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ABSTRACT
The main goal of this paper is to characterize the change of structural
behavior (i.e. the appearance of the so-called ‘strange terms’) arising in the
homogenization process when applied to distributedmicroscopic chemical
reactions taking place on fixed-bed nanoreactors, at the microscopic level,
on the boundary of the particles of critical size. The presence of non-

homogeneous distributed functions bjε(x) of the reaction kinetics may be
originated by many different reasons. The case of quick oscillation is often
due to own structure of the fixed bed reactor since the flux of the fluid
acts on each particle in a non-homogeneous way. In some other cases, the

non-homogeneous distributed functions bjε(x) of the reaction kinetics is
artificially provoked in order to control a certain desired global effect. Our
main result gives a complete classification of the strange terms according

the assumed periodicity on the distributed functions bjε(x) of the reaction
kinetic.
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1. Introduction

After the introduction of the basic mathematical elements of homogenization theory (see, e.g. the
monographs [1,2]) it was found that some changes may appear in the structural modeling of the
homogenized problem, for suitable ‘critical size’ of the elements configuring the ‘micro-structured’
material. It seems that the first result in that direction was presented in the pioneering paper by
V. Marchenko and E. Hruslov [3]. A well-known different presentation of the appearance of those
‘strange terms’ was due to Cioranescu and Murat [4]. Both articles dealt with linear equations with
Neumann and Dirichlet boundary conditions, respectively. Since those dates to our days many
papers have been devoted to consider different formulations: more general elliptic partial differential
equations (possibly of quasilinear type), Robin and other types of boundary conditions of different
nature, etc. It is impossible to mention all of them here (a few of them will be referenced in the
rest of this Introduction) but the reader may imagine that the nature of this ‘strange term’ may be
completely different according to the peculiarities of the formulation in consideration (something
that was already indicated at the end of the Introduction of the paper by Cioranescu and Murat [4]).
For some recent results concerning microscopic nonlinear reactions on particles of general form, we
send the reader to our paper [5], where he can find many other references on this type of problems.

The main goal of this paper is to characterize the change of structural behavior (i.e. the so called
‘strange terms’) arising in the homogenization process when applied to distributed microscopic
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2 J. I. DÍAZ ET AL.

chemical reactions taking place on fixed-bed nanoreactors, at the microscopic level, on the boundary
of the particles. So, our main interest now is to study how the x−dependence in the microscopic
kinetics may lead to completely different reaction–diffusion homogenized equations and to charac-
terize the different ‘strange terms’ which arise in terms of the different periodicity of the distributed
function bjε(x) of the reaction kinetics. As a matter of fact, in this paper we shall only pay attention
to the case of a linear kinetics in order to emphasize the effects of the distributed function bjε(x).

The microscopic particles Gj
ε (also identified as the microscopic perforation sets in the case of

other porous media) were diffeomorphic to a ball, their diameters are aε , aε = C0ε
α , α = n

n−2 .
We consider different types of coefficients depending on x: quick oscillating (in the sense that the
periodicity is the size of the catalytic particle), slow oscillation (in the sense that periodicity of the
position of the miscoscopic catalytic particle) and independent of small parameters. In all this cases
we construct the limit problem and prove some convergence of solutions as ε → 0. We mention
that the presence of non-homogeneous distributed functions bjε(x) of the reaction kinetics may be
originated by many different reasons. The case of quick oscillation is often due to own structure of
the fixed bed reactor since the flux of the fluid acts on each particle in a non-homogeneous way (for
instance due to some privilegiate directions of the flux). In some other cases the non-homogeneous
distributed functions bjε(x) of the reaction kinetics is artificially provocated in order to control a
certain desired global effect (see, e.g. the detailed exposition made in the monograph [6]). Many
variants in the formulation of the model problem considered in this paper are possible but we prefer
to present here only some sharp answers for a simple formulation. Similar results can be found in
[7–11].

2. Statement of results

Let � be a bounded domain in R
n n ≥ 3 with a piecewise smooth boundary ∂�. The case n = 2

requires some technical modifications which will not be presented here. Let G0 be a domain in
Y = ( − 1

2 ,
1
2 )

n, such that G0 is a compact set diffeomorphic to a ball. Let C0, ε > 0 and set

aε = C0ε
α for α = n

n − 2
. (1)

For δ > 0 and B a set let δB = {x | δ−1x ∈ B }. Assume that ε is small enough so that aεG0 ⊂ εY . For
j ∈ Z

n we define

Pjε = εj, Yj
ε = Pjε + εY , Gj

ε = Pjε + aεG0.

We define the set of admissible indexes as

ϒε= {j ∈ Z
n : d(εj, ∂�) ≥ ε

√
n}.

Notice that |ϒε| ∼= dε−n where d > 0 is a constant. Our problem will be set in the following domain:

�ε = � \ Gε where Gε =
⋃
j∈ϒε

Gj
ε.

Finally, let
∂�ε = Sε ∪ ∂�, Sε = ∂Gε.

The aim of this paper is to consider the asymptotic behavior of the following problem, which models
the steady-state of a diffusion–reaction process, where the reaction is taking place on the boundary
of the particles Gj

ε , while the diffusion is taking place on �ε :
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−�uε = f , x ∈ �ε ,
∂νuε + ε−γ bjε(x)uε = 0, x ∈ ∂Gj

ε , j ∈ ϒε ,
uε = 0, x ∈ ∂�.

(2)

Here f ∈ L2(�), bjε ∈ C(∂Gj
ε) and

bjε(x) ≥ b0 > 0,

for some constant b0. We will consider three possible cases for bjε :

• Quickly oscillating coefficients. In this case we will assume that

bjε(x) = b

(
x − Pjε
aε

)
(3)

for a function b ∈ C(∂G0). This case corresponds, in the modeling, to particles which have
some regions more favorable to the reaction than other, hence the reaction coefficient is not
constant along the boundary. The periodicity of bjε and G

j
ε is the same, and this corresponds to

the presence of function b(y) on G0 driving the coefficient of the linear reaction term.
• ε-periodic coefficient case. In this case

bjε(x) = b

(
x − Pjε

ε

)
(4)

for a Y-periodic function b ∈ C1(Y).
• Independent of ε case. Here we consider

bjε(x) = b(x) (5)

for a function b ∈ C1(�). This case correspond, in the modeling, to a case in which the
environment � is more favorable for the reaction in some spatial regions. In the case of fixed
bed reactor with a fluid, this inhomogeneity can be caused, for example, by spatial difference of
temperatures in the fluid.

In [5] the authors consider the case of boundary conditions

∂νuε + ε−γ σ (uε) = 0

in which the nonlinearity σ does not depend on x. Our intention is to present similar findings when
σ does depend on x, but is linear on u (i.e. σε(x, u) = bε(x)u). This allows us to conjecture in Remark
7.4 what the expected behavior in the case σε(x) = bε(x)σ (u).

We will make use of the auxiliary function ŵ = ŵ(y; ξ , g) where ξ ∈ R, g ∈ C(∂G0), the solution
of the problem ⎧⎪⎨⎪⎩

−�ŵ = 0, y ∈ R
n \ G0

∂νŵ + C0ξg(y)ŵ = C0ξg(y), y ∈ ∂G0

ŵ → 0, |y| → 0.
(6)

This auxiliary function will provide a capacity-like term defined as

λ(G0, ξ , g) =
∫

∂G0

∂νy ŵ(y; ξ , g)dσy. (7)
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For more details on the appearance of this term we refer the reader to [5], in which the function ŵ is
the solution of a nonlinear exterior problem. With this definition, we will show that:

2.1. Homogenization of the linear problem

Theorem 2.1: Let n ≥ 3,α = γ = n
n−2 , uε be the solution of (2) and let bε be of one of the above-

mentioned forms (3)–(5). Then, there exists an extension ũε ∈ H1
0 (�) such that ũε⇀u in H1

0 (�),
where u is the unique solution of {

−�u + λ0(x)Cn−2
0 u = f , �,

u = 0, ∂�.
(8)

and λ0(x) is given by:

• Quickly oscillating coefficients:
λ0(x) = λ(G0, 1, b( · )). (9)

That is, in (6) we take ξ = 1 and g(y) = b(y).
• ε-oscillating coefficients:

λ0(x) = λ(G0, 1, b(0)). (10)
That is, in (6) we take ξ = 1 and g(y) = b(0).

