(Ω)

)
in L2(Ω) × L1

loc

(
[0,∞);L2(Ω)

)
(see the proof of Theorem 2.6 in [8] for more

details).

We split the proof of Theorems 2.9 and 2.10 into several lemmas.

Lemma 4.6. Let Assumption 2.1 be fulfilled with additionally V ∈W 1,∞(Ω;R)+

W 1,pV (Ω;R). Let f satisfy (2.25) and u0 ∈ H1
0 (Ω). Let (fε)ε>0 ⊂ D

(
[0,∞);H1

0 (Ω)
)

and (ϕε)ε>0 ⊂ D(Ω) be such that,
fε

L1((0,T );H1
0 (Ω))∩L

m+1
m ((0,T );X?)−−−−−−−−−−−−−−−−−−−−−−−→

ε↘0
f,

ϕε
H1

0 (Ω)−−−−→
ε↘0

u0.

(4.27)

for any T > 0, where X = H1
0 (Ω) ∩ Lm+1(Ω). Then for any ε > 0, there exists

a unique solution

uε ∈ Cw

(
[0,∞);H1

0 (Ω)
)
∩W 1,∞

loc

(
[0,∞);L2(Ω)

)
, (4.28)
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to,

i
∂uε
∂t

+ ∆uε + V (x)uε + agmε (uε) = fε(t, x), in L2(Ω), (4.29)

such that uε(0) = ϕε. Furthermore, the following holds for any ε > 0.

‖uε(t)‖H1
0 (Ω) 6

‖ϕε‖H1
0 (Ω) +

t∫
0

‖fε(σ)‖H1
0 (Ω)dσ

 eC‖∇V ‖L∞+LpV t, (4.30)

for any t > 0, where C = C(N, β), and if ∇V = 0 then,

‖∇uε(t)‖L2(Ω) 6 ‖∇ϕε‖L2(Ω) +

t∫
0

‖∇fε(σ)‖L2(Ω)dσ, (4.31)

for any t > 0. Finally,
(uε)ε>0 is bounded in L∞loc

(
[0,∞);H1

0 (Ω)
)
∩ Lm+1

loc

(
[0,∞);Lm+1(Ω)

)
,

(uε)ε>0 is bounded in W
1,m+1

m

loc

(
[0,∞);H−1(Ω) + L

m+1
m (Ω)

)
.

(4.32)

Proof. Let the assumptions of the Lemma be fulfilled. By Lemma 4.1 and

Barbu [1, Theorem 4.5] (see also Vrabie [21, Theorem 1.7.1]), there exists a

unique solution uε ∈ W 1,∞
loc

(
[0,∞);L2(Ω)

)
to (4.29) such that uε(0) = ϕε.

Moreover, uε(t) ∈ D(Amε ), for almost every t > 0. Now, we take the L2-scalar

product of (4.29) with −uε and we get with help of Cauchy-Schwarz’s inequality

that,

‖∇uε‖2L2(Ω) 6
(
‖u′ε‖L2(Ω) + ‖V uε‖L2(Ω) + |a|ε−

1−m
2 ‖uε‖L2(Ω) + ‖fε‖L2(Ω)

)
‖uε‖L2(Ω),

almost everywhere on (0,∞). Applying (4.7) and (4.8) to the above with ρ =

2‖uε‖L2(Ω), we get that uε ∈ L∞loc

(
[0,∞);H1

0 (Ω)
)
. With help of (2.13), (4.28)
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follows. By (4.5) and (4.29), it follows that ∆uε ∈ L∞loc

(
[0,∞);H1

0 (Ω)
)
. So, we

are allowed to apply [7, Lemma A.5]. Taking the L2-scalar product of (4.29)

with −i∆uε, it then follows from (6.8) in [7] and a density argument that for

almost every σ > 0,

1

2

d

dt
‖∇uε(σ)‖2L2(Ω) 6

(
∇fε(σ)− uε(σ)∇V, i∇uε(σ)

)
L2(Ω)

. (4.33)

Let t > 0. If∇V = 0 then it follows from (4.33) and Cauchy-Schwarz’s inequality

that,

1

2

d

dt
‖∇uε(σ)‖2L2(Ω) 6 ‖∇fε(σ)‖L2(Ω)‖∇uε(σ)‖L2(Ω).

