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June 15, 2022

Abstract. We prove the continuous dependence, with respect to the initial datum of solu-
tions of the “quenching parabolic problem” ∂tu − ∆u + χ{u>0}u

−β = λup, with zero Dirichlet
boundary conditions, when β ∈ (0, 1), p ∈ (0, 1], λ ≥ 0 and χ{u>0} denotes the characteristic

function of the set of points (x, t) where u(x, t) > 0. Notice that the absorption term χ{u>0}u
−β

is singular and monotone decreasing which does not allow the application of standard mono-
tonicity arguments.
Subject classification: 35K55, 35K67, 35K65.
Key words: quenching type singular parabolic equations, continuous dependence, nonnegative
solutions, very weak solutions.

1 Introduction.

It is well-known that monotonicty methods allow to prove the existence and uniqueness of
semilinear parabolic problems

∂tu−∆u+ f(x, u) = 0

in presence of additive monotone non-decreasing or Lipschitz-continuous nonlinear terms (see,
e.g., the many references of the survey [16]). The extension to the case in which f(x, u) is
singular but monotone increasing as f(x, u) = −a(x)/uβ, for some a(x) > 0 and β > 0 was
treated in numerous previous papers in the literature.

The situation changes radically when the term f(x, u) is neither Lipschiz-continuous nor
monotone-nondecreasing, for instance because f(x, u) involves a singular decreasing dependence
on u. This is the case of the family of problems which some authors refer as “quenching problems”
since their solutions quench in a finite time (u(x, t) ≡ 0 for any t ≥ t∗ and any x, for some t∗ > 0).
This type of problems will be the object of the present paper. More precisely, we consider the

∗e-mail:ji diaz@mat.ucm.es
†e-mail: jacques.giacomoni@univ-pau.fr

1



problem

P(λ,u0)


∂tu−∆u+ χ{u>0}u

−β = λup in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),
u(·, 0) = u0(·) on Ω,

(1)

under the main structural assumptions

β ∈ (0, 1), p ∈ (0, 1], λ ≥ 0,

and
0 ≤ u0 ∈ L1(Ω),

where Ω is a smooth bounded domain in RN and χ{u>0} denotes the characteristic function of
the set of points (x, t) ∈ Ω× (0, T ) where u(x, t) > 0.

We recall that parabolic equations, involving as zero order term a negative power of the
unknown, are quite common in the literature since 1960. The pioneering paper by Fulks and
Maybee [25] was motivated by the study of the heat conduction in an electric medium. Perhaps,
one of the first papers dealing with the equation (1) was [32] in the study of Electric Current
Transient in Polarized Ionic Conductors (in fact for β = 1). The literature on this type of
problems increased then very quickly and models arising in other contexts were mentioned by
different authors, specially when regarding the equation of (1) as the limit case of models in
chemical catalyst kinetics (Langmuir-Hinshelwood model) or of models in enzyme kinetics (see
[14, 19] for the elliptic case and [2, 36], [34] [41] for the parabolic equation). See also many other
references in the survey [30] and the monograph [27]) and the extension to the case of quasilinear
diffusion operators made in [28], [6] [7], [8] and [9]). We also mention that the equation also
arises in the context of the study of space-charge problems ([38]), the Euler-Poisson system
in Maxwell-Vlasov problems ([1]) and in hydrodynamic quantum fluids ([26]). What makes
equations like (1) specially interesting is the fact that the solutions may raise to a free boundary
defined as the boundary of the set {(x, t): u(x, t) > 0} (see, e.g. [15]). In many contexts the
boundary conditions are not zero but, for instance u = 1 and thus the terminology of “quenching
problem” was used in the literature to denote the appearance of blow-up result on ∂tu for the
first time in which u = 0 (see, e.g. [32, 35, 36]). It can be proved (see, e.g. [14], [12]) that the
solution starts to growth near the boundary of its initial support (let us assume, for simplicity,
that is is given as the whole domain Ω) as

u(t, x) ≥ Cδ(x)ν0 with ν0 =
2

1 + β

where
δ(x) := dist(x, ∂Ω)

(which we shall denote simply as δ). It is also well-known that the uniqueness of solution may
fail (see Winkler [41]) except for the case in which there is not a free boundary (see [12]). In
particular, it is known that the solution is not necessarily continuously dependent on the norm
‖u0‖L∞(Ω).