• Independent of ε case:
λ0(x) = λ(G0, b(x), 1). (11)

That is, in (6) we take ξ = b(x) and g(y) = 1.

Remark 2.2: Notice that in (9) and (10) λ0 does not depend on x, whereas in (11) it might.
Remark 2.3: Even though, in this case, α = γ we have preserved both constants for consistency in
the notation the non-critical cases α < n

n−2 and critical cases when −� is replaced by −�p.

2.2. Homogenization of the associated spectral problem

The spectral problem corresponding to the boundary value problem (2) can be considered as in [12].
Theorem 2.4: Let n ≥ 3, α = γ = n

n−2 and let {λmε } be the nondecreasing sequence of eigenvalues
of the eigenvalue problem ⎧⎪⎨⎪⎩

−�umε = λmε umε , x ∈ �ε ,
∂νumε + ε−γ bjε(x)umε = 0, x ∈ ∂Gj

ε , j ∈ ϒε ,
umε = 0, x ∈ ∂�,

where bjε(x) is of one of the mentioned forms (3), (4) or (5). Let {λm} be the nondecreasing sequence of
eigenvalues of the eigenvalue problem{

−�um + λ0(x)Cn−2
0 um = λmum, x ∈ �,

um = 0, x ∈ ∂�,

and

• λ0(x) = λ(G0, 1, b) if b
j
ε(x) is given by (3),

• λ0(x) = λ(G0, 1, b(0)) if b
j
ε(x) is given by (4),

• λ0(x) = λ(G0, b(x), 1) if b
j
ε(x) is given by (5).

Then λmε → λm, as ε → 0.
Results of similar nature can be found in [13].
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3. Existence, bounds and asymptotic behaviour of uε assuming bjε ∈ C(∂Gj
ε)

Let us consider the weak solution of the problem (2), i.e. the function

uε ∈ H1(�ε , ∂�) = {u ∈ C∞(�ε) : dist(supp u, ∂�) > 0}H
1(�ε)

which satisfies the integral identity∫
�ε

∇uε∇ϕdx + ε−γ
∑
j∈ϒε

∫
∂Gj

ε

bjε(x)uεϕds =
∫

�ε

f ϕdx (12)

for all ϕ ∈ H1(�ε , ∂�).
Taking ϕ = uε in (12) we deduce that

‖∇uε‖L2(�) ≤ K ,
∑
j∈ϒε

∫
∂Gj

ε

bjε(x)u2εds ≤ Kεγ . (13)

Here and in what follows K will be some constant which does not depend on ε.

3.1. Extension of solutions

We consider the family of extension operators

Pε : H1(�ε , ∂�) → H1
0 (�), (14)

such that Pεv = v a.e. in �ε and

‖∇Pεv‖L2 ≤ ‖∇v‖L2 ∀v ∈ H1(�ε , ∂�).

For the details of the construction see [1,14].

3.2. Existence of a limit

Due to the previous statement the sequence ũε = Pεuε is a bounded sequence in H1
0 (�). Therefore,

it is weakly convergent in H1
0 (�). There exists u ∈ H1

0 (�) such that

ũε⇀u in H1
0 (�) as ε → 0.

From here on, we will simply use uε instead of ũε .

3.3. From integrals on ∂Gj
ε to integrals on ∂T ε

4
. The auxiliary functions wj

ε

Let us study the asymptotic behavior of the solution uε as ε → 0. To study the surface integral in the
left part of (12) we need some auxiliary functions. To do this, we introduce the function wj

ε as the
solution of the problem, for sufficiently small ε,⎧⎪⎪⎨⎪⎪⎩

�wj
ε = 0, if x ∈ Tj

ε
4

\ Gj
ε ,

∂νxw
j
ε + ε−γ bjε(x)w

j
ε = ε−γ bjε(x), if x ∈ ∂Gj

ε ,
wj

ε = 0, if x ∈ ∂Tj
ε
4
,

(15)
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where Tj
r = {x ∈ R

n : |x − Pjε| ≤ r}. This function is harmonic, and it is clear that wj
ε = 0 is a

subsolution and wj
ε = 1 is a supersolution of problem (15). Therefore

0 ≤ wj
ε ≤ 1. (16)

We set

Wε(x) =

⎧⎪⎨⎪⎩
wj

ε(x) x ∈ Tj
ε
4

\ Gj
ε , j ∈ ϒε ,

0 x ∈ R
n \ ⋃

j∈ϒε

Tj
ε
4
.

(17)

Let us prove some properties of Wε . If one takes w
j
ε as a test functions in the integral identity for

problem (15):∫
Tj

ε
4
\Gj

ε

| ∇wj
ε |2 dx + ε−γ

∫
∂Gj

ε

bjε(x) | wj
ε |2 ds = ε−γ

∫
∂Gj

ε

bjε(x)w
j
εds.

From the properties of bjε and Cauchy’s inequality we derive

‖∇wj
ε‖2L2(Tj

ε
4
\Gj

ε)
+ ε−γ b0

∫
∂Gj

ε

| wj
ε |2 ds ≤ ε−γ

(
Cb0 | ∂Gj

ε | +b0
2

‖wj
ε‖2L2(∂Gj

ε)

)
.

Thus,

‖∇wj
ε‖2L2(Tj

ε
4
\Gj

ε)
+ ε−γ b0

2
‖wj

ε‖2L2(∂Gj
ε)

≤ Kan−2
ε = Kεn,

and
‖∇Wε‖2L2(�ε)

+ ε−γ b0
2

‖Wε‖2L2(∂Sε)
≤ K .

Using Friedrich’s inequality we obtain that

‖wj
ε‖2L2(Tj

ε
4
\Gj

ε)
≤ ε2K‖∇wj

ε‖2L2(Tj
ε
4
\Gj

ε)
.

Hence, ‖Wε‖2L2(�ε)
≤ Kε2 and

W̃ε⇀0 as ε → 0 in H1(�), (18)
W̃ε → 0 as ε → 0 in L2(�), (19)

where W̃ε = PεWε . Let W̃εϕ be the test function in (12), then:∫
�ε

∇uε∇(W̃εϕ)dx + ε−γ
∑
j∈ϒε

∫
∂Gj

ε

bjε(x)uεW̃εϕds =
∫

�ε

f W̃εϕdx. (20)

We can rewrite this in the form:∫
�ε

∇W̃ε∇(uεϕ)dx −
∫

�ε

uε∇W̃ε∇ϕdx +
∫

�ε

W̃ε∇ϕ∇uεdx+

+ ε−γ
∑
j∈ϒε

∫
∂Gj

ε

bjε(x)uεw
j
εϕds =

∫
�ε

f W̃εϕdx.
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From the Green’s formula we obtain∑
j∈ϒε

∫
∂Tj

ε
4

(∂νw
j
ε)uεϕds +

∑
j∈ϒε

∫
∂Gj

ε

(∂νw
j
ε)uεϕds −

∫
�ε

uε∇W̃ε∇ϕdx +
∫

�ε

W̃ε∇ϕ∇uεdx

+ ε−γ
∑
j∈ϒε

∫
∂Gj

ε

bjε(x)uεw
j
εϕds =

∫
�ε

f W̃εϕdx.

