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Abstract

We study the existence and multiplicity of nodal solutions with normal exterior derivative
different or equal to zero (case of flat solutions) or having a free boundary (the boundary of the
set where the solution vanishes) of some one-dimensional p-Laplace problems of eigenvalue type
with a, possibly singular, nonlinear absorption terms.
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1 Introduction.

This paper deals with the study of the countable branches of nodal solutions bifurcating from the
infinity for the one-dimensional nonlinear eigenvalue problem −

d

dx

(
|du
dx
|p−2du

dx

)
+ |u|m−1u = λ|u|p−2u in ]− 1, 1[,

u(−1) = u(1) = 0,
(1)

where p > 1, λ is a positive parameter, m and p are given real numbers such that

−1 < m < p− 1. (2)

We point out that the above differential equation must be slightly modified for some values of the
parameter m. So, for m = 0 the equation should be understood in the framework of the multivalued
maximal monotone graphs of R2 as

−(|u′|p−2 u′)′ +H(u) 3 λ|u|p−2u
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where H(u) is the multivalued maximal monotone graph of R2 given by

H(r) =


−1 if r < 0,

[−1, 1] if r = 0,
+1 if r > 0.

This case (at least for p = 2) is specially relevant in image processing (see [18], [19]). Moreover, if
m ∈ (−1, 0) then the equation should be replaced by

−(|u′|p−2 u′)′ + |u|m−1uχ{u6=0} = λ|u|p−2u

where

χ{u6=0}(x) =

{
1 if u(x) 6= 0,
0 if u(x) = 0,

and thus the whole expression |u|m−1uχ{u6=0} must be understood as

[
|u|m−1uχ{u6=0}

]
(x) =

{
|u(x)|m−1u(x) if u(x) 6= 0,

0 if u(x) = 0.

We study this problem by using phase plane methods for ordinary differential equations. This
kind of arguments were used by the authors in [7] and [11]. These methods provide a complete
description of the solution set for (1).

The related problem for the equation −
d

dx

(
|du
dx
|p−2du

dx

)
+ |u|m−1u = λ|u|q−1u in ]− 1, 1[,

u(−1) = u(1) = 0,
(3)

with 0 < m < q < p− 1 was studied initially in [7], for p = 2, giving a complete description of both
positive solutions and the continua with infinitely many compact support solutions obtained from
the very especial solution satisfying condition (7) below by some ”stretching” manipulations. These
results were extended to the p-Laplacian allowing singular nonlinearities satisfying −1 < m < q <
p − 1 in [11] by using similar (more sophisticated) arguments. Then the case of a general bounded
domain Ω ⊂ RN and p = 2 was treated by Il’yasov and Egorov in [17] combining variational and
continuation methods, by using this time a variant of the Mountain Pass Theorem. The study of the
stability of solutions was made in [10]. For related work see [16], [24] and [25].

The above problem (1) was also considered for p = 2 and 0 < m < 1 in [8] again with ODE meth-
ods giving sharper results that the ones obtained through abstract bifurcation tools by Rabinowitz
[22],[21], [23]. We point out that although there are several results dealing with the bifurcation from
the infinity for the p-Laplace operator (see, e.g. Drabek et al. [12]) our results are new in this
direction.

Besides many related problems in the literature (see, e.g., references in the monographs [4],
[1]) a relevant motivation for this work was to provide some kind of ”alternative” approach to the
”ambiguity” raised by some purported solutions to the linear Schrödinger equation on the real line
(see [5], [6] and [8] for more details and references). There is also an extensive literature on the
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Schrödinger quasilinear equation associated to the p-Laplace diffusion operator (see e.g. You et al.
[26], and its many references). The association of problems as (1) with the study of standing waves for
the related semilinear Schrödinger equation and the semilinear wave equation with real coefficients
was also largely considered in the literature (at least for p = 2: see, e.g. [2] and its references).
Nevertheless, in both types of equations (Schrödinger and wave equation) the consideration of the
case p 6= 2 leads to some new facts that seem not to be well presented in the previous literature (see
Remark 4 below).