Integrating over (0, t), we obtain (4.31). Now, we turn out to the general

case. Taking the L2-scalar product of (4.29) with iuε, we get with help of

[7, Lemma A.5] and Cauchy-Schwarz’s inequality that,

1

2

d

dt
‖uε(σ)‖2L2(Ω) + Im(a)‖uε(σ)‖m+1

Lm+1(Ω) 6 ‖fε(σ)‖L2(Ω)‖uε(σ)‖L2(Ω), (4.34)

for almost every σ > 0. Now, let us still apply Cauchy-Schwarz’s inequality in

(4.33). Using (4.5) and summing the result with (4.34), we get for almost every

σ > 0,

1

2

d

dt
‖uε(σ)‖2H1

0 (Ω) 6 ‖fε(σ)‖H1
0 (Ω)‖uε(σ)‖H1

0 (Ω) + C‖∇V ‖L∞(Ω)+LpV (Ω)‖uε(σ)‖2H1
0 (Ω),

where C is given by (4.5). Integrating over (0, t), we obtain

‖uε(t)‖H1
0
6 ‖u0‖H1

0
+

t∫
0

‖f(σ)‖H1
0
dσ

︸ ︷︷ ︸
‖
ϕ(t)

+

t∫
0

C‖∇V ‖L∞+LpV︸ ︷︷ ︸
‖
α

‖uε(σ)‖H1
0
dσ,

29



and by Gronwall’s Lemma (see, for instance, Barbu [2, Lemma 1.1]),

‖uε(t)‖H1
0
6 ϕ(t) +

t∫
0

αϕ(σ) exp

 t∫
σ

αds

 dσ = ϕ(t) +

t∫
0

αϕ(σ)eα(t−σ)dσ

6 ϕ(t) + ϕ(t)

t∫
0

αeα(t−σ)dσ = ϕ(t)eαt,

which is (4.30). Finally, (4.32) comes from (4.27), (4.30), (4.5), (4.29) and, after

integration, (4.34). The lemma is proved.

Lemma 4.7. Let Assumption 2.1 be fulfilled with additionally V ∈W 1,∞(Ω;R)+

W 1,pV (Ω;R). We use the notations of Lemma 4.6. Under the hypotheses of

Lemma 4.6, there exist

u ∈ C
(
[0,∞);L2(Ω)

)
∩ Cw

(
[0,∞);H1

0 (Ω)
)
, (4.35)

u ∈ Lm+1
loc

(
[0,∞);Lm+1(Ω)

)
∩W 1,m+1

m

loc

(
[0,∞);H−1(Ω) + L

m+1
m (Ω)

)
, (4.36)

and a positive sequence εn ↘ 0, as n −→∞, such that

uεn(t)−−−−⇀
n→∞

u(t) in H1
0 (Ω)w, ∀t > 0, (4.37)

uεn
a.e. in (0,∞)×Ω−−−−−−−−−−→

n→∞
u, (4.38)

uεn −−−−⇀
n→∞

u in Lm+1
(
(0, T );Lm+1(Ω)

)
w
, (4.39)

gmεn
(
uεn
)
−−−−⇀
n→∞

g(u) in L
m+1
m

(
(0, T );L

m+1
m (Ω)

)
w
, (4.40)

for any T > 0.

Proof. Set X = H1
0 (Ω) ∩ Lm+1(Ω). We first note that,

W
1,m+1

m

loc

(
[0,∞);X?

)
↪→ C

0, 1
m+1

loc

(
[0,∞);X?

)
. (4.41)
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By (4.32), (4.41), Cazenave [13] (Proposition 1.1.2(i) and Remark 1.3.13(ii))

and the diagonal procedure, we obtain the existence of a

u ∈ Cw

(
[0,∞);H1

0 (Ω)
)
∩W 1,m+1

m

loc

(
[0,∞);X?