Using the boundary conditions on ∂Gj
ε we have∑

j∈ϒε

∫
∂Tj

ε
4

(∂νw
j
ε)uεϕds + ε−γ

∑
j∈ϒε

∫
∂Gj

ε

bjε(x)uεϕds =
∫

�ε

f W̃εϕdx

+
∫

�ε

uε∇W̃ε∇ϕdx −
∫

�ε

W̃ε∇ϕ∇uεdx

or,

ε−γ
∑
j∈ϒε

∫
∂Gj

ε

bjε(x)uεϕds = −
∑
j∈ϒε

∫
∂Tj

ε
4

(∂νw
j
εuε)ϕds +

∫
�ε

f W̃εϕdx (21)

+
∫

�ε

uε∇W̃ε∇ϕdx −
∫

�ε

W̃ε∇ϕ∇uεdx.

From (18), (19) we obtain that

lim
ε→0

∫
�ε

f W̃εϕdx = 0,

lim
ε→0

∫
�ε

uε∇W̃ε∇ϕdx = 0, (22)

lim
ε→0

∫
�ε

W̃ε∇ϕ∇uεdx = 0.

The aim of the next sections will be to characterize the limit of∑
j∈ϒε

∫
∂Tj

ε
4

(∂νw
j
ε)uεϕds

in the different cases.

4. The capacity term. The auxiliary function ŵ

4.1. The auxiliary function ŵ

Since b > 0 we will always consider that ξ , g(y) > 0. Existence and uniqueness of ŵ follow in a
straightforward way. The first thing we must point out is that ŵ is a classical solution of the problem,
and hence a harmonic function. Again, the constant functions 0 and 1 are a sub and supersolution,
respectively, therefore

0 ≤ ŵ ≤ 1.

We have that
∂νŵ = C0ξg(y)(1 − ŵ) ≥ 0
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in ∂G0 since ξ , g(y) > 0. Therefore
λ(G0, ξ , g) > 0. (23)

Let us define
K0 = max

z∈∂G0
|y|n−2. (24)

Since ŵ ≤ 1 we have that
0 ≤ ŵ ≤ K0

|y|n−2 in ∂G0.

By the maximum principle
0 ≤ ŵ ≤ K0

|y|n−2 in R
n \ G0. (25)

Remark 4.1: Let us note that ŵ(y; ξ , g) is continuous with respect to ξ . Let us consider the function

V(y; ξ1, ξ2) = ŵ(y; ξ1, 1) − ŵ(y; ξ2, 1). (26)

Due to the maximum principle and the Robin type boundary condition (see, e.g. [15, Theorem 29])
it holds that

|V(y; ξ1, ξ2)| ≤ 1
|ξ1| max

y∈∂G0
|(ξ1 − ξ2)(1 − ŵ(y; ξ2, 1))|.

Since 0 ≤ ŵ ≤ 1 then
|ŵ(y; ξ1, 1) − ŵ(y; ξ2, 1)| ≤ 1

|ξ1| |ξ1 − ξ2|. (27)

4.2. The auxiliary function ŵj
ε

We will use the following estimate on

ŵj
ε(x; ξ

j
ε , g) = ŵ

(
x − Pjε
aε

; ξ
j
ε , g

)
. (28)

It is clear that this function satisfies⎧⎪⎨⎪⎩
−�ŵj

ε = 0, x ∈ R
n \ Gj

ε ,
∂νŵ

j
ε + ξ

j
εg

j
ε(x)ŵ

j
ε = ξ

j
εg

j
ε(x), x ∈ ∂Gj

ε ,
ŵj

ε → 0, |x| → +∞,

where ξ
j
ε ∈ R and

gjε(x) = g

(
x − Pjε
aε

)
.

Due to the properties of ŵ we have that

0 ≤ ŵj
ε(x) ≤ K∣∣∣∣ x−Pjε

aε

∣∣∣∣n−2 ≤ K
an−2
ε

|x − Pjε|n−2
≤ K

εn

|x − Pjε|n−2
. (29)

We also point out that

max
∂Tj

ε
4

∣∣∣∂νx ŵ
j
ε

(
x
)∣∣∣ ≤ K

a−1
ε

| x
aε

|n−1 = Kan−2
ε ε1−n ≤ Kε.
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4.3. The auxiliary function vjε = ŵj
ε − wj

ε

We will make use of the auxiliary function

vjε(x; ξ
j
ε , g

j
ε) = ŵj

ε(x; ξ
j
ε , g

j
ε) − wj

ε.

We have that vjε(x; u, g) is the solution of the following problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−�vjε = 0, x ∈ Tj

ε
4

\ Gj
ε ,

∂νv
j
ε + ε−γ bjε(x)v

j
ε

= −ε−γ (bjε(x) − ξ
j
εg

j
ε)(1 − ŵj

ε), x ∈ ∂Gj
ε ,

vjε = ŵj
ε , x ∈ ∂Tj

ε
4
.

(30)

We will consider a different choice of ξ jε and gjε in each of the following cases:

• Quickly oscillating coefficients: ξ jεg
j
ε(x) = bjε(x),

• ε-periodic coefficients: ξ jεg
j
ε(x) = bjε(0),

• Coefficients independent of ε: ξ jεg
j
ε(x) = b(Pjε).

In all the previous cases we have that

|bjε − ξ
j
εg

j
ε| ≤ K |x − Pjε| ≤ Kε, x ∈ Tj

ε
4

\ Gj
ε.

It is easy to check that ŵj
ε is a supersolution of this problem. Hence, via the comparison principle

0 ≤ vjε(x) ≤ ŵj
ε(x). (31)

We have that

|vjε(x)| ≤ |ŵj
ε(x)| ≤ K∣∣∣∣ x−Pjε

aε

∣∣∣∣ = Kan−2
ε

|x − Pjε|n−2
≤ K

an−2
ε

εn
≤ Kε2, ∀x ∈ Tj

ε
4

\ Tj
ε
8
.

Applying the estimates of derivatives of harmonic function and the maximum principle we get for
x0 ∈ ∂T ε

8
and Tx0

r a ball of radius r centered at x0, that:

∣∣∣∂xi vjε(x0)∣∣∣ = 1∣∣∣Tx0
ε
16

∣∣∣
∣∣∣∣∣∣
∫
Tx0

ε
16

∂vjε
∂xi

dx

∣∣∣∣∣∣ = K
εn

∣∣∣∣∣∣
∫

∂Tx0
ε
16

vjενids

∣∣∣∣∣∣ .
≤ Kε. (32)

Finally, let us indicate how to obtain a L2 estimate for vjε from L2 estimates on ∇vjε . We start by
recalling the following estimate:
Lemma 4.2: Let O be a bounded domain in R

n. Then there exists a constant C > 0 such that, for all
f ∈ H1(O), ∫

O
|f |2dy ≤ C

(∫
O

|∇f |2dy +
∫

∂O
|f |2ds

)
. (33)

Sincemany similar results hold, for the convenience of the reader and for the sake of completeness,
we provide an indication of the proof.
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Sketch of Proof: Assume, towards a contradiction, that the inequality is false. Let fn ∈ H1(O) be
such that the inequality is reversed and n appears instead ofC. Let vn = un‖un‖L2 . One shows that vn⇀0
in H1(O) and ‖vn‖L2 = 1. This is a contradiction due to the compact embedding of H1 in L2. �
Lemma 4.3: Let f ∈ H1(Tj

ε
4

\ Gj
ε). Then

‖f ‖2
L2(T ε

4
\Gj

ε)
≤ C

(
ε2‖∇f ‖2

L2(T ε
4
\Gj

ε)
+ ε‖f ‖2

L2(∂Tj
ε
4
)

)
. (34)

In particular,

‖vjε‖2L2(T ε
4
\Gj

ε)
≤ C

(
ε2‖∇vjε‖2L2(T ε

4
\Gj

ε)
+ εn+4

)
. (35)

Proof: Let f̃ ∈ H1(Tj
ε
4
) be an extension of f as in [14]. Let f̂ (y) = f̃ (εj + εy) for y ∈ O = T0

1
4
.