The main purpose of this work is to obtain a result on the continuous dependence (on the
initial datum) of the solutions of P(λ,u0), extending and improving the results of [10] in which the
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existence of solutions (and some partial uniqueness result) was obtained in the class of solutions

M(ν) :=
{
u ∈ C

(
[0, T ];L1(Ω)

) ∣∣ ∀T ′ ∈ (0, T ), there exists C(T ′) > 0 such that :

∀t ∈ (0, T ′), u(t, x) ≥ C(T ′)δ(x)ν in Ω
}
, (2)

when

ν ∈
(

0,
2

1 + β

]
. (3)

To be more precise we introduce the notion of solution we shall use in this paper:

Definition 1 A function u ∈ C([0, T );L1(Ω)) is called a mild solution of (1) if χ{u>0}u
−β ∈

L1(Ω× (0, T )) and u fulfills the identity

u(·, t) = S(t)u0(·)−
∫ t

0
S(t− s)(χ{u>0}u

−β(·, s)− λup)ds, in L1(Ω), (4)

where S(t) is the L1(Ω)-semigroup corresponding to the Laplace operator with homogeneous
Dirichlet boundary conditions.

We recall some results already proved in the literature (see, e.g. [10]):

Theorem 2 ( [10]) Let 0 ≤ u0 ∈ L1(Ω). Then,
i) there exists the (global) maximal nonnegative mild solution u of (1), i.e. such that for any

other mild solution v of (1) we have 0 ≤ v ≤ u in Ω × [0, T ]. Moreover, for any 0 < τ < T ,
u ∈ L2(τ, T ;W 1,2

0 (Ω)) ∩ L∞(Ω× (τ, T )).
ii) there exists a finite time, T ∗ > 0 such that u(·, t) vanishes in L1(Ω) for t > T ∗. Moreover,

T ∗ only depends on ‖u0‖L1(Ω), N and |Ω|.
iii) u is the unique solution to problem (1) in the class of mild solutions that have the same

quentching time T ∗.

We also point out that it is possible to deal with a more general class of initial data u0 ∈
L1(Ω; δ) by working in the class of very weak solutions (see, e.g. the general references [3], [18],
[37]). Some regularity results involving the distance to the boundary, for a different class of
equations including some gradient terms, can be found in [23] and [24].

Our main result gives the continuous dependence of solutions with respect to the initial data
(implying, obviously, the uniqueness of solutions) as well as a smoothing effect with respect to
the initial datum which improves, for N ≥ 3, the standard smoothing effect associated to the
linear heat equation (see Remark 8 below). We will use strongly some Hilbertian techniques,
so we will consider initial data in L1(Ω) ∩ L2(Ω; δ) and we will prove that if two solutions are
in the class u, v ∈ M(ν). i.e. with δ−νu, δ−νv ≥ C then we can estimate the L2(Ω)-norm of
δ−γ [u(t)− v(t)]+ for suitable γ ∈ (0, 1] in terms of the L2(Ω; δ)-norm of [u0 − v0]+. Notice that
this implies, authomatically, an estimate on the L2(Ω)-norm of [u(t) − v(t)]+ (see Remark 9
below). We conjecture, from the above comments, that the result below holds for initial data in
L2(Ω; δ), but we will not develop this point of view in this paper.
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Theorem 3 Let u0, v0 ∈ L1(Ω) ∩ L2(Ω; δ). Let u, v be weak solutions of P(λ,u0) and P(λ,v0),

respectively such that u, v ∈ M(ν) for some ν ∈
(

0, 2
1+β

]
. Then, for any T ′ ∈ (0, T ) and for

any t ∈ (0, T ′), we have∥∥δ−γ [u(t)− v(t)]+
∥∥
L2(Ω)

≤ Ct−
2γ+1

4 ‖[u0 − v0]+‖L2(Ω;δ) , (5)

with
γ := min {ν(1 + β), 1} (6)

and for some constant C > 0 independent of T ′ if constants C(T ′) given in the condition
u, v ∈M(ν) are independent of T ′. In particular, u0 ≤ v0 implies that for any t ∈ [0, T ],

u(t, ·) ≤ v(t, ·) a.e. in Ω

and ∥∥δ−γ (u(t)− v(t))
∥∥
L2(Ω)

≤ Ct−
2γ+1

4 ‖u0 − v0‖L2(Ω;δ) . (7)

As an application, we will prove the uniqueness of the positive solution for the following
stationary problem with a singular absorption:

P(λ,F,β,p)

{
−∆u+ χ{u>0}u

−β = λ1u
p + λ2F (x) in Ω,

u = 0 on Ω,

where λ1, λ2 ≥ 0 and
F ∈ L1(Ω), F ≥ 0 a.e. in Ω, (8)

improving or completing different results in the literature (see, e.g. [19], [12], [29] and [17]).

