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Abstract. We consider explosive solutions y0(t), t ∈ [0, Ty0 ), of some ordinary differ-
ential equations

P (Ty0 ) : dy
dt

(t) = f(y(t)), y(0) = y0,

where f : Rd → Rd is a locally Lipschitz superlinear function and d ≥ 1. In this

work we analyze the following question of controlability: given ε > 0, a continuous

deformation y(t) de y0(t), built as a solution of the perturbed control problem obtained
by replacing f(y(t)) by f(y(t)) +u(t), for a suitable control u, such that y(t) = y0(t) for

any t ∈ [0, Ty0 − ε] and such that y(t) also blows up in t = Ty0 but in such a way that

y(t) could be extended beyond Ty0 as a function y ∈ L1
loc(0,+∞ : Rd)?

1. Introduction. We consider blowing-up solutions y0(t), t ∈ [0, Ty0), of some ODEs

P (f, y0) =

{
dy
dt (t) = f(y(t)) in Rd,
y(0) = y0,

where d ≥ 1 and f : Rd → Rd is a locally Lipschitz function superlinear near the infinity

f(y)y ≥ C |y|p+1
if |y| > k, for some p > 1 and C, k > 0.

It is well known that the solutions of P (f, y0) develop blow-up processes in the sense that
the maximal existence interval is of the form [0, Ty0), for some finite time Ty0 (i.e. there
is a complete blow-up in the norm of y(t) after Ty0). From the point of view of Control
Theory, it is easy to see (by arguing as in [5]) that we can avoid the blow-up phenomenon by
introducing a suitable control function u(t). To be more precise, for any small enough ε > 0
we can find a continuous deformation y(t) of the given trajectory, y0(t), built as solution of
the control perturbed problem

P (f, y0, u) =

{
dy
dt (t) = f(y(t)) + u(t) in Rd,
y(0) = y0,

for a suitable control u ∈ L1
loc(0,+∞ : Rd) and defined on the whole interval [0,+∞) such

that y(t) = y0(t) for any t ∈ [0, Ty0 − ε]. Indeed, fix any Te > Ty0 − ε and let us consider
w ∈ C1[0,+∞) such that w(t) = y0(t) for any t ∈ [0, Ty0 − ε] and w(t) = 0 for any

t ∈ [Te,+∞). Then, defining u(t) = dw
dt (t)− f(w(t)) if t ∈ (Ty0 − ε,+∞) we get the required

conditions and that, in fact, y(t) = w(t) = 0 for any t ∈ [Te,+∞).
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In this work our goal is completely different since we do not try to avoid the blow-up
phenomenon but to control it in such a way that the solution let defined in the whole
interval [0,+∞) at least as a L1

loc(0,+∞ : Rd) function. We shall show that we can control
the explosion by allowing a more singular class of controls.

Definition. We say that the trajectory y0(t) of problem P (f, y0), with blow-up time Tu0 , has
a controllable explosion if for any small enough ε > 0 we can find a continuous deformation,
y(t), of the trajectory y0(t), built as solution of the control perturbed problem P (f, y0, u), for

a suitable control u ∈ W−1,q′
loc (0,+∞ : Rd) [the dual space of W 1,q

0,loc(0,+∞ : Rd)], for some

q > 1, such that y(t) = y0(t) for any t ∈ [0, Ty0 − ε], y(t) also blows-up at t = Ty0 (the con-
trolled explosion) but y(t) can be extended beyond Ty0 as a function y ∈ L1

loc(0,+∞ : Rd).

Theorem 1. Assume f locally Lipschitz continuous and superlinear. Then, for any y0 ∈ Rd
the blowing up trajectory y0(t) of the associated problem P (f : y0) has a controlled explosion
by means of the control problem P (f, y0, u).

Our main tools are the study of a suitable delayed feedback problems (in the spirit of a
previous work by the authors [Casal, Dı́az and Vegas [4]] and the application of a powerful
nonlinear variation of constants formula. This type of formula was first established in the
literature for nonlinear terms of class C2 [Alekseev [2], Laksmikantham and Leela [6], ...].
In this work we shall show that, as a matter of fact, the formula holds also for Lipschitz
functions f (which at this stage can be assumed to be in fact globally Lipschitz) and with
a very general perturbation term (which in fact can be even multivalued). For instance,
given such a f and a family of maximal monotone operators β(t, y), on the space H = Rd,
with β(t,·) ∈ L1

loc(0,+∞ : Rd), we consider the perturbed problem

P ∗(f, β, ξ) =

{
dy
dt (t) ∈ f(y(t)) + β(t, y(t)), in Rd,
y(t0) = ξ.