Applying the previous lemma and the change in variable x = εj + εy we have that

∫
Tj

ε
4

∣∣̃f ∣∣2 dx ≤ C

⎛⎝ε2
∫
Tj

ε
4

∣∣∇ f̃
∣∣2 dx + ε

∫
∂Tj

ε
4

∣∣̃f ∣∣2 ds
⎞⎠ . (36)

Therefore

∫
Tj

ε
4
\Gj

ε

∣∣f ∣∣2 dx ≤
∫
Tj

ε
4

∣∣̃f ∣∣2 dx ≤ C

⎛⎝ε2
∫
Tj

ε
4

∣∣∇ f̃
∣∣2 dx + ε

∫
∂Tj

ε
4

∣∣̃f ∣∣2 ds
⎞⎠

≤ C

⎛⎝ε2
∫
Tj

ε
4
\Gj

ε

∣∣∇f
∣∣2 dx + ε

∫
∂Tj

ε
4

∣∣f ∣∣2 ds
⎞⎠ .

Since |vjε| ≤ |ŵj
ε| ≤ Kε2 we have that∫

∂Tj
ε
4

|vjε|2ds ≤ ε4εn−1 = εn+3. (37)

This completes the proof.

5. Case of quickly oscillating coefficients

In this case, we set ξ jε = 1 and g(y) = b(y). Hence, in this section we will write ŵ(y) = ŵ(y; 1, b( · )).
Lemma 5.1: The following estimate holds:

∑
j∈ϒε

∥∥∥wj
ε − ŵj

ε

∥∥∥2
H1(Tj

ε
4
\Gj

ε)
≤ Kε2.

Proof: We use vjε as the test function:∫
Tj

ε
4
\Gj

ε

| ∇vjε |2 dx + ε−γ

∫
∂Gj

ε

bjε(x) | vjε |2 ds = −
∫

∂Tj
ε
4

∂νv
j
εŵ

j
ε(x)ds.
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Therefore,

‖∇vjε‖2L2(Tj
ε
4
\Gj

ε)
+ ε−γ

∫
∂Gj

ε

bjε(x) | vjε |2 ds = −
∫
Tj

ε
4
\Tj

ε
8

∇vjε∇ŵj
εdx +

∫
∂Tj

ε
8

∂νv
j
εŵ

j
εds. (38)

Then ∣∣∣∣∣∣
∫

∂Tj
ε
8

∂νv
j
εŵjds

∣∣∣∣∣∣ ≤ Kε‖ŵ‖L∞(∂Tj
ε
8
)
| ∂Tj

ε
8

|= Kεn+2.

From (38) we have

‖∇vjε‖2L2(Tj
ε
4
\Gj

ε)
+ ε−γ

∫
∂Gj

ε

bjε(x) | vjε |2 ds ≤ Kεn+2.

Due to Lemma 4.3
‖vjε‖2L2(Tj

ε
4
\Gj

ε)
≤ Kεn+4.

Then, adding over j ∈ ϒε we obtain∑
j∈ϒε

‖∇vjε‖2L2(Tj
ε
4
\Gj

ε)
+ ε−γ

∑
j∈ϒε

∫
∂Gj

ε

bjε(x) | vjε |2 ds ≤ Kε2,

and ∑
j∈ϒε

‖vjε‖2L2(Tj
ε
4
\Gj

ε)
≤ Kε4. (39)

These estimates complete the proof.

To obtain the homogenized problem we need the following lemma:
Lemma 5.2: Let λ0 be given by (9) and let hε , h ∈ H1

0 (�) such that hε⇀h in H1
0 (�). Then∣∣∣∣∣∣

∑
j∈ϒε

∫
∂Tj

ε
4

(∂νx ŵ
j
ε)hεds + Cn−2

0 λ0

∫
�

hdx

∣∣∣∣∣∣ → 0

as ε → 0, where ν is the unit outward normal vector to ∂Tj
ε
4
.

Remark 5.3: Notice that, in this case, λ0 does not depend on j or x.
Proof of Lemma 4.2: Let us consider the auxiliary problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−�θ
j
ε = με , in Ŷ j

ε = Yj
ε \ Tj

ε
4
,

−∂νθ
j
ε = ∂νŵ

j
ε , on ∂Tj

ε
4
,

∂νθ
j
ε = 0, on ∂Yj

ε \ ∂Tj
ε
4
,

〈θ jε〉Ŷ j
ε

= 0.

(40)

The constant με is defined from the solvability conditions of problem (40):

μεε
n(1 − 2−2nω(n)) = −

∫
∂Tj

ε
4

∂νŵ
j
εdsx =

∫
∂Gj

ε

∂νŵ
j
εdsx = an−2

ε

∫
∂G0

∂νy ŵ(y)dsy ,
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therefore

με = an−2
ε λ0

(1 − 2−2nω(n))εn
= Cn−2

0 λ0

1 − 2−2nω(n)
,

where ω(n) is the area of the unit sphere surface. From the integral identity for the problem (40) we
obtain ∫

Ŷ j
ε

∣∣∣∇θ
j
ε

∣∣∣2 dx = με

∫
Ŷε

θ
j
εdx +

∫
∂Tj

ε
4

(∂νŵ
j
ε)θ

j
εds.

From some estimates proved in [16] we have∫
Ŷ j

ε

| θ
j
ε | dx ≤ Kε

n
2 ‖θ jε‖L2(Ŷ j

ε)
≤ Kε

n
2+1‖∇θ

j
ε‖L2(Ŷ j

ε)
.

Using the estimates proved in [16] we deduce∫
∂Tj

ε
4

∣∣∣∂νx ŵ
j
εθ

j
ε

∣∣∣ ds ≤ Kε

∫
∂Tj

ε
4

| θ
j
ε | ds

≤ Kε
n−1
2 +1‖θ jε‖

L2
(

∂Tj
ε
4

)

≤ Kε
n+1
2

{
ε− 1

2 ‖θ jε‖L2(Ŷ j
ε

) + ε
1
2 ‖∇θ

j
ε‖L2(Ŷ j

ε

)}
≤ Kε

n+2
2 ‖∇θ

j
ε‖L2(Ŷ j

ε

).
Thus, we have

‖∇θ
j
ε‖2

L2
(
Ŷ j

ε

) ≤ Kεn+2.

Using this estimate we obtain that

∑
j∈ϒε

∫
Ŷ j

ε

| ∇θ
j
ε |2 dx ≤ Kε2.

Due to the definition of θ jε we have that∣∣∣∣∣∣
∑
j∈ϒε

∫
∂Tj

ε
4

(∂νŵ
j
ε)hεds + με

∑
j∈ϒε

∫
Ŷ j

ε

hεdx

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
j∈ϒε

∫
Ŷ j

ε

∇θ
j
ε∇εhdx

∣∣∣∣∣∣ ≤ Kε‖hε‖H1(�).