2 On the continuous dependence

For the proof of Theorem 3 we shall need some well-known auxiliary results. The first one is a
singular version of the Gronwall’s inequality which is specially useful in the study of non-globally
Lipschitz perturbations of the heat equation (see [4, p. 288], [5, Lemma 8.1.1, p. 125]).

Lemma 4 Let T > 0, A ≥ 0, 0 ≤ a, b ≤ 1 and let f be a non-negative function with f ∈ Lp(0, T )
for some p > 1 such that p′.max{a, b} < 1 (where 1

p + 1
p′ = 1). Consider a non-negative function

ϕ ∈ L∞(0, T ) such that, for almost every t ∈ (0, T ),

ϕ(t) ≤ At−a +

∫ t

0
(t− s)−bf(s)ϕ(s) ds. (9)

Then, there exists C > 0 only depending on T, a, b, p and ‖f‖Lp(0,T ) such that, for almost every
t ∈ (0, T ),

ϕ(t) ≤ ACt−a. (10)

We shall also use some regularizing effects properties satisfied by the semigroup S(t) of the
heat equation with zero Dirichlet boundary conditions.

Lemma 5
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1. There exists C > 0 such that, for any t > 0 and any u0 ∈ L2(Ω),

‖∇S(t)u0‖L2(Ω) ≤ Ct−
1
2 ‖u0‖L2(Ω). (11)

2. There exists C > 0 such that, for any t > 0 and any u0 ∈ L1(Ω),

‖S(t)u0‖L2(Ω) ≤ Ct−
N
4 ‖u0‖L1(Ω). (12)

3. There exists C > 0 such that, for any t > 0, any m ∈ (0, 1] and any u0 ∈ L2(Ω; δ2m),

‖S(t)u0‖L2(Ω) ≤ Ct−
m
2 ‖u0‖L2(Ω,δ2m). (13)

4. There exists C > 0 such that, for any t > 0, any p ∈ [1,+∞) and any u0 ∈ Lp(Ω, δ),

‖S(t)u0‖Lp(Ω) ≤ Ct
− 1

2p ‖u0.‖Lp(Ω,δ) (14)

Proof: Properties 1 and 2 are classical (see e.g. [40, remarque III.5] or [5, Proposition 3.5.7,
Proposition 3.5.2]). Property 3 was established in [12, Proposition 1.12] in terms of the function
v0 := u0δ

m, i.e.
‖S(t)δ−mv0‖L2(Ω) ≤ Ct−

m
2 ‖v0‖L2(Ω).

Property 4 was proved in [39, Remark 2.1-(c), p. 179]. �
Proof: (of Theorem 3) By the constant variations formula, we know that for any t ∈ [0, T ],

u(t)− v(t) = S(t)(u0 − v0) +

∫ t

0
S(t− s) (h(u(s))− h(v(s))) ds in Ω, (15)

where h(u) := λup − χ{u>0}u
−β. By the convexity of the function u 7→ u−β, the concavity of

the function u 7→ up and the assumption that u, v ∈M(ν), we deduce that

h(u)− h(v) ≤
(
C1δ

−(β+1)ν + C2δ
(1−p)ν

)
(u− v)+ ≤ Cδ−(β+1)ν(u− v)+ in Ω. (16)

Thus, if we denote w := u− v, we get for any τ, t ∈ [0, T ] with τ ≤ t

w+(t) ≤ S(t− τ)w+(τ) + C

∫ t

τ
S(t− s)δ−(β+1)νw+(s) ds. (17)

Now we adapt to our framework some arguments of the proof of [12, Lemma 1.11, p. 1823]
concerning other forcing nonlinear terms (see Remark 6). We multiply (17) by the weight δ−γ ,
with γ ∈ [0, 1] to be chosen later, and take the L2-norms. Then,

‖δ−γw+(t)‖L2(Ω) ≤ ‖δ−γS(t− τ)w+(τ)‖L2(Ω) + C

∫ t

τ
‖S(t− s)δ−[(β+1)ν+γ]w+(s)‖L2(Ω) ds.