As mentioned before, similar results giving a complete description of non-negative (including pos-
itive) solutions together with the transition to compact support solutions were given in [8] for the
case p = 2. For the case of a bounded domain Ω ⊂ RN , a partial result (namely the existence of an
unbounded continuum of non-negative solutions bifurcating from infinity at λ1 > 0, the first eigen-
value to −∆ with Dirichlet boundary condtions) was obtained in [14] using asymptotic bifurcation
arguments. Much later, Porretta proved in [20] the existence of (at least) a non-negative solution
for any λ > λ1 (for p = 2) and this result was improved in [9] using this time variational methods
(Nehari manifolds) and a Pohozaev identity.

The contents of this paper is the following: in Section 2 we analize the existence of a branch of
nonnegative solutions for a bounded interval of the parameter λ ∈]λ1(p), λ

∗
1(m, p)[. We recall that

λ1(p) is the first eigenvalue of the nonlinear equation −
d

dx

(
|du
dx
|p−2du

dx

)
= λ|u|p−2u in ]− 1, 1[,

u(−1) = u(1) = 0.
(4)

The first eigenvalue of the p−Laplacian for one dimensional domains was obtained by Otani in
[13] and its value is given by

λ1(p) = (p− 1)

 π

p sin(
π

p
)


p

. (5)

Here λ∗1(m, p) is a certain value of the parameter whose exact definition depends crucially on p
and m. The value of λ∗1(m, p) can be written in closed form as

λ∗1(m, p) = (p− 1)

 π

(p−m− 1) sin(
π

p
)


p

=

(
p

p−m− 1

)p
λ1(p). (6)

We show that the unique positive solution of (1) for λ = λ∗1(m, p) has a particular behaviour at
x = ±1. Due to this behaviour this solution is called as ”flat solution” (and also as ”free boundary
nonnegative solution” by other authors) since although u(x) > 0 for any x ∈ (−1, 1) it satisfies

∂u

∂n
(±1) = 0. (7)

We also give some estimates on the convergence

∂uλ
∂n

(±1)↗ 0 as λ↘ λ∗1(m, p),
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and make explicit some non-degeneracy estimates for uλ∗1(m,p) (near the boundary of the interval
Ω = (−1, 1)) extending the estimates given in ([5] for p = 2). The associated solution uλ∗1(m,p)
(when extended by zero to the real line R) gives rise to a continuum of nonnegative solutions uλ
for λ > λ∗1(m, p) throught an appropriate rescaling. This kind of solutions have compact support
included in [−1, 1].

In section 3 we obtain a qualitatively similar result for the branches of nodal solutions with a finite
number of simple zeroes and that bifurcate from infinity. Here we will denote by λk the bifurcation
value of the branch that bifurcates from the infinity and posseses (k − 1) sign-changes. Now the
values of λk and λ∗k(m, p) can be written in closed form as

λk(p) = (p− 1)

 kπ

p sin(
π

p
)


p

= kpλ1(p), (8)

and

λ∗k(m, p) = (p− 1)

 kπ

(p−m− 1) sin(
π

p
)


p

=

(
p

p−m− 1

)p
λk(p) = kpλ∗1(m, p). (9)

We show that the behavior of the nodal solutions near the points where they vanish is of the
same type that the behaviour of nonnegative solutions near the boundary.

2 The branch of nonnegative solutions.

In this Section we study the non-negative solutions of the equation (1) by using ordinary differential
equations arguments. This allows us to obtain a complete description of the solution set as a function
of the parameter λ. We generalize the results obtained by Dı́az and Hernández in [8] for the case
p = 2 and m > 0. Now we consider the equation (1) under the assumption (2).

We recall that, as in [11], once we define

f(u) = λ|u|p−2u− |u|m−1uχ{u6=0},

(if m 6= 0) we can introduce the following notions of solution:

Definition 1: We say that u ∈ W 1,p
0 (−1,1) is a positive strong solution of problem (1) if u > 0

on (−1,1), f(u) ∈ L1(−1,1), (|u′|p−2 u′)′ ∈ L1(−1,1), −(|u′|p−2 u′)′(x) = f(u(x)) for a.e. x ∈ (−1, 1)

and
∂u

∂n
(±1) < 0.