(1)

We know that once that f is globally Lipschitz function, the solutions of P (f, β, ξ) are well
defined, as absolutely continuous functions on [0, T ], for any given T > 0 (this is an easy
consequence of the general theory: see [3]). Now, we reformulate the trajectory y0(t) in more
general terms (by modifying the initial time and the initial condition) as y0(t) = φ(t, t0, ξ)
with φ(t, t0, ξ) the unique solution of the ODE

P ∗(f, 0, ξ) =

{
y′(t) = f(y(t)) in Rd,
y(t0) = ξ.

(2)

We introduce the formal notation Φ(t, t0, ξ) = ∂ξφ(t, t0, ξ), where ∂
ξ

denotes partial differ-
entiation. Then we shall prove:

Theorem 2. The flow map φ is Lipschitz continuous, Φ is absolutely continuous and the
solution y(t) of the “perturbed problem” P ∗(f, β, ξ) has the integral representation

y(t) = y0(t) +

∫ t

t0

Φ(t, s, y(s))β(s, y(s))ds, foranyt ∈ [0, T ], (3)

where y0(t) = φ(t, t0, ξ) is the solution of the “unperturbed” problem P ∗(f, 0, ξ).
In the above formula we assumed, for simplicity, that β(t,·) is single-valued but a suitable

similar expression can be stated if β(t,·) is multivalued. Applications of this arguments to
parabolic partial differential equations (see Remark 3) will be presented elsewhere.

2. Case 1. f ∈ C2 and superlinear (e.g. f(y) = |y|p−1
y with p > 1).. As a presenta-

tion we shall start with the study of regular superlinear functions f. Assume, for simplicity,
d = 1.
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Theorem 3. Assume f ∈ C2 and superlinear. Then, for any y0 ∈ Rd the blowing up
trajectory y0(t) of the associated problem P (f : y0) has a controlled explosion.

Proof. Step 1 (the strategy). Define τ = Ty0 − ε. We make the change of variable

t̃ = t− τ
and consider the delayed problem

P̃ (f, y0, B) =

{
y′(t) = f(y(t)) +B′(t)g(y(t− τ)), 0 < t < τ

y(θ) = y0(θ), −τ ≤ θ ≤ 0
(4)

(where, for simplicity we denote again t̃ by t, so that, for any −τ ≤ θ ≤ 0 we are identifying
y0(θ) with y0(θ+Ty0−ε), for some suitable functions B(t) and where g(r) is any C2 function
(for instance g(r) = r). Our goal is to show that we can chose the control term

u(t) := B′(t)g(y(t− τ))

such that the solution of P̃ (f, y0, B) is defined on the whole interval [0, τ) and that u ∈
W−1,q′(0, τ : Rd). Since y(t− τ) = y0(t− τ) for any t ∈ [0, Ty0 − ε], this will prove the result
by iteration on the intervals τ < t < 2τ, ..., nτ < t < (n+ 1)τ, n ∈ N.
Step 2 (choice of function B and reformulation as neutral equation). Given q > 1, a > 0
and α ∈ (0, 1

q ) and a continuous function m (to be taken, for instance, in order to have

B(0) = 0) we define

B(t) =
a

|t− t∗|α
+m(t), t ∈ [0, τ ], (5)

with t∗ = ε in this new time scale (i.e. t = Ty0 in the original time scale). We assume that

t∗ ∈ (0, τ), i.e. 2ε < Ty0 . As in [4] we can reformulate P̃ (f, y0, B) as the neutral problem
d

dt
[y(t)−B(t)g(y(t− τ))]

= f(y(t))−B(t)
d

dt
[g(y(t− τ))] , t > 0,

y(θ) = y0(θ), −τ ≤ θ ≤ 0

(6)

Instead, we will change our strategy and apply a very useful, but little-known mathemat-
ical device: Alekseev’s nonlinear variation of constants formula [2]. We now briefly recall
this result in a very simple setting (a more general statements will be obtained in the next
section).

Proposition. [Alekseev’s formula, [2]] Let f : R → R be C2. Let y = φ(t, t0, ξ) represent
the unique solution of the ODE {

y′ = f(y(t)),

y(t0) = ξ,
(7)

and let Φ(t, t0, ξ) = ∂ξφ(t, t0, ξ), where ∂
ξ

denotes partial differentiation. Then φ is C2, Φ

is C1, and for any G : R→ R in L1
loc, the solution z(t) of the so-called “perturbed problem”{
z′ = f(z(t)) +G(t),

z(t0) = ξ,
(8)

has the integral representation

z(t) = y(t) +

∫ t

t0

Φ(t, s, z(s))G(s)ds, (9)

where y(t) = φ(t, t0, ξ) is the “unperturbed” or “reference” solution.
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Remark 1 Notice that Φ(t, t0, ξ) satisfies Φ(t, t, ξ) = 1. Notice also that Alekseev’s formula
is usually stated under stronger regularity conditions onG, and for d ≥ 1. Alekseev’s formula
will be obtained in Theorem 2 in a much greater generality.
Continuation of Step 2 Fortunately, we can consider the retarded term as an external
“forcing”