Let us fix s, t > 0 and let us call ψ := S(t− s)δ−(β+1)νw+(s). Then, by Hölder inequality,

‖δ−γψ‖2L2(Ω) =

∫
Ω

ψ2

δ2γ
dx ≤

(∫
Ω

ψ2

δ2
dx

)γ (∫
Ω
ψ2 dx

)1−γ
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(note that the limit cases ψ ≡ 0 and ψ ≡ 1 are allowed). Then, applying Hardy inequality,

‖δ−γψ‖L2(Ω) ≤ C‖∇ψ‖
γ
L2(Ω)

‖ψ‖1−γ
L2(Ω)

.

By property 1 of Lemma 5, to t−s
2 , we get

‖δ−[(β+1)ν+γ]S(t− s)w+(s)‖L2(Ω) ≤ C(t− s)−
γ
2 ‖S

(
t− s

2

)
δ−(β+1)νw+(s)‖L2(Ω). (18)

Analogously, using property 4 of Lemma 5,

‖δ−γS(t)w+(0)‖L2(Ω) ≤ Ct−
γ
2 ‖S

(
t

2

)
w+(0)‖L2(Ω) ≤ Ct−( γ2 + 1

4)‖w+(0)‖L2(Ω;δ). (19)

In order to apply the singular Gronwall’s inequality, we must relate the weights δ−γ and δ−(β+1)ν

keeping in mind that γ ∈ [0, 1]. To do that, we apply property 3 of Lemma 5 for some m ∈ [0, 1].
We shall take

(β + 1)ν = γ +m. (20)

Indeed, if (β+1)ν ∈ (1, 2], then we take γ = 1, m = (β+1)ν−1 and we apply point 3 of Lemma
5 to the initial datum:

‖S
(
t− s

2

)
δ−(β+1)νw+(s)‖L2(Ω) = ‖S

(
t− s

2

)
δ−(m+1)w+(s)‖L2(Ω) ≤ C(t−s)−

m
2 ‖δ−γw+(s)‖L2(Ω).

(21)
On the other hand, if (β + 1)ν ∈ [0, 1], we can take γ = (β + 1)ν and thus, since S(t − s) is a
contraction in L2(Ω), we get

‖S
(
t− s

2

)
δ−(β+1)νw+(s)‖L2(Ω) = ‖S

(
t− s

2

)
δ−γw+(s)‖L2(Ω) ≤ ‖δ−γw+(s)‖L2(Ω), (22)

which corresponds to (20) with m = 0. In other words,

γ = min{1, (β + 1)ν}

and
m = max{(β + 1)ν − 1, 0}.

Collecting the previous inequalities, we arrive to

‖δ−γw+(t)‖L2(Ω) ≤ Ct−
2γ+1

4 ‖w+(0)‖L2(Ω;δ) + C

∫ t

0
(t− s)−

m
2 ‖δ−γw+(s)‖L2(Ω).

Thus, we can apply Lemma 4 with a = 2γ+1
4 ∈

[
1
4 ,

3
4

]
, b = m

2 and A = C‖w+(0)‖L2(Ω;δ) to
deduce that

‖δ−γw+(t)‖L2(Ω) ≤ Ct−
2γ+1

4 ‖w+(0)‖L2(Ω;δ).

�
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Remark 6 The comparison principle was proved in [12] for a generalized version of equation
P(λ,u0) in the sense that the right hand side term was replaced by a function f : [0,+∞) −→
[0,+∞) satisfying:

0 ≤ f ∈ C2 ([0,+∞)) , (23)

f is concave, increasing and lim
u→+∞

f(u)

u
= 0. (24)

Note that f(u) := up does not satisfy (23) if p ∈ (0, 1). In fact, condition (24) is neither satisfied
if p = 1. It was also shown in [12] that for the mere purpose to get the comparison u ≤ v, the
growth condition near ∂Ω is only required for the ”supersolution” v (in fact, conclusion i) in
[12, Lemma 1.11] remains true if u is a subsolution and v a supersolution i.e. we can replace
the symbol ”=” in the equation of P(λ,u0) by ”≤” (in the case of u) and/or by ”≥” (in the case
of v).