)
(4.42)

satisfying (4.37). Let T > 0 and Ω′ ⊂ Ω be any bounded open subset of

RN having a C1-boundary. By Rellich-Kondrachov’s compactness Theorem, we

have that,

H1(Ω′) ↪→
compact

L2(Ω′) ↪→ H−1(Ω′) + L
m+1
m (Ω′), (4.43)

and by (4.32),

(uε)ε>0 is bounded in L∞loc

(
[0,∞);H1(Ω′)

)
∩W 1,m+1

m

loc

(
[0,∞);H−1(Ω′) + L

m+1
m (Ω′)

)
.

(4.44)

It follows from (4.37), (4.43)–(4.44) and a compactness result due to Simon [17]

(Corollary 5, p.86) that,

u ∈ C
(
[0, T ];L2(Ω′)

)
and lim

n→∞
‖uεn − u‖C([0,T ];L2(Ω′)) = 0.

Since T and Ω′ are arbitrary, we deduce that uεn
L2

loc((0,∞)×Ω)−−−−−−−−−→
n→∞

u. Up to a

subsequence, that we still denote by (uεn)n∈N, and with help of the diagonal

procedure, we obtain (4.38). It follows from (4.32) and (4.38) that,

(
gmε (uε)

)
ε>0

is bounded in L
m+1
m

loc

(
[0,∞);L

m+1
m (Ω)

)
, (4.45)

gmεn
(
uεn
) a.e. in (0,∞)×Ω−−−−−−−−−−→

n→∞
g(u). (4.46)

And since for any p ∈ [1,∞) and T > 0, Lp
(
(0, T );Lp(Ω)

) ∼= Lp
(
(0, T ) × Ω

)
,

(4.36), (4.39) and (4.40) are consequences of (4.42), (4.32), (4.38) (4.45), (4.46)
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and Cazenave [13, Proposition 1.2.1]. Finally, (4.35) comes from (4.42), (4.36)

and (2.11).

Lemma 4.8. Let Assumption 2.1 be fulfilled with additionally V ∈W 1,∞(Ω;R)+

W 1,pV (Ω;R). We use the notations of Lemma 4.6. Under the hypotheses of

Lemma 4.6, the function u given by Lemma 4.7 is the unique H1
0 -solution to

(1.1)–(1.3). In addition, u satisfies (2.23) and (2.24) with s = 0, according to

the different cases satisfied by V.

Proof. Let u be given by Lemma 4.7. Uniqueness comes from Proposi-

tion 2.6. By (4.27), (4.36) and (4.37), it remains to prove that u satisfy (1.1) in

D ′
(
(0,∞)× Ω

)
to show that u is an H1

0 -solution. Set X = H1
0 (Ω) ∩ Lm+1(Ω).

Let ϕ ∈ X and ψ ∈ C1
c

(
(0,∞);R

)
. Let T > 0 be such that suppψ ∈ (0, T ). Let

(εn)n∈N be given by Lemma 4.7. It follows from (4.29) and (4.5) that for any

n ∈ N,
∞∫

0

〈
i
∂uεn
∂t

+ ∆uεn + V uεn + agmεn
(
uεn
)
, ϕ

〉
X?,X

ψ(t) dt =

∞∫
0

〈
fεn(t), ϕ

〉
X?,X

ψ(t) dt,

and so,

T∫
0

(
〈−iuεn , ϕ〉L2(Ω),L2(Ω) ψ

′(t)− 〈∇uεn ,∇ϕ〉L2(Ω),L2(Ω) ψ(t) + 〈uεn , V ϕ〉L2(Ω),L2(Ω) ψ(t)

+
〈
agmεn

(
uεn
)
, ϕ
〉
L
m+1
m (Ω),Lm+1(Ω)

ψ(t)
)

dt =

T∫
0

〈
fεn(t), ϕ

〉
X?,X

ψ(t) dt.

By (4.27), (4.37), (4.40) and the dominated convergence Theorem, we can pass

to the limit in the above equality to obtain,

∞∫
0

〈
i
∂u

∂t
+ ∆u+ V u+ ag(u), ϕ

〉
X?,X

ψ(t) dt =

∞∫
0

〈
f(t), ϕ

〉
X?,X

ψ(t) dt.
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It follows that u satisfies (1.1) in L1
loc

(
(0,∞);X?