Definition 2: We say u ∈ W 1,p
0 (−1,1) is a flat solution of problem (1) if u is as in the preceding

definition but replacing the last condition by
∂u

∂n
(±1) = 0.

In the case m = 0 the above definitions must be adapted in the sense that now it must exists h ∈
L1(−1,1), with h(x) ∈ H(u(x)) for a.e. x ∈ (−1, 1) such that −(|u′|p−2 u′)′(x)+h(x) = λ|u(x)|p−2u(x)
for a.e. x ∈ ]− 1, 1[.
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The main result of this section is the following:

Theorem 1 Let λ1(p) and λ∗1(m, p) be given by (5) and (6) respectively. Then:

a) If λ ∈]0, λ1(p)[ there is no nonnegative solution of (1).

b) If λ ∈]λ1(p), λ
∗
1(m, p)[ there is a unique positive solution uλof (1). Moreover,

∂uλ
∂n

(±1) < 0 (10)

and
Kd(x, ∂Ω) ≤ uλ(x) ≤ Kd(x, ∂Ω), (11)

Ω = (−1, 1), for some constants K > K > 0.

c) If λ = λ∗1(m, p) there is a unique positive solution uλ∗1(m,p) of (1). Moreover,

∂uλ∗1(m,p)

∂n
(±1) = 0, (12)

‖uλ∗1(m,p)‖L∞[−1,1] =

(
p

(m+ 1)λ∗1

) 1
p−m−1

,

and
Kd(x, ∂Ω)p/(p−1−m) ≤ uλ∗1(m,p)(x) ≤ Kd(x, ∂Ω)p/(p−1−m) (13)

Ω = (−1, 1), for some constants K > K > 0.

d) If λ > λ∗1(m, p) then the function uλ,ζ : [−1, 1]→ R defined by

uλ,ζ(x) =

{
(
λ∗1(m,p)

λ
)

1
p−m−1uλ∗1(m,p)(

x− ζ
ω

) if |x− ζ| < ω,

0 if x ∈ [−1, ζ − ω] ∪ [ζ + ω, 1],

is a nonnegative solution of (1), where ω =

(
λ∗1(m, p)

λ

) 1
p

< 1, ζ ∈ [−1 +ω, 1−ω] and uλ∗1(m,p) is the

unique positive solution of (1) for λ = λ∗1(m, p). Consequently, for each λ > λ∗1(m, p) there is a family
of nonnegative solutions of (1), uλ,ζ , that depends arbitrarily on the parameter ζ ∈ [−1 + ω, 1 − ω].
Moreover, the behavior of uλ,ζ near the boundary of the points where uλ,ζ vanishes is given by (13).

For the proof we shall need the following auxiliary Lemma .

Lemma 1 Let γ : [rF ,+∞[→ R be the function defined by

γ(µ) =

∫ µ

0

p

√
p− 1

p

1
p
√
F (µ)− F (r)

dr,

where rF =

(
p

m+ 1

) 1
p−m−1

, and F (r) = (
rp

p
− rm+1

m+ 1
). The function γ is such that

i)γ ∈ C([rF ,+∞[) ∩ C1(]rF ,+∞[).
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ii)
dγ

dµ
(µ) < 0 for all µ ∈]rF ,+∞[.

iii) lim
µ→r+F

dγ

dµ
(µ) = −∞ if

p

p+ 1
≤ m+ 1 and

dγ

dµ
(r+F ) is finite if m+ 1 <

p

p+ 1
.

iv) γ(rF ) =
π p
√

(p− 1)

(p−m− 1) sin(
π

p
)
, lim

µ→+∞
γ(µ) = p

√
(p− 1)

 π

p sin(
π

p
)

 .

Remark 1 A curious fact is that in [15] (respectively [11]) it was shown the increasing nature of the
curve γ (which also implies the uniqueness of solution) for problem (3) when m is near −1, p = 2
(respectively p 6= 2) and q ∈ (m, 1) (respectively q ∈ (m, p− 1)).