Finally, from [1, Corollary 1.7] and the fact, that με

∣∣∣Y \ T 1
4

∣∣∣ = Cn−2
0 λ0, we derive that∣∣∣∣∣∣με

∑
j∈ϒε

∫
Ŷ j

ε

hεdx − Cn−2
0 λ0

∫
�

hdx

∣∣∣∣∣∣ → 0,

as ε → 0. �
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5.1. Proof of Theorem 2.1

From (21) we have

lim
ε→0

ε−γ
∑
j∈ϒε

∫
∂Gj

ε

bjε(x)uεϕds = − lim
ε→0

∑
j∈ϒε

∫
∂Tj

ε
4

(∂νw
j
ε)uεϕds.

By Lemma 5.1, (39) and the Green’s formula we obtain

∑
j∈ϒε

∣∣∣∣∣∣
∫

∂Tj
ε
4

(∂νŵ
j
ε − ∂νw

j
ε)hεds

∣∣∣∣∣∣ =
∑
j∈ϒε

∣∣∣∣∣∣
∫

∂Tj
ε
4

(∂νv
j
ε)hεds

∣∣∣∣∣∣
=

∑
j∈ϒε

∣∣∣∣∣∣
∫
Tj

ε
4
\Gj

ε

∇vjε∇hεdx −
∫

∂Gj
ε

(∂νv
j
ε)hεds

∣∣∣∣∣∣
=

∑
j∈ϒε

∣∣∣∣∣∣
∫
Tj

ε
4
\Gj

ε

∇vjε∇hεdx

∣∣∣∣∣∣ + ε−γ
∑
j∈ϒε

∣∣∣∣ ∫
∂Gj

ε

bjεv
j
εhεds

∣∣∣∣
≤ Kε‖hε‖H1(�ε)

+ Kε
n+2
2

∑
j∈ϒε

(
ε−γ

∫
∂Gj

ε

bjε(x)h2εds
) 1

2
.

Taking into account that hε = uεϕ and using estimates (13), we have:

∑
j∈ϒε

∣∣∣∣∣∣
∫

∂Tj
ε
4

(∂νŵ
j
ε − ∂νw

j
ε)uεϕds

∣∣∣∣∣∣ ≤ K

⎛⎜⎝ε + ε
n+2
2 − n

2

⎛⎝∑
j∈ϒε

ε−γ

∫
∂Gj

ε

bjε(x)h2εds

⎞⎠
1
2
⎞⎟⎠ .

≤ Kε.

Hence, from Lemma 5.2 we derive that

lim
ε→0

ε−γ
∑
j∈ϒε

∫
∂Gj

ε

bjε(x)uεϕds = − lim
ε→0

∑
j∈ϒε

∫
∂Tj

ε
4

(∂νw
j
ε)uεϕds

= − lim
ε→0

∑
j∈ϒε

∫
∂Tj

ε
4

(∂νŵ
j
ε)uεϕds

= Cn−2
0 λ0

∫
�

uϕdx. (41)

Applying Lemmas 5.1 and 5.2 , (22) and (41) we obtain that u satisfies the identity∫
�

∇φ∇udx + Cn−2
0 λ0

∫
�

uφdx =
∫

�

f φdx

for all φ ∈ H1
0 (�).

6. Case of ε - periodic coefficients

Now, we set ξ jε = b(0) and gjε ≡ 1.
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Lemma 6.1: The following estimate holds

∑
j∈ϒε

‖wj
ε(x) − ŵj

ε(x)‖2H1(Tj
ε
4
\Gj

ε)
≤ K max{ε2, ε 4

n−2 }.

Proof: In this case, we have that

∂νv
j
ε = −ε−γ b(0)vjε − ε−γ (bjε(x) − b(0))wj

ε + ε−γ (bjε(x) − b(0)) if x ∈ ∂Gj
ε. (42)

We use vjε as the test function in the integral identity associated to (42):∫
Tj

ε
4
\Gj

ε

| ∇vjε |2 dx + ε−γ b(0)
∫

∂Gj
ε

| vjε |2 ds = ε−γ

∫
∂Gj

ε

(b(0) − bε(x))w
j
εv

j
εds+

+ ε−γ

∫
∂Gj

ε

(bε(x) − b(0))vjεds +
∫

∂Tj
ε
4

∂νv
j
εŵ

j
ε(x)ds,

so

‖∇vjε‖2L2(Tj
ε
4
\Gj

ε)
+ ε−γ b(0)

∫
∂Gj

ε

| vjε |2 ds

= ε−γ

∫
∂Gj

ε

(b(0) − bε(x))w
j
εv

j
εds + ε−γ

∫
∂Gj

ε

(bε(x) − b(0))vjεds

+
∫
Tj

ε
4
\Tj

ε
8

∇vjε∇ŵj
εdx −

∫
∂Tj

ε
8

∂νv
j
εŵ

j
εds. (43)

We have that

∣∣∣∣∣∣
∫

∂Tj
ε
8

∂νv
j
εŵ

j
εds

∣∣∣∣∣∣ ≤ Kε‖ŵj
ε‖L∞(∂Tj

ε
8
)
| ∂Tj

ε
8

|= Kεn+2.

Using the smoothness of function b we have that |bε(x) − b(0)| ≤ K
∣∣ x
ε

∣∣ and thus we deduce

ε−γ

∣∣∣∣ ∫
∂Gj

ε

(bε(x) − b(0))wj
εv

j
εds

∣∣∣∣ ≤ ε−γ

(
a2εε

−2Cb(0)/4

∫
∂Gj

ε

| wj
ε |2 ds + b(0)

4

∫
∂Gj

ε

| vjε |2 ds
)

= ε−γ b(0)
4

∫
∂Gj

ε

| vjε |2 ds + ε−2aεCb(0)/4

∫
∂Gj

ε

| wj
ε |2 ds,

and

ε−γ

∣∣∣∣∫
∂Gj

ε

(bε(x) − b(0))vjεds
∣∣∣∣ ≤ ε−γ

(
Cb(0)/4a2εε

−2 | ∂Gj
ε | +b(0)

4

∫
∂Gj

ε

| vjε |2 ds
)

≤ Cb(0)/4ε
−2anε + ε−γ b(0)

4

∫
∂Gj

ε

| vjε |2 ds.
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From (43) we have

‖∇vjε‖2L2(Tj
ε
4
\Gj

ε)
+ ε−γ b(0)

∫
∂Gj

ε

| vjε |2 ds

≤ K
(

εn+2 + ε−2anε + ε−2aεCb(0)/4

∫
∂Gj

ε

| wj
ε |2 ds

)
+ ε−γ b(0)

2

∫
∂Gj

ε

| vjε |2 ds.

Therefore

‖∇vjε‖2L2(Tj
ε
4
\Gj

ε)
+ ε−γ b(0)

2

∫
∂Gj

ε

| vjε |2 ds

≤ K
(

εn+2 + ε−2anε + ε−2aεCb(0)/4

∫
∂Gj

ε

| wj
ε |2 ds

)
.

Due to Lemma 4.3

‖vjε‖2L2(Tj
ε
4
\Gj

ε)
≤ Kεn+4.

Then, adding over all j ∈ ϒε we obtain

∑
j∈ϒε

‖∇vjε‖2L2(Tj
ε
4
\Gj

ε)
+ ε−γ b(0)

2

∑
j∈ϒε

∫
∂Gj

ε

| vjε |2 ds ≤ K max{ε2, ε 4
n−2 },

and ∑
j∈ϒε

‖vjε‖2L2(Tj
ε
4
\Gj

ε)
≤ Kε4. (44)

This estimates complete the proof.