G(t) = B′(t)g(ξ(t− τ)), (10)

and by setting t0 = 0, ξ = z(0) = y0(0), y(t) = φ(t, 0, ξ), we can write (formally):

z(t) = y(t) +

∫ t

0

Φ(t, s, z(s))B′(s)g(y0(s− τ))ds, (11)

and integrate by parts:

z(t) = y(t) +
[
Φ(t, s, z(s))B(s)g(y0(s− τ))

]s=t
s=0

−
∫ t

0
B(s)

d

ds

[
Φ(t, s, z(s))g(y0(s− τ))

]
ds

= y(t) + Φ(t, t, z(t))B(t)g(y0(t− τ))

−
∫ t

0
B(s)

d

ds

[
Φ(t, s, z(s))g(y0(s− τ))

]
ds.

(12)

By the remark above, Φ(t, t, z(t)) = 1. On the other hand, as we saw before, for y0 ∈
W 1,q(−τ, 0) and g ∈ C1 the composite function s 7→ g(y0(s− τ)) is also W 1,q(−τ, 0) and so
is its product by the C1 function Φ(t, s, z(s)). Therefore, its derivative belongs to Lq(−τ, 0)
and the indefinite integral, as in all the previous cases, is an absolutely continuous function.
This means that the integration by parts is legitimate and we may state the following result,
which is an extension of the previous ones. We may summarize the previous comments in
the following way:
The initial value problem

P̃ (f, y0, B) =

{
y′(t) = f(y(t)) +B′(t)g(y(t− τ)), 0 < t < τ

y(θ) = y0(θ), −τ ≤ θ ≤ 0
(13)

with f ∈ C2(R), g ∈ C1(R) and initial function y0 in W 1,q(−τ, 0) has a precise integral
sense in [0, τ ] by means of the neutral equivalent equation and its unique solution z admits
the integral representation

z(t) = y(t) +B(t)g(y0(t− τ))−
∫ t

0

B(s)
d

ds

[
Φ(t, s, z(s))g(y0(s− τ))

]
ds, (14)

(where y(t) = φ(t, 0, y0(0)))). Then, for every ξ ∈ W 1,r(0, τ) (where 1/q + 1/r = 1)
the neutral Cauchy problem has a unique solution given by the identity (14). Therefore
z ∈ Lq(0, τ) and z(t)− B(t)g(y0(t − τ)) is an absolutely continuous function and we may
write symbolically

z(t) = B(t)g(y0(t− τ)) +AC (15)

where “AC” means “an absolutely continuous function”. As a consequence, the singularities
of the solution on [0, τ ] are also singularities of B. Thus, in particular, let t∗ = ε (notice
that t∗ = Ty0 in the original scale of time), 0 < α < 1, let m be continuous on [0, τ ] and let

B(t) =
a

|t− t∗|α
+m(t), (16)

Since the initial function y0 satisfies y0(t∗ − τ) = y0(ε) 6= 0, then t∗ is also a singularity of
z (the controlled explosion) and

z(t) ' a

|t− t∗|α
g(y0(ε)), as t→ t∗, (17)
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is an asymptotic expansion of z near t∗ = Ty0 , which gives the qualitative picture of the
behavior of the solution near singularities of B. Obviously, from the choice of α we get that
the control u(t) := B′(t)g(y(t− τ)) is in W−1,q′(0, τ : Rd)), for any function g ∈ C1.

Example. The proof of Theorem 1 is constructive and so, if we consider a special P (f, y0)
case, as, for instance, the one corresponding to f(y) = y3 and y0 = 1 then we can identify
easely the associate control problem P (f, y0, u). Ideed, in this case,

φ(t, t0, ξ) =
1√
2

1√
1

2ξ2 − (t− t0)
,

and Ty0 = 1/2. Thus we can take, e.g., ε = 1/8 (so that 2ε < Ty0), τ = Ty0 − ε = 3/8,

α = 1/5, a = 1, g(s) = s, B′(t) = −(1/5)sign(t − 1/2)/ |t− 1/2|6/5 and thus the searched
control u(t) is given by u(t) = B′(t)y(t− 6/8) (for t > 0) with y solution of the problem y′(t̃) = y(t̃)3 − sign(t̃−1/8)

5|t̃− 1
8 |6/5

(y(t̃− 3/8)), 0 < t̃ < τ

y(θ) = y0(θ), −3/8 ≤ θ ≤ 0
(18)

where y0(θ) = 1√
2

1√
1
2−(θ+ 3

8 )
if θ ∈ [− 3

8 , 0].