Proof of Lemma 1. We use the change of variables τ := r/µ in the definition of γ. Then

γ(µ) = p
√
p− 1

∫ µ

0

1

p

√
µp − p

m+ 1
µm+1 − (rp − p

m+ 1
rm+1)

dr =

p
√
p− 1

∫ 1

0

1

p

√
1− τ p − p

(m+ 1)µp−m−1
(1− τm+1)

dτ. (14)

We have

dγ

dµ
(µ) = − p

√
p− 1

∫ 1

0

p−m− 1

(m+ 1)µp−m
(1− τm+1)

p

√(
1− τ p − p

(m+ 1)µp−m−1
(1− τm+1)

)p+1
dτ. (15)

For µ ∈]rF ,∞[ it is not difficult to verify that the integral in (15) is convergent, and thus
dγ

dµ
(µ) ∈

C(rF ,∞) with
dγ

dµ
(µ) < 0. According to the assumption (2) the integral (15) is divergent for µ = rF ,

hence lim
µ→r+F

dγ

dµ
(µ) = −∞.

On the other hand, from assumption (2), the integral (14) is bounded as µ ↓ rF , and in conclusion
γ ∈ C([rF ,∞)).

By virtue of the Fatou’s lemma

lim
µ→+∞

γ(µ) = lim
µ→+∞

p
√
p− 1

∫ 1

0

1

p

√
1− τ p − p

(m+ 1)µp−m−1
(1− τm+1)

dτ =

p
√
p− 1

∫ 1

0

1
p
√

1− τ p
dτ =

p
√
p− 1

p

∫ 1

0

σ
1
p
−1(1− σ)1−

1
p
−1dσ =

p
√
p− 1

p
B(

1

p
, 1− 1

p
).
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Taking into account that B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
and Γ(z)Γ(1− z) =

π

sin(πz)
(see e.g. [3]) we obtain

lim
µ→+∞

γ(µ) =
p
√
p− 1

p

π

sin(
π

p
)
.

Finally

γ(rF ) = p
√
p− 1

∫ 1

0

1
p
√
τm+1 − τ p

dτ = p
√
p− 1

∫ 1

0

1

τ
m+1
p

p
√

1− τ p−m−1
dτ =

p
√
p− 1

p−m− 1

∫ 1

0

σ
1
p
−1(1− σ)1−

1
p
−1dσ =

p
√
p− 1

p−m− 1
B(

1

p
, 1− 1

p
) =

p
√
p− 1

(p−m− 1)

π

sin(
π

p
)
.�

Remark 2 Note that for p = 2 and m = 0 the function γ : [2,+∞[→ R can be written in closed
form as

γ(µ) =
π

2
+ arcsin(

1

µ− 1
).

Proof of Theorem 1. Upon multiplication of equation (1) by u, integrating by parts and taking
into account the variational definition of the first eigenvalue of (4) we get part a).

To show the qualitative behavior of solutions of the equation (1), we make the change of variables

y = Lx, u(
y

L
) = (

1

L
)

p
p−m−1w(y), with λ = Lp. (16)

in equation (1) to obtain

P(L)

−
d

dy

(
|dw
dy
|p−2dw

dy

)
+ |w|m−1w = |w|p−2w in ]− L,L[,

w(−L) = w(L) = 0.

(17)

If a positive solution of P(L) exists then necessarily it will have a maximum µ > 0 at some point
ζ ∈ (−L,L). So, let us consider

CP
{
−(|u′|p−2 u′)′ = −|u|m−1u+ |u|p−2u
u(ζ) = µ, u′(ζ) = 0.