To identify the homogenized problemweneed the following lemma, the proof of this result follows
similarly to proof of Lemma 5.2.
Lemma 6.2: Let λ0 be given by (10) (notice that λ0 is independent of j) and let hε , h ∈ H1

0 (�) be
such that hε⇀h in H1

0 (�). Then∣∣∣∣∣∣
∑
j∈ϒε

∫
∂Tj

ε
4

(
∂νx ŵ

j
ε

)
hεds + Cn−2

0 λ0

∫
�

hdx

∣∣∣∣∣∣ → 0

as ε → 0, where ν is the unit outward normal vector to ∂Tj
ε
4
.

6.1. Proof of Theorem 2.1

From (21) we have

lim
ε→0

ε−γ

∫
Sε

bε(x)uεϕds = − lim
ε→0

∑
j∈ϒε

∫
∂Tj

ε
4

(∂νw
j
ε)uεϕds.
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By Lemma 3, (44) and the Green’s formula we obtain

∑
j∈ϒε

∣∣∣∣∣∣
∫

∂Tj
ε
4

(∂νŵ
j
ε(x) − ∂νw

j
ε)uεϕds

∣∣∣∣∣∣ =
∑
j∈ϒε

∣∣∣∣∣∣
∫

∂Tj
ε
4

∂νv
j
εuεϕds

∣∣∣∣∣∣
=

∑
j∈ϒε

∣∣∣∣∣∣
∫
Tj

ε
4
\Gj

ε

∇vjε∇(uεϕ)dx −
∫

∂Gj
ε

∂νv
j
εuεϕds

∣∣∣∣∣∣
=

∑
j∈ϒε

∣∣∣∣∣∣
∫
Tj

ε
4
\Gj

ε

∇vjε∇(uεϕ)dx+ + ε−γ b(0)
∫

∂Gj
ε

vjεuεϕds

+ ε−γ

∫
∂Gj

ε

(bε(x) − b(0))wj
εuεϕds −ε−γ

∫
∂Gj

ε

(bε(x) − b(0))uεϕds
∣∣∣∣ .

From Cauchy’s inequality, for smooth ϕ we have

ε−γ
∑
j∈ϒε

∣∣∣∣ ∫
∂Gj

ε

(bε(x) − b(0))wj
εuεϕds

∣∣∣∣
≤ Kaεε

−1
∑
j∈ϒε

(
ε−γ

∫
∂Gj

ε

| wj
ε |2 ds

) 1
2
(

ε−γ

∫
∂Gj

ε

| uεϕ |2 ds
) 1

2

≤ Kaεε
−1ε

n
2
∑
j∈ϒε

(
ε−γ

∫
∂Gj

ε

| uεϕ |2 ds
) 1

2

≤ Kaεε
−1

(
ε−γ

∫
Sε

| uε |2 ds
) 1

2 ≤ Kε
2

n−2 .

Also

ε−γ
∑
j∈ϒε

∣∣∣∣ ∫
∂Gj

ε

(bε(x) − b(0))uεϕds
∣∣∣∣ ≤ Kε−γ aεε

−1
∑
j∈ϒε

√
| ∂Gj

ε |
(∫

∂Gj
ε

| uεϕ |2 ds
) 1

2

≤ Kε−γ a
n+1
2

ε ε−1ε− n
2

(∫
Sε

| uε |2 ds
) 1

2 ≤ Kε
2

n−2 .

Therefore

∣∣∣∣∣∣
∑
j∈ϒε

∫
∂Tj

ε
4

(∂νŵ
j
ε − ∂νw

j
ε)uεϕds

∣∣∣∣∣∣ ≤ K(ε‖uεϕ‖H1(�ε)
+ ε

2
n−2 ).

Taking into account estimates (13), we have that∣∣∣∣∣∣
∑
j∈ϒε

∫
∂Tj

ε
4

(∂νŵ
j
ε − ∂νw

j
ε)uεϕds

∣∣∣∣∣∣ ≤ K max{ε, ε 2
n−2 }.
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So, from Lemma 6.2 we deduce that

lim
ε→0

ε−γ

∫
Sε

bεuεϕds = − lim
ε→0

∑
j∈ϒε

∫
∂Tj

ε
4

(∂νw
j
ε)uεϕds = − lim

ε→0

∑
j∈ϒε

∫
∂Tj

ε
4

(∂νŵ
j
ε)uεϕds

= Cn−2
0 λ

∫
�

u0ϕdx. (45)

Applying the previous lemmas and (45), we obtain that u satisfies the identity∫
�

∇φ∇udx + Cn−2
0 λ0

∫
�

uφdx =
∫

�

f φdx

for all φ ∈ H1
0 (�). Hence u ∈ H1

0 (�) is a weak solution of the problem{
−�u0 + Cn−2

0 λ0u0 = f x ∈ �,
u0 = 0 x ∈ ∂�.

(46)

7. Case of coefficients independent of ε

In this case g(y) = 1, andwewill change the value of ξ . Hence in this sectionwewill use the simplified
notation ŵ = ŵ(y; ξ) and

λ(ξ) = λ(G0, ξ , y).

Lemma 7.1: The estimate∑
j∈ϒε

‖wj
ε(x) − ŵj

ε(x; b(Pjε))‖2H1(Tj
ε
4
\Gj

ε)
≤ Kε

2(n−1)
n−2

holds.

Proof: Let us note that 0 ≤ vjε(x) ≤ ŵj
ε(x; b(Pjε)). For the rest of the proof

vjε(x) = ŵj
ε(x; b(Pjε)) − wj

ε(x).

We use vjε as the test function in the integral identity of the weak formulation of its problem:∫
Tj

ε
4
\Gj

ε

| ∇vjε |2 dx + ε−γ

∫
∂Gj

ε

b(x) | vjε |2 ds = ε−γ

∫
∂Gj

ε

(b(Pjε) − b(x))ŵj
ε(x)v

j
εds

+ ε−γ

∫
∂Gj

ε

(b(x) − b(Pjε))v
j
εds +

∫
∂Tj

ε
4

∂νv
j
εŵds,

so

‖∇vjε‖2L2(Tj
ε
4
\Gj

ε)
+ ε−γ

∫
∂Gj

ε

b(x) | vjε |2 ds = ε−γ

∫
∂Gj

ε

(b(Pjε) − b(x))ŵj
ε(x)v

j
εds

+ ε−γ

∫
∂Gj

ε

(b(x) − b(Pjε))v
j
εds +

∫
Tj

ε
4
\Tj

ε
8

∇vjε∇ŵj
εdx +

∫
∂Tj

ε
8

∂νv
j
εŵ

j
εds. (47)
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We have that | vjε |≤| ŵj
ε |≤ Kε2. Applying the estimates on derivatives of harmonic function and

the maximum principle we get that, if x0 ∈ ∂Tj
ε
8
, then

| ∂xi v
j
ε(x0) | = 1

| Tx0
ε
16

|

∣∣∣∣∣∣
∫
Tx0

ε
16

∂vjε
∂xi

dx

∣∣∣∣∣∣
= K

εn

∣∣∣∣∣∣
∫

∂Tx0
ε
16

vjενids

∣∣∣∣∣∣ ≤ Kε,

where Tx
τ is the ball of radius τ centered at x. Hence, | ∇vjε |≤ Kε on ∂Tj

ε
8
. Then∣∣∣∣∣∣

∫
∂Tj

ε
8

(∂νv
j
ε)ŵ

j
εds

∣∣∣∣∣∣ ≤ Kε‖ŵ‖L∞(∂Tj
ε
8
)
| ∂Tj

ε
8

|= Kεn+2.