)
, hence in D ′

(
(0,∞) × Ω

)
.

So, u is the unique H1
0 -solution. Finally, (2.23) and (2.24) for s = 0 come from

(4.27), (4.30), (4.31), (4.37) and the lower semicontinuity of the norm. This

ends the proof of the lemma.

Proof of Theorem 2.10. Let u0 ∈ H1
0 (Ω) and let f satisfy (2.25). Let u be

given by Lemma 4.7. By Lemma 4.8, it remains to show that u satisfies (2.26).

Let X = H1
0 (Ω)∩Lm+1(Ω). Taking the X?−X duality product of (1.1) with iu,

and applying [7, Lemma A.5] and (2.9), we obtain (2.26). This ends the proof

of Theorem 2.10.

Proof of Theorems 2.9. Let u0 ∈ H1
0 (Ω) and f ∈ L1

loc

(
[0,∞);H1

0 (Ω)
)
. Let

(ϕε)ε>0 ⊂ D(Ω) and (fn)n∈N ⊂ D
(
[0,∞);H1

0 (Ω)
)

be such that ϕn
H1

0 (Ω)−−−−→
n→∞

u0 and fn
L1((0,T );H1

0 )−−−−−−−−→
n→∞

f, for any T > 0. For each n ∈ N, let un be the

unique H1
0 -solution to (1.1) such that un(0) = ϕn, given by Lemma 4.8. By

Proposition 2.6, (un)n∈N is a Cauchy sequence in C
(
[0, T ];L2(Ω)

)
, for any T > 0.

As a consequence, there exists u ∈ C
(
[0,∞);L2(Ω)

)
such that for any T > 0,

un
C([0,T ];L2(Ω))−−−−−−−−−→

n→∞
u. (4.47)

By definition, u is a weak solution and satisfies (1.1) in D ′
(
(0,∞)×Ω

)
(Propo-

sition 2.5). In particular, u fulfills (2.20). Still by Lemma 4.8, each un satisfies

(2.23) and (2.24) with s = 0 so that,

(un)n∈N is bounded in L∞loc

(
[0,∞);H1

0 (Ω)
)
. (4.48)
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We deduce from (2.13), (4.47) and (4.48) that u ∈ Cw

(
[0,∞);H1

0 (Ω)
)

and,

∀t > 0, un(t)−−−−⇀
n→∞

u(t) in H1
0 (Ω)w, (4.49)

Then u satisfies the first line of (2.22). By (1.1), (2.20), the first line of (2.22),

(4.3) and (4.5), u satisfies the second line of (2.22), and (1.1) in L1
loc

(
[0,∞);H−1(Ω)+

L
m+1
m (Ω)

)
. Passing to the limit, as n −→ ∞, in (2.23)–(2.24) satisfied by each

un, and using (4.49) and the lower semicontinuity of the norm, we obtain (2.23)–

(2.24) for u with s = 0. The general case follows by standard arguments of time

translation and uniqueness of the weak solutions. See, for instance, the end of

the proof of [8, Theorem 2.7].

5 On the H2-solutions

Definition 5.1. Assume (2.1), (2.2), (2.4) and (2.5). Let a ∈ C, f ∈ L1
loc

(
[0,∞);L2(Ω)

)
and u0 ∈ L2(Ω). We shall say that u is an H2-solution of (1.1)–(1.3) if u is an

H1
0 -solution of (1.1)–(1.3), if u ∈ W 1,m+1

m

loc

(
[0,∞);L2(Ω) + L

m+1
m (Ω)

)
and if for

almost every t > 0, ∆u(t) ∈ L2(Ω).

Theorem 5.2 (Existence and uniqueness of H2-solutions). Let Assump-

tion 2.1 be fulfilled and f ∈ W 1,1
loc

(
[0,∞);L2(Ω)

)
. If |Ω| < ∞ then for any

u0 ∈ H1
0 (Ω) for which ∆u0 ∈ L2(Ω), there exists a unique H2-solution u to

(1.1)–(1.3). Furthermore, u satisfies (1.1) in L∞loc

(
[0,∞);L2(Ω)

)
as well as the

following properties.