Hence, we have to consider only the case µ ∈ [rF ,∞). Notice that, if u is a strong positive solution
of P(L) then (|u′|p−2 u′)′ ∈ L1(−L,L) implies that u′ ∈ L∞(−L,L). Then, since by definition
f ∈ L1(−L,L), the formula

−
∫ x

ζ

(|u′|p−2 u′)′u′dτ = −
∫ x

ζ

p− 1

p

d

dy
(|u′|)p(τ)dτ =

∫ x

ζ

f(u(τ))u′(τ)dτ =

∫ x

ζ

F ′(u(τ))dτ,
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is well justified. Since F ′(s) = f(s) = −|s|m−1s+ |s|p−2s > 0 if s > 1 and F (s) =
sp

p
− sm+1

m+ 1
> 0 if

s ∈]rF ,+∞[ we have that for any x ∈ (−L,L)

|u′(x)| = p

√
p

p− 1
(F (µ)− F (u(x)). (18)

Notice that, in fact u′(x) ≤ 0 for x ∈ (−L,L) near ζ with x > ζ and that u′(x) ≥ 0 for x near ζ and
x < ζ.

The solution of this equation is implicitly defined by∫ µ

u(x)

dr

p

√
p

p− 1
(F (µ)− F (r))

= |ζ − x| , (19)

since the singularity at r = µ is integrable, i.e., that∫ µ

s

dr

(F (µ)− F (r))1/p
<∞, for any s ∈ (µ− ε, µ), for any ε > 0 small enough. (20)

Indeed, it is easy to check that (20) always holds since F (µ)− F (r) ≥ δ(µ− r) for some δ > 0 and
for any r near µ. Moreover, for a strong positive solution u of problem CP , u = 0 only at r = ±L.
To finish the proof we only need to justify that the function u(x) defined implicitly by (19) satisfies
that f(u) ∈ L1(−L,L). But we know that for x ∈ (−L,−L+ δ), u(x) ∈ [0, ε) for some ε > 0 small
enough and we get that

−C
∫ −L+δ
−L

f(u(x))dx ≤ −
∫ −L+δ
−L

f(u(x))u′(x)dx =

∫ −L+δ
−L

|u′|p dx <∞

for some C near p

√
p

p− 1
F (µ), since u ∈ C1(−L,L), and the proof of the existence of part b) ends.

As a byproduct we obtain that u is an even function. Equation (19), when particularized for x = −L
and x = L, gives the identity |ζ + L| = |ζ − L|, which implies ζ = 0, particularizing again (19) for x
and −x we obtain u(x) = u(−x), i. e. u is an even function.

In the case of λ = λ∗(m) the associated function v is such that µ = rF and in consequence v′(±L) = 0.
Moreover, since

1

m+ 1
s1+m ≥ sm+1

m+ 1
− sp

p
≥ (p− 1−m)

p(1 +m)
s1+m for s ∈ (0, 1),

we get that there exist two positive constants M < M such that

Mτ
p−1−m

p ≤ 1

p

√
p

p− 1

∫ τ

0

dr
p
√
−F (r)

≤Mτ
p−1−m

p (21)

for any τ ∈ (0, 1) which leads to conclusion (13).
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The dependence on λ of the value of normal derivative of uλ at the boundary can be obtained from
(18).

|duλ
dx

(±1)| =
(

1

λ

) m+1
p(p−m−1)

p

√
p

p− 1
F (γ−1(λ

1
p )). (22)

Since the function F is increasing in [1,+∞[, γ−1(]γ(+∞), γ(rF )] = [rF ,+∞[⊂ [1,+∞], and the

functions γ−1 and

(
1

s

) m+1
p(p−m−1)

are decreasing, |duλ
dx

(±1)| is a decreasing function of λ. In addition

F (γ−1((λ∗1(m, p))
1
p )) = 0 which implies that

duλ
dx

(±1) = 0 if and only if λ = λ∗1(m, p). (Notice that

F ◦ γ−1 is differentiable only if m+ 1 <
p

p+ 1
).

The proof of part d) is similar to the the proof of part v) of Theorem 1 in [11].