3. Case 2. Controllable explosions for f locally Lipschitz and superlinear:
a generalization of the nonlinear variation of constants formula. The proof of
Theorem 1 is exactly the same than the one of Theorem 3 once we let able to show Theorem
2. In fact, it can be extended without difficulty to the case d > 1. Notice that since what we
need is merely to have a control of the way in which the solution growths near the blow-ups
time Ty0 the proof of Theorem 2 is only needed for globally Lipschitz functions f.

Proof of Theorem 2. Let fn ∈ C1(Rd : Rd) be a sequence approximating f in W 1,s(Rd : Rd),
for any s ∈ [1,+∞), and such that

‖∂xfn(·)‖L∞(Rd:Md×d) ≤ ‖∂xf(·)‖L∞(Rd:Md×d) := M for any n ∈ N and (19)

(see, for instance, Adams [1] ). Let y0
n = φn(t, t0, ξ) be the unique solution of the unper-

turbed ODE

P ∗(fn, 0, ξ) =

{
y′(t) = fn(y(t)) in Rd,
y(t0) = ξ,

(20)

and let Φn(t, t0, ξ) = ∂ξφn(t, t0, ξ),. Let us consider the sequence of perturbed problems

P ∗(fn, β, ξ) =

{
dyn
dt (t) ∈ fn(yn(t)) + β(t, yn(t)), in Rd,
y(t0) = ξ.

(21)

Then, by the classical version of the Alekseev formula (also valid for d ≥ 1) we know that

yn(t) = y0
n(t) +

∫ t

t0

Φn(t, s, yn(s))β(s, yn(s))ds, for any t ∈ [0, T ], (22)

(as before, in the above formula we assumed, for simplicity, that β(t,·) is single-valued but a
suitable similar expression can be obtained if β(t,·) is multivalued). But since fn → f and f
is locally Lipschitz we know that y0

n(·)→ y0
n(·) and yn(·)→ yn(·) strongly in AC([0, T ] : Rd)

for any fixed T > 0 (this is an easy application of Theorem 4.2 of Brezis [3]). Moreover
since any maximal monotone operator is strongly-weakly closed we know that, at least,
β(·, yn(·)) ⇀ β(·, yn(·)) in L2(0, T : Rd). Moreover, from the classical Peano theorem we
know that there exists a Φ(t, s, y) such that

Φn(t, ·, yn(·))→ Φ(t, ·, y(·)), for a.e. t ∈ (0, T ),
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strongly in L2(0, T :Md×d). Indeed, Φn(t, t0, ξ) is the solution of the problem{
Φ′(t) = Hn(t, t0, ξ)Φ(t) in Md×d,
Φ(t0) = I,

where

Hn(t, t0, ξ) = ∂xfn(φn(t, t0, ξ)).

But, we know that, if M is given by (19) then

‖Hn(t, t0, ξ)‖L∞(t0,T :Md×d) ≤M for any t0 ∈ (0, T ) and for any ξ ∈ Rd.

Thus, by Gronwall inequality, there exists a positive constant M̃ = M̃(t0, ξ) such that

‖Φn(·, t0, ξ)‖W 1,∞(0,T ) ≤ M̃
which implies that there exists a Lipschitz function Φ(t, s, ξ) such that Φn(t,·, yn(·)) ⇀
Φ(t,·, y(·)) in W 1,q(0, T :Md×d) for any q ∈ (1,∞). This leads to the strong convergence in
L2(0, T :Md×d). Then we can pass to the limit in formula (22) and get that

y(t) = y0(t) +

∫ t

t0

Φ(t, s, y(s))β(s, y(s))ds, for any t ∈ [0, T ].

Remark 2. Notice that since our main interest is to study the asymptotic, near Ty0 , we
do not need to identify the limit matricial function Φ(t, s, y). This is a complicated task
over the set of points y ∈ Rd where f is not Frechet differentiable in y (see a nonlinear
characterization in Mirica [7]).

Remark 3. Several applications to the case of the some nonlinear blowing-up parabolic
problems of the type

(PN )


∂y
∂t −∆y = |y|p−1

y + u(t, x) for (t, x) ∈ (0,+∞)× Ω,
∂y
∂n (t, x) = 0, for (t, x) ∈ (0,+∞)× ∂Ω,
y(0, x) = y0(x), for x ∈ Ω,

(23)

once we assume p > 1, for suitable conditions on y0 ∈ L2(Ω) and for an appropriate choice of
the control function (taken as a suitable delayed feedback control) can be given in a similar
way to the results presented in [4]. By limitations in the length of this work, those results
will be given elsewhere.
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