1. u ∈ C
(
[0,∞);H1

0 (Ω)
)
∩W 1,∞

loc

(
[0,∞);L2(Ω)

)
.
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2. ∆u ∈ Cw

(
[0,∞);L2(Ω)

)
and for any t > s > 0,

‖∇u(t)−∇u(s)‖L2(Ω) 6 2‖ut‖
1
2

L∞((s,t);L2(Ω))‖∆u‖
1
2

L∞((s,t);L2(Ω))|t− s|
1
2 .

(5.1)

3. The map t 7−→ ‖u(t)‖2L2(Ω) belongs to C1
(
[0,∞);R

)
and (2.26) holds for

any t > 0.

4. If f ∈W 1,1
(
(0,∞);L2(Ω)

)
then we have,

u ∈ Cb

(
[0,∞);H1

0 (Ω)
)
∩W 1,∞((0,∞);L2(Ω)

)
,

∆u ∈ L∞
(
(0,∞);L2(Ω)

)
.

Proof. Let f and u be as in the theorem. Since |Ω| < ∞, we have that

u0 ∈ Lm+1(Ω) and g(u0) ∈ L2(Ω). It follows that Theorem 2.11 applies. It

follows easily from (1.1) that u, which is given by Theorem 2.11, satisfies,

∆u ∈ L∞loc

(
[0,∞);L2(Ω)

)
, (5.2)

and (1.1) takes sense in L∞loc

(
[0,∞);L2(Ω)

)
. As a consequence, u is an H2-

solution. But any H2-solution is an H1
0 -solution, for which we have uniqueness,

so that u is the unique solution. Since ∆u ∈ C
(
[0,∞);H−2(Ω)

)
and u ∈

C
(
[0,∞);L2(Ω)

)
, Properties 1–3 are then obtained from (2.13), (5.2), (4.9) and

Properties 1–3 of Theorem 2.11. Finally, Property 4 is a direct consequence of

Property 4 of Theorem 2.11 and the equation (1.1).

Theorem 5.3 (Finite time extinction and time decay estimates). Let As-

sumption 2.1 be fulfilled with, in addition, |Ω| <∞. Let f ∈W 1,1
(
(0,∞);L2(Ω)

)
,
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u0 ∈ H1
0 (Ω) with ∆u0 ∈ L2(Ω) and let u be the unique H2-solution to (1.1)–

(1.3) given by Theorem 5.2. Finally, assume there exists a finite time T0 > 0

such that f satisfies (3.1).

1. If N 6 3 then u satisfies (3.2) with,

‖u(T0‖1−mL2(Ω)

(1−m)Im(a)|Ω| 1−m2
+ T0 6 T? 6 C‖u(T0)‖

(1−m)(4−N)
4

L2(Ω) ‖∆u‖
N(1−m)

4

L∞((0,∞);L2(Ω)) + T0,

(5.3)

for some C = C(Im(a), N,m).

2. If N = 4 then for any t > T0,

‖u(t)‖L2(Ω) 6 ‖u(T0)‖L2(Ω)e
−C(t−T0), (5.4)

where C = C(‖∆u‖L∞((0,∞);L2(Ω)), Im(a),m).

3. If N > 5 then for any t > T0,

‖u(t)‖L2(Ω) 6
‖u(T0)‖L2(Ω)(

1 + C‖u(T0)‖
(1−m)(N−4)

4

L2(Ω) (t− T0)

) 4
(1−m)(N−4)

, (5.5)

where C = C(‖∆u‖L∞((0,∞);L2(Ω)), Im(a), N,m).

4. If N 6 3 then there exists ε? = ε?(|a|, N,m) satisfying the following prop-

erty. If 

‖u0‖2(1−δ2)
L2(Ω) 6 ε?T0,

‖u0‖? + ‖f‖W 1,1((0,∞);L2(Ω)) 6 ε?,

‖f(t)‖2L2(Ω) 6 ε?
(
T0 − t

) 2δ2−1
1−δ2

+
,

(5.6)
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for almost every t > 0, where δ2 = m(4−N)+(4+N)
8 ∈

(
1
2 , 1
)

and ‖u0‖2? =

‖u0‖2H1
0 (Ω)

+ ‖∆u0‖2L2(Ω), then u satisfies (3.2) with T? = T0.