According to (19) the unique positive solution of P(L) satisfies the identity γ(w(0)) = L, where γ is
as defined in Lemma 1. Since γ is injective and continuous, its inverse γ−1 :] lim

µ→+∞
γ(µ), γ(rF )]→ R is

well defined, and gives the bifurcation diagram of the equation P(L). Hence the bifurcation diagram
of (1), when written in terms of ‖u‖L∞([−1,1]) and λ, is given by

‖u‖L∞([−1,1]) =
γ−1(λ

1
p )

λ
1

p−m−1

.�

Remark 3 For p = 2 and m = 0 the bifurcation diagram of (1) can be written in closed form as

‖u‖L∞([−1,1]) =
1

λ

(
1 +

1

sin(
√
λ− π

2
)

)
,

where λ ∈]λ1(2), λ∗1(0, 2)] ≡]
π2

4
, π2].

Remark 4 For both types of wave equations (the Schrödinger and the semilinear wave equation)
mentioned in the Introduction the consideration of the case p 6= 2 leads to some new facts that seem to
be not well mentioned in the previous literature. Indeed: if we consider, for instance, m ∈ (0, 1), the
study of standing wave solutions leads to the consideration of the problem −(|u′|p−2 u′)′+ |u|m−1u =
λu, and thus, by the results of [11], the difference with respect to the case p = 2 is that there is an
additional strictly positive solution (that does not exist for p = 2) which is stable (since this part of
the bifurcation diagram of solutions is increasing in λ).

3 The branches of nodal solutions.

In this section we consider solutions of (1) that change sign. Let us define precisely what we mean
by nodal solutions.
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Definition 3: Let Z be the set {x1, . . . , xk : −1 = x0 < x1 < x2 < · · · < xk−1 < xk < xk+1 = 1}.
A solution of (1), uλ : [−1, 1] → R is a nodal solution with k nodes if uλ satisfies the conditions of
Definition 1 except the positivity condition, uλ(x) = 0 if x ∈ Z and uλ(x) 6= 0 if x ∈] − 1, 1[ and
x /∈ Z.

The main result of this section is the following:

Theorem 2 Let λk(p) and λ∗k(m, p) be the positive real numbers defined by (8)-(9) with k ≥ 2. Then:

a) If λ ∈]0, λk(p)[≡]0, kpλ1(p)[ there is no nodal solution of (1) with (k − 1) nodes.

b) If λ ∈]λk(p), λ
∗
k(m, p)[≡]kpλ1(p), k

pλ∗1(m, p)[ there is a unique nodal solution (1) with (k − 1)
nodes. Moreover

∂uλ
∂n

(xi) 6= 0, for i ∈ {0, 1, . . . , k + 1}

and
K |x− xi| ≤ |uλ(x)| ≤ K |x− xi| , (23)

if |x− xi| = d(x, Z), for some constants K > K > 0.

c) If λ = λ∗k(m, p) ≡ kpλ∗1(m, p) there is only one nodal solution, uλ∗k(m,p) (1) with (k − 1) nodes.
Moreover

∂uλ∗k(m,p)

∂n
(xi) = 0, for i ∈ {0, 1, . . . , k + 1}.

and

‖uλ∗k(m,p)‖L∞[−1,1] =

(
p

(m+ 1)λ∗k

) 1
p−m−1

.

Moreover, the behavior of uλ∗k(m,p) near the boundary of the points where uλ∗k(m,p) vanishes is of
the same type than (13),i.e.

K |x− xi|p/(p−1−m) ≤
∣∣uλ∗k(m,p)(x)

∣∣ ≤ K |x− xi|p/(p−1−m) (24)

if |x− xi| = d(x, Z), for some constants K > K > 0.

d) If λ > λ∗k(m, p) then the function uλ : [−1, 1]→ R defined by

uλ(x) =
i=k∑
i=1

s(i)uλ,ζi(x)

is a solution of (1) where

uλ,ζi(x) =

{
(
λ∗1(m,p)

λ
)

1
p−m−1uλ∗1(m,p)(

x− ζi
ω

) if |x− ζi| < ω,

0 if x ∈ [−1, ζi − ω] ∪ [ζi + ω, 1],

ω =

(
λ∗1(m, p)