Using that |b(x) − b(Pjε)| ≤ Kaε for any x ∈ ∂Gj
ε , and that 0 ≤ ŵ ≤ 1 we deduce

ε−γ

∣∣∣∣ ∫
∂Gj

ε

(b(Pjε) − b(x))ŵj
ε(x)v

j
εds

∣∣∣∣ ≤ ε−γ

(
Cb0/4

∫
∂Gj

ε

| Pjε − x |2 ds + b0
4

∫
∂Gj

ε

| vjε |2 ds
)

≤ ε−γ b0
4

∫
∂Gj

ε

| vjε |2 ds + aεCb0/4 | ∂Gj
ε |,

and

ε−γ

∣∣∣∣ ∫
∂Gj

ε

(b(x) − b(Pjε))v
j
εds

∣∣∣∣ ≤ ε−γ

(
a2εCb0/4 | ∂Gj

ε | +b0
4

∫
∂Gj

ε

| vjε |2 ds
)

≤ Cb0/4a
n
ε + ε−γ b0

4

∫
∂Gj

ε

| vjε |2 ds.

From (47) we have

‖∇vjε‖2L2(Tj
ε
4
\Gj

ε)
+ ε−γ b0

∫
∂Gj

ε

| vjε |2 ds ≤ K(anε + εan−1
ε ) + ε−γ b0

2

∫
∂Gj

ε

| vjε |2 ds.

Hence

‖∇vjε‖2L2(Tj
ε
4
\Gj

ε)
+ ε−γ b0

2

∫
∂Gj

ε

| vjε |2 ds ≤ K(anε + εan−1
ε ) ≤ Kεan−1

ε . (48)

Due to Lemma 4.3 we have
‖vjε‖2L2(Tj

ε
4
\Gj

ε)
≤ Kεn+4.

Then, adding over j ∈ ϒε we obtain∑
j∈ϒε

‖∇vjε‖2L2(Tj
ε
4
\Gj

ε)
+ ε−γ b0

2

∑
j∈ϒε

∫
∂Gj

ε

| vjε |2 ds ≤ Kε
2(n−1)
n−2 ,

and ∑
j∈ϒε

‖vjε‖2L2(Tj
ε
4
\Gj

ε)
≤ Kε4. (49)
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This estimates complete the proof.

To identify the homogenized problem we need the following lemma.
Lemma 7.2: Let λ0(x) be given by (11) and hε , h ∈ H1

0 (�) be such that hε⇀h in H1
0 (�). Then∣∣∣∣∣∣

∑
j∈ϒε

∫
∂Tj

ε
4

(
∂νx ŵ

j
ε(x; b(Pjε))

)
hds + Cn−2

0

∫
�

λ0(x)hdx

∣∣∣∣∣∣ → 0

as ε → 0, where ν is an unit outward normal vector to ∂Tj
ε
4
.

Proof: Let us consider the auxiliary problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−�θ

j
ε = μ

j
ε , Ŷ j

ε ,
−∂νθ

j
ε = ∂νŵ

j
ε(x; b(Pjε)), ∂Tj

ε
4
,

∂νθ
j
ε = 0 ∂Yj

ε ,
〈θε〉Yj

ε
= 0.

(50)

The constant μj
ε is defined from the solvability conditions of problem (50)

μ
j
εε

n(1 − 2−2nω(n)) = −
∫

∂T0
ε
4

∂νŵ
j
ε(x; b(Pjε))dsx

=
∫

∂Gε

∂νŵ
j
ε(x; b(Pjε))dsx

= an−2
ε

∫
∂G0

∂νy ŵ(b(Pjε), y)dsy.

Hence

μ
j
ε = an−2

ε λ(b(Pjε))
(1 − 2−2nω(n))εn

= Cn−2
0 λ(b(Pjε))

1 − 2−2nω(n)
.

From the integral identity for the problem (50) we obtain∫
Ŷ j

ε

| ∇θ
j
ε |2 dx = μ

j
ε

∫
Ŷ j

ε

θ
j
εdx +

∫
∂Tj

ε
4

(
∂νŵ

j
ε(x; b(Pjε))

)
θ
j
εds.

From some estimates proved in [16] we have∫
Yj

ε

| θ
j
ε | dx ≤ Kε

n
2 ‖θ jε‖L2(Ŷ j

ε)
≤ Kε

n
2+1‖∇θ

j
ε‖L2(Ŷ j

ε)
.

Taking into account that max
∂Tj

ε
4

| ∂νx ŵ
j
ε(x; b(Pjε)) |≤ Kε, and using the estimates proved in [16]

we deduce ∫
∂Tj

ε
4

| ∂νx ŵ
j
ε(x; b(Pjε))θ jε | ds ≤ Kε

∫
∂Tj

ε
4

| θ
j
ε | ds ≤ Kε

n−1
2 +1‖θ jε‖L2(∂Tj

ε
4
)

≤ Kε
n+1
2 {ε− 1

2 ‖θ jε‖L2(Ŷ j
ε)

+ √
ε‖∇θ

j
ε‖L2(Ŷ j

ε)
}

≤ Kε
n+2
2 ‖∇θ

j
ε‖L2(Ŷ j

ε)
.
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Thus, we have

‖∇θ
j
ε‖2L2(Ŷ j

ε)
≤ Kεn+2.

Using this estimate we obtain ∑
j∈ϒε

∫
Ŷ j

ε

| ∇θ
j
ε |2 dx ≤ Kε2.

According to the definition of θ jε we obtain∣∣∣∣∣∣
∑
j∈ϒε

∫
∂Tj

ε
4

∂ν

(
ŵj

ε(x; b(Pjε))
)
hds +

∑
j∈ϒε

∫
Ŷ j

ε

μ
j
εhdx

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
j∈ϒε

∫
Ŷ j

ε

∇θ
j
ε∇hdx

∣∣∣∣∣∣ ≤ Kε‖h‖H1(�).

To identify

lim
ε→0

∑
j∈ϒε

∫
Ŷ j

ε

μ
j
εhdx

we need some additional analysis; from the expression for με we deduce∣∣∣∣∣∣
∑
j∈ϒε

∫
Ŷ j

ε

μ
j
εhdx − Cn−2

0
| Y \ T0

1
4

|
∑
j∈ϒε

∫
∪Ŷ j

ε

λ(b(x))hdx

∣∣∣∣∣∣
≤
∣∣∣∣∣∣ Cn−2

0
| Y \ T0

1
4

|
∑
j∈ϒε

∫
Ŷ j

ε

(λ(b(Pjε)) − λ(b(x)))hdx

∣∣∣∣∣∣ .
From estimate (27) we have∣∣∣∣∑

j∈ϒε

∫
Ŷ j

ε

(λ(b(Pjε)) − λ(b(x)))hdx
∣∣∣∣

≤ ‖h‖L1(�) max
j

∣∣∣∣∫
∂G0

∂νy ŵ(y; b(Pjε)) − ∂νy ŵ(y; b(x))dsy
∣∣∣∣

= ‖h‖L1(�)

× max
j∈ϒε

∣∣∣∣C0

∫
∂G0

(
b(x)ŵ(y; b(x)) − b(Pjε)ŵ

j
ε(y; b(Pjε)) + b(Pjε) − b(x)

)
dsy

∣∣∣∣
≤ K max

j∈ϒε

{
|b(x) − b(Pjε)| + b(Pjε)|ŵ(b(x), y) − ŵ(b(Pjε), y)|

}
≤ Kaε → 0,

as ε → 0. From Corollary 1.7 in [1] we deduce that∣∣∣∣∣∣ Cn−2
0

| Y \ T0
1
4

|
∑
j∈ϒε

∫
Ŷ j

ε

λ(b(x))hdx − Cn−2
0

∫
�

λ(b(x))hdx

∣∣∣∣∣∣ → 0,

as ε → 0. This completes the proof.
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7.1. Proof of Theorem 2.1

From (21) we have

lim
ε→0

ε−γ

∫
Sε

b(x)uεϕds = − lim
ε→0

∑
j∈ϒε

∫
∂Tj

ε
4

(∂νw
j
ε)uεϕds.