Theorem 5.4 (Asymptotic behavior). Let Assumption 2.1 be fulfilled with

|Ω| < ∞. Let f ∈ W 1,1
(
(0,∞);L2(Ω)

)
, u0 ∈ H1

0 (Ω) with ∆u0 ∈ L2(Ω) and let

u be the unique H2-solution given by Theorem 5.2. Then,

lim
t↗∞

‖u(t)‖W 1,q(Ω) = lim
t↗∞

‖u(t)‖Lp(Ω) = lim
t↗∞

d

dt
‖u(t)‖2L2(Ω) = 0, (5.7)

for any q ∈ (0, 2] and p ∈
(

0, 2N
N−2

]
(p ∈ (0,∞) if N = 2, p ∈ (0,∞] if N = 1).

6 Proofs of the finite time extinction and asymp-

totic behavior theorems

The proofs of Theorems 3.3 and 5.3 are very close to those of the Theorems 3.5,

3.6, 3.7, 3.9, 3.11 and 3.12 in [8]. For convenience of the reader, we indicate the

mains steps and refer to [8] for more details.

Proof of Theorems 3.3 and 5.3. By Gagliardo-Nirenberg’s inequality, there

exists CGN = C(m,N) such that for any v ∈ H1
0 (Ω) ∩ Lm+1(Ω),

‖v‖
(N+2)−m(N−2)

2

L2(Ω) 6 CGN‖v‖m+1
Lm+1(Ω)‖∇v‖

N(1−m)
2

L2(Ω) , (6.1)

‖v‖
(N+4)−m(N−4)

4

L2(Ω) 6 CGN‖v‖m+1
Lm+1(Ω)‖∆v‖

N(1−m)
4

L2(Ω) , if also ∆v ∈ L2(Ω). (6.2)

Now, suppose Assumptions 3.1 or the hypotheses of Theorem 5.3 are fulfilled.

We choose ` = 1 for the proof of Theorems 3.3, and ` = 2 for the proof of
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Theorems 5.3. We let,

δ` =
(N + 2`)−m(N − 2`)

4`
∈
(

1

2
, 1

)
, y(t) = ‖u(t)‖2L2(Ω), ∀t > 0,

α = Im(a)C−1
GN, α` = α‖∇`u‖−

N(1−m)
2`

L∞((0,∞);L2(Ω)), ∇2 = ∇.∇ = ∆.

By (2.26), (6.1)–(6.2) and Hölder’s inequality, we have for almost every t ∈

(T0,∞),

y′(t) + 2α`y(t)δ` 6 2‖f(t)‖L2(Ω)y(t)
1
2 , (6.3)

y′(t) > −2Im(a)|Ω|
1−m

2 y(t)
m+1

2 . (6.4)

Using Assumptions 3.1 and the hypotheses of Theorem 5.3, we obtain (3.2)–

(3.5) and (5.3)–(5.5) by integration (see also (2.10) in [7]). It remains to show

the last property of the both theorems. By (2.24), there exists ε? = ε?(|a|,m)

with,

ε? 6 min

{
(2δ` − 1)

− 2δ`−1

δ` (αδ`)
1

1−δ` (1− δ`)
2δ`−1

δ`(1−δ`) , α δ` (1− δ`)
}
, (6.5)

such that if (3.6) holds true then ‖∇u‖L∞((0,∞);L2(Ω)) 6 1. By (2.28)–(2.30),

(4.5) and (1.1), there exists ε? = ε?(|a|, N,m) satisfying (6.5) such that under

assumption (5.6), we have ‖∆u‖L∞((0,∞);L2(Ω)) 6 1. Let x? = (αδ`(1−δ`)T0)
1

1−δ`

and y? =
(
αδδ`` (1− δ`)

) 1
1−δ` . By (3.6), (5.6) and (6.5),

y(0) 6 x?. (6.6)

Applying Young’s inequality to (6.3) and using (3.6), (5.6) and (6.5), we obtain

y′(t) + αy(t)δ` 6 y?
(
T0 − t

) δ`
1−δ`
+ , (6.7)
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for almost every t > 0. By (6.6), (6.7) and [7, Lemma 5.2], y(t) = 0, for any

t > T0.