Remark 7 Sufficient conditions on the initial datum u0 ensuring that there exists some weak
solution of P(λ,u0) belonging to the classM(ν) were given in [12, Theorem 1.10] under conditions
(23) and (24). Similar results can be obtained in our framework (p ∈ (0, 1)) by applying the super
and subsolutions built in [14], [19] and [18].

Remark 8 The smoothing effect, with respect to initial datum, given by formula (5) is sharper
than the one given in (12) for the solutions of the linear heat equation. Indeed, it is easy to check
that 2γ + 1 ≤ N , for N ≥ 3. Moreover the exponent in (5) depends on the value of exponent β
of the singular term.

Remark 9 It is clear that the estimate of the L2(Ω)-norm of δ−γ [u(t) − v(t)]+ given in (5)
implies, automatically an estimate on the L2(Ω)-norm of [u(t) − v(t)]+. Indeed, it suffices to
write

‖[u(t)− v(t)]+‖L2(Ω) = ‖δγδ−γ [u(t)− v(t)]+‖L2(Ω) ≤
‖δγ‖ ‖δ−γ [u(t)− v(t)]+‖L2(Ω) ≤ C(Ω) ‖δ−γ [u(t)− v(t)]+‖L2(Ω) .

As mentioned in the Introduction, we can apply the above result to the case of suitable
elliptic problems:

Corollary 10 Assume β ∈ (0, 1), p ∈ (0, 1) and either

λ1 = 0 and λ2 > 0 is large enough (25)

or
λ1 > 0 is large enough (and λ2 ≥ 0). (26)

Then, problem P(λ,F,β,p) has at most a positive solution.

Proof: Assume (25). By [19, Corollary 1, p. 1335], there exists λ∗ > 0 such that if λ > λ∗

then, there exists a positive solution u of the problem P(λ,F,β,p). Precisely, if λ is large enough
it was shown that any positive solution must verify

u(x) ≥ λϕ1(x)
2

1+β in Ω,
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with ϕ1 the first eigenfunction of −∆ with homogeneous Dirichlet conditions. Then, assume that
λ > λ∗ is large enough and that there are two different solutions u∞ and v∞ of P(λ,F,β,p). By
taking u0 = u∞ and v0 = v∞ as initial data in P(λ,u0) and P(λ,v0), since u∞ and v∞ are obviously
respective solutions of the mentioned parabolic problems, we get that C(T ′) is independent of
T ′ and thus u∞ − v∞ satisfies the same estimate as in the case F (x) ≡ 0, in particular we get∥∥δ−1 (u∞ − v∞)+

∥∥
L2(Ω)

≤ Ct−
2γ+1

4 ‖(u∞ − v∞)+‖L2(Ω,δ).

Making t↗ +∞ and reversing the role of u∞ and v∞, we get that u∞ = v∞.
For the case (26), it was proved in [13, Lemma 3.11, p. 321] that any positive solution must
satisfy the growth condition for some ν ∈ (1, 2

1+β ) and thus, arguing as above (but now with
γ ∈ (0, 1)), we arrive at the same conclusion. �

Remark 11 The study of the limit case λ∗ (concerning assumption (25)) is quite special since
the maximal solution u∗∞ is not always strictly positive. The growth estimate with ν = 2

1+β (and
thus the strict positivity) was proved in [13, Theorem 2.4, p. 307] under the additional condition

3β + 1 + 2
√
β2 + β

β + 1
>
N

2
.

An example showing that this condition is almost optimal was given in [11, Theorem 3.2].

Remark 12 In the one-dimensional case it is possible to give the exact multiplicity of positive
solutions (see [31] for the case of (25) and F (x) ≡ F0 > 0; see also [17] for (26) with F (x) = 0,
β ∈ (0, 1

q+1) and the q-Laplacian as diffusion operator).
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Gakkōtosho, Tokyo, 501–512, 1993.

[36] D. Phillips, Existence of solutions of quenching problems, Appl. Anal., 24(4) (1987), 253–
264.

[37] J.-M. Rakotoson, Regularity of a very weak solution for parabolic equations and applica-
tions, Adv. Differential Equations, 16(9-10) (2011), 867–894.

10



[38] A. Rokhlenko and J.L. Lebowitz, Space charge limited 2-d electron flow between two flat
electrodes in a strong magnetic field. Phys. Rev. Lett., 91 (2003), 085002, 1–4.

[39] Ph. Souplet, Optimal regularity conditions for elliptic problems via Lpδ-spaces, Duke Math.
J., 127(1) (2005), 175–192.
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