From Lemma 7.1 and Green’s formula we obtain

∑
j∈ϒε

∣∣∣∣∣∣
∫

∂Tj
ε
4

(∂νŵ
j
ε(x; b(Pjε)) − ∂νw

j
ε)uεϕds

∣∣∣∣∣∣ =
∑
j∈ϒε

∣∣∣∣∣∣
∫

∂Tj
ε
4

∂νv
j
εuεϕds

∣∣∣∣∣∣
=

∑
j∈ϒε

∣∣∣∣∣∣
∫
Tj

ε
4
\Gj

ε

∇vjε∇(uεϕ)dx −
∫

∂Gj
ε

∂νv
j
εuεϕds

∣∣∣∣∣∣ ,
so we have

∑
j∈ϒε

∣∣∣∣∣∣
∫

∂Tj
ε
4

(∂νŵ
j
ε(x; b(Pjε)) − ∂νw

j
ε)uεϕds

∣∣∣∣∣∣
≤

∑
j∈ϒε

∣∣∣∣∣∣
∫
Tj

ε
4
\Gj

ε

∇vjε∇(uεϕ)dx

∣∣∣∣∣∣
+ ε−γ

∑
j∈ϒε

∣∣∣∣ ∫
∂Gj

ε

b(x)vjεuεϕds
∣∣∣∣

+ ε−γ
∑
j∈ϒε

∣∣∣∣ ∫
∂Gj

ε

(b(Pjε) − b(x))ŵj
ε(x; b(Pjε))uεϕds

∣∣∣∣
+ ε−γ

∑
j∈ϒε

∣∣∣∣ ∫
∂Gj

ε

(b(x) − b(Pjε))uεϕds
∣∣∣∣ .

From Cauchy’s inequality and the properties of vjε , for smooth ϕ we have

ε−γ
∑
j∈ϒε

∣∣∣∣ ∫
∂Gj

ε

(b(Pjε) − b(x))ŵj
ε(x)uεϕds

∣∣∣∣ ≤ K
√| Sε |

(∫
Sε

| uεϕ |2 ds
) 1

2

≤ Kε
n

n−2 ,

also

ε−γ
∑
j∈ϒε

∣∣∣∣ ∫
∂Gj

ε

(b(x) − b(Pjε))uεϕds
∣∣∣∣ ≤ Kε−γ aε

(∫
Sε

| uεϕ |2 ds
) 1

2 √| Sε |

≤ Kε
n

n−2 ,
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and, finally, considering (13) and (48), we have that

ε−γ
∑
j∈ϒε

∣∣∣∣ ∫
∂Gj

ε

b(x)vjεuεϕds
∣∣∣∣ ≤ ε−γ

∑
j∈ϒε

(∫
∂Gj

ε

b(x)(vjε)2ds
) 1

2
(∫

∂Gj
ε

b(x)u2εds
) 1

2

≤ K
√

εan−1
ε

∑
j∈ϒε

(
ε−γ /2

∫
∂Gj

ε

b(x)u2εds
) 1

2

≤ K
√

εan−1
ε ε− n

2

≤ Kε
n−1
n−2 .

From these inequalities we deduce that

∑
j∈ϒε

∣∣∣∣∣∣
∫

∂Tj
ε
4

(∂νŵ
j
ε(x; b(Pjε)) − ∂νw

j
ε)uεϕds

∣∣∣∣∣∣ ≤ K
(
ε‖uεϕ‖H1(�ε)

+ ε
n−1
n−2 + ε

n
n−2

)
.

Taking into account that the estimates (13) are valid, we have:

∑
j∈ϒε

∣∣∣∣∣∣
∫

∂Tj
ε
4

(∂νŵ
j
ε(x; b(Pjε)) − ∂νw

j
ε)uεϕds

∣∣∣∣∣∣ ≤ Kε.

Hence, from Lemma 7.2 we derive

lim
ε→0

ε−γ

∫
Sε

b(x)uεϕds = − lim
ε→0

∑
j∈ϒε

∫
∂Tj

ε
4

∂νw
j
εuεϕds

= − lim
ε→0

∑
j∈ϒε

∫
∂Tj

ε
4

(∂νŵ
j
ε(x; b(Pjε)))uεϕds

= Cn−2
0

∫
�

λ(b(x))u0ϕdx. (51)

Applying Lemmas 7.1, 7.2 and the previous estimates, we obtain that u satisfies the identity∫
�

∇φ∇udx + Cn−2
0

∫
�

λ(b(x))uφdx =
∫

�

f φdx

for all φ ∈ H1
0 (�). Hence u ∈ H1

0 (�) is the (unique) weak solution of the problem

{
−�u + Cn−2

0 λ(b(x))u = f , �,
u = 0, ∂�.

(52)

Example 7.3: Let us apply techniques above to the particular case, whereG0 is a ball of radius 1 and
coefficient b(x) does not depend on ε. This example is well known (it has been proven with various
simpler techniques), and hence we check that our findings are consistent with previous results. In
this case we consider the auxiliary problem
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�yŵ = 0, y ∈ R

n \ G0,
∂νy ŵ = −C0b(x)ŵ + C0b(x), y ∈ ∂G0,
ŵ → 0, | y |→ ∞.

(53)

This problem has the (unique) solution ŵ = C
rn−2 , where C may be obtained from the boundary

conditions. From direct calculations we have that C = b(x)
b(x)+ n−2

C0
. Using the result of Section 3 we

have that

λ0(x) =
∫

∂G0

∂νŵ(y; b(x))ds = C(n − 2)ωn = (n − 2)ωnb(x)
b(x) + n−2

C0

,

whereωn is the square of the surface of the unit sphere. Hence, the limit problem distributed reaction
on the surface of particles given by balls is:⎧⎨⎩−�u + C1

b(x)
b(x)+ n−2

C0
u = f , �,

u = 0, ∂�,
(54)

where C1 = (n − 2)Cn−2
0 ωn.

Remark 7.4: As mentioned at the introduction, it seems possible to adapt the techniques of proof
of this paper with other developed to the study of microscopical nonlinear reactions (see, e.g. [5] for
the case of a Hólder continuous increasing kinetics and particles of arbitrary shape and [17] for the
case of a kinetics given by a general maximal monotone graph and particles given by balls). So, we
conjecture (and it will be developed in some separated work) that the analysis of the case in which
the microscopical reaction is given by⎧⎪⎨⎪⎩

−�puε = f (x), x ∈ �ε ,
−∂νpuε ∈ ε−γ bjε(x)σ (uε), x ∈ Sε ,
uε = 0, x ∈ ∂�,

would lead (under suitable conditions on bjε(x)) to the global homogenization problem{
−�u0 + HG0(x, u0) = f , in �,
u0 = 0, on ∂�,

for some Lipschitz continuous nondecreasing function HG0(x, u0) of u0, once we assume the critical
relation γ = α = n/(n − 2), and thus the ‘strange term’ HG0(x, u0) would present both, a
x−dependence distribution absorption coefficient and a nonlinear kinetic, different to the case of the
microscopic problem.

8. Proof of Theorem 2.4

As in [12] the result follows from applying Lemma 1.6 in Chapter III of [1] about the spectrum of a
sequence of singularly perturbed operators together with Theorem 2.1.
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