Proof of Theorem 3.2. By (2.19) and density, we may assume that f ∈

D
(
[0,∞);L2(Ω)

)
and u0 ∈ D(Ω). Then the result comes easily from Theo-

rem 2.11 and (2.26), by following the proof of [3, Theorem 3.5].

Proof of Theorem 5.4. Since |Ω| <∞, we may assume that q, p > 2. Applying

the proof of [8, Theorem 3.14], the result follows.

7 Concluding remarks

1. Do some H2-solutions exist in the sense of [3, 7, 8] (see also 1 of Re-

mark 2.4) for a ∈ D(m) (0 < m < 1) but with |Ω| =∞ ?

2. In [8], the existence of solutions is obtained with m = 0 and |Ω| < ∞.

The proof relies on the theory of maximal monotone operators on L2(Ω)

(Brezis [10]). Would it be possible to construct solutions but with |Ω| =

∞ ? Of course, the method should be different since the nonlinearity u
|u|

does need not belong to L2(Ω), and the notion of solutions might be

revisited.

3. The general method (that we shall call Method 1) to construct the so-

lutions in [8] is the following (in [3], the method is different and in [8],

the domain Ω is bounded which makes the situation easier). We regu-

larize the nonlinearity (4.2) with (4.1). We associate operators A and
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Amε , to the nonlinearities (4.2) and (4.1), respectively. We show that

(D(Amε ), Amε ) is maximal monotone in L2(Ω). With help of a priori esti-

mates, we may pass to the limit, as ε↘ 0, in the equation (I+Amε )uε = F

to show that (D(A), A) is maximal monotone in L2(Ω). This permits to

solve (1.1) with initial data in D(A), where, roughly speaking, D(A) =

H2(Ω)∩H1
0 (Ω)∩L2m(Ω). The crucial tool to make such a choice of D(A)

possible is Lemma 4.2 in Bégout [3]. Another method which would be pos-

sible (that we shall call Method 2) would be to show that (D(Amε ), Amε )

is maximal monotone in L2(Ω) and, with a priori estimates, to pass in

the limit, as ε ↘ 0, in the equation duε
dt + Amε uε = f(t, x), to solve

(1.1). We then obtain the existence of H2-solutions. With any of the

two methods, the existence of L2-solutions is obtained with help of a

density argument and a result of continuous dependance such as Propo-

sition 2.6. Finally, H1
0 -solutions are obtained with a density argument

and some a priori estimates obtained with help of [3, Lemma 4.2]. But

when a ∈ D(m), this lemma is no more valid. It follows that Method 1

fails to construct H2-solutions, as well as Method 2 (actually, these both

methods are equivalent). So we have to choose a larger domain D(A) as

(4.10), which gives Theorem 2.11 (by the way of Method 1), from which

the existence of L2-solutions follows. But due to the absence of a result

such as in [3, Lemma 4.2], we cannot establish estimates of the solution in

the H1
0 -norm to construct H1

0 -solutions by density. This is why we apply

Method 2 in this case. So, we may wonder if we might apply Method 2
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from the beginning, without using Method 1. The answer is no because

of the lack of a density result of smooth functions (roughly speaking,

H2(Ω) ∩ H1
0 (Ω)) ∩ L2m(Ω) is not dense in D(A) defined by (4.10)). Fi-

nally, note that if we impose a stronger assumption of the initial data in

Theorem 2.11, namely if we require that,

u0 ∈ H1
0 (Ω) ∩ L2m(Ω) with ∆u0 ∈ L2(Ω),

instead of,

u0 ∈ H1
0 (Ω) ∩ Lm+1(Ω) with ∆u0 + a|u0|−(1−m)u0 ∈ L2(Ω),

then Method 2 completely works and we do not need to require to Method 1.
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