λ

) 1
p

, ζi ∈ [−1 + ω, 1− ω] with ζi ∈ [−1 + ω, 1− ω] for i = 1, . . . , k and ζi+1 − ζi > 2ω

for i = 1, . . . , k − 1, uλ∗1(m,p) is the unique positive solution of (1) for λ = λ∗1(m, p), and consider the
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set of functions s : {1, 2, . . . , k} → {−1, 1} such that s(1) = 1 and that exists i ∈ {2, . . . , k} such
that s(i) = −1. Therefore, for each λ > λ∗k(m, p) there are, up to a change sign, 2(k−1) − 1 continua
of nonnegative-nonpositive solutions that depend arbitrarily on the parameters ζi with i ∈ {1, . . . , k}.
The number of functions s defined above, up to a change sign, is 2(k−1) − 1, where k > 1. Moreover
the behavior of uλ near the boundary of the points where uλ vanishes is given by (24).

The following two lemmata show that the structure of these branches can be obtained from the
branch of positive solutions.

Lemma 2 Let uµ : [−1, 1] → R be a nodal solution of (1) for λ = µ with k nodes. The function

u+µ,i : [−xi − xi−1
2

,
xi − xi−1

2
]→ R defined by u+µ,i(x) = |uµ(x− xi + xi−1

2
)| is a positive solution of

− d

dx

(
|du
dx
|p−2du

dx

)
+ |u|m−1u = µ|u|p−2u, in ]− xi − xi−1

2
,
xi − xi−1

2
[,

u(−xi − xi−1
2

) = u(
xi − xi−1

2
) = 0,

(25)

where i ∈ {1, . . . , k, k+1}. Moreover, the zeros of uλ are equispaced in [−1, 1], i.e., xi−xi−1 =
2

k + 1
and the function wλ : [−1, 1]→ R defined by

wλ(y) = (k + 1)
p

p−m−1u+µ,i(y
xi − xi−1

2
) for y ∈ [−1, 1],

is the unique positive solution of (1) for λ =
µ

(k + 1)p
.

Proof of Lemma 2. Since the differential equation (1) is invariant under translations, under the
transformation (u) → (−u) and uµ satisfies uµ(xi−1) = uµ(xi) = 0, the function u+µ,i is a solution
of (25) for all i ∈ {1, . . . , k, k + 1}. In addition, uµ is continuous and by (18) u ∈ C1(] − 1, 1[),

consequently
du+µ,i
dx

(x−i ) = −
du+µ,i+1

dx
(x+i ). As we have proved in Lemma 1 , u+µ,i, for all i ∈ {1, . . . , k, k+

1}, are even functions and according to (18) the maxima of each of them are equal. Therefore, the
uniqueness for positive solutions implies the identity xi − xi−1 = xi+1 − xi, i.e, the zeroes of a
nodal solution divide the interval ] − 1, 1[ in k + 1 subintervals of the same length, in other words

xi − xi−1 =
2

k + 1
where i ∈ 1, . . . , k and x0 = −1.

Finally, if we make the change of independent variable y =
2x

xi − xi−1
≡ (k + 1)x, wλ(y) = (k +

1)
p

p−m−1u+µ,i

(
y

k + 1

)
in (25) we obtain that wλ is a solution of (1) for λ =

µ

(k + 1)p
.�

Lemma 3 Let uλ : [−1, 1] → R be a nodal solution of (1) with k nodes. If
duλ
dx

(xi) 6= 0 then uλ is

such that

uλ(x+
2i

k + 1
) = −uλ(−x+

2i

k + 1
) for all x ∈ [0,

2

k + 1
] and all i ∈ {1, . . . , k}. (26)
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Proof of Lemma 3. According to Theorem 1 the function uλ is C1(] − 1, 1[), u+λ,i is solution of

(25) and is symmetric with respect to
xi + xi−1

2
. Since the positive solution is unique for (25), is

invariant under translations, for the transformations u→ −u and x→ −x the identity (26) follows.�

Proof of Theorem 2. Combining the results in Theorem 1, Lemma 2 and Lemma 3, Theorem
2 follows.�
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