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Abstract. In the last 30 years several mathematical studies have been devoted to the

viscoelastic-gravitational coupling in stationary and transient regimes either for static
case or for hyperbolic case. However, to the best of our knowledge there is a lack of

mathematical study of the stabilization as t goes to infinity of a viscoelastic-gravitational

models crustal deformations of multilayered Earth. Here we prove that, under some
additional conditions on the data, the difference of the viscoelastic and elastic solutions

converges to zero, as t goes to infinity, in a suitable functional space. The proof of that
uses a reformulation of the hyperbolic/elliptic system in terms of a nonlocal hyperbolic

system.

1. Introduction. Volcanic eruptions are the outcome of significant physical and geological
processes (see [5], [6] and [7]). In order to interpret geodetic anomalies such as displace-
ments, gravity changes, etc. there is very extensive literature on deformation modeling
coupling gravity effects. The techniques needed for calculation of displacements and grav-
ity change, due to internal sources, have been developed during the last decades (see for
example [10], [11] and [12]). The presence of incoherent materials and high temperatures
needs consideration of anelastic properties. Either theoretical or computational methods
for the calculation of viscoelastic-gravitational displacements have been described in ([7],
[8], [13], and theirs references). The objective of this work is to study the stability of the
viscoelastic-gravitational model (VGP), considering it as hyperbolic/elliptic system. We
consider an Earth model composed by several viscoelastic-gravitational layers overlying a
viscoelastic-gravitational half space. The viscoelastic-gravitational model (VGP) is given
by the following system of partial diferential equations for each layer:

(V GP )



ρiuitt (t,x)− γi∆uit (t,x)−∆ui (t,x)− 1

1− 2νi
∇
(
divui (t,x)

)
− ρig

µi
∇
(
ui (t,x) · ez

)
+
ρig

µi
ezdivu

i (t,x)

=
ρi

µi
∇φi (t,x) + f iu (t,x) , in (0, T )× Ωi,

−∆φi (t,x) = 4πρiGdivui (t,x) + f iφ (t,x) in (0, T )× Ωi .
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where u denotes the displacement, φ gravitational perturbed potential, γi∆uit is the term
introduced due to the viscoelasticity of each layer, ν the Poisson’s ratio, ρ the unperturbed
density of the medium, g the externally imposed gravitational acceleration, µ the rigidity, G
the universal gravitational constant, ez the unit vector pointing in the positive z-direction
(down into the medium) and f iu and f iφ the body forces. We consider a spatial domain,

Ω,Ω =
⋃

i=1·p
Ωi, as it is shown in Figure 1. Each layer is given through a common horizontal

Figure 1. Layered Earth model. Illustration of the coordinate system and
variation of the layer properties with depth.

open set, ω ⊂ R2, and so

Ω1 := ω × (d1, d1 + d2) , Ω2 := ω × (d1 + d2, d1 + d2 + d3) , etc.,

that is Ωi := ω ×

(
i−1∑
j=1

dj ,
i∑

j=1

dj

)
⊂ R3 when i = 1, . . . , p− 1, and

Ωp := ω×(H,H + dr), when H :=
p−1∑
j=1

dj and dp can be equal to +∞. Let ui:[0, T ]×Ωi −→

R3 be the displacement vector in each layer, ui =
(
uix, u

i
y, u

i
z

)
, where T is an arbitrary

time, and f iu and f iφ being the contribution of source terms which can represent magmatic
intrusion, corresponding to body forces. Let us establish the boundary conditions of the
problem. We identify the upper, lateral and bottom boundary for each layer: ∂+Ωi =

ω ×

{
i−1∑
j=1

dj

}
, top boundary, ∂−Ωi = ω ×

{
i∑

j=1

dj

}
, bottom boundary and ∂lΩi = ∂ω ×[

i−1∑
j=1

dj ,
i∑

j=1

dj

]
, lateral boundary.

Then ∂Ωi = ∂+Ωi ∪ ∂−Ωi ∪ ∂lΩi∀i = 1, . . . , p − 1. For the last layer, p-th, we have
∂+Ωp = ω × {H} and ∂−Ωp = ω × {H + dp}. We shall add the boundary and transmission
conditions for i = 1, . . . , p as follows. On the lateral boundary we have:

ui (t,x) = 0,x ∈ ∂lΩi, t ∈ (0, T ), (1)

on upper boundary of the first layer ∂+Ω1:

∂u1 (t,x)

∂z
= 0,x ∈ ∂+Ω1, t ∈ (0, T ), (2)

and on bottom boundary, ∂−Ωp:

up (t,x) = 0,x ∈ ∂−Ωp, t ∈ (0, T ). (3)
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In relation to gravitational perturbed potential we will assume that: on the lateral boundary
∂lΩi for i = 1, . . . , p:

φ (t,x) = 0,x ∈ ∂lΩi, t ∈ (0, T ), (4)

on the upper boundary of the first layer ∂+Ω1:

φ1 (t,x) = φ0 (t,x) ,x ∈ ∂+Ω1, t ∈ (0, T ) (5)

and on the bottom boundary, ∂−Ωp:

φp (t,x) = 0,x ∈ ∂−Ωp, t ∈ (0, T ). (6)

We shall require ”transmission conditions” since we can assure only that the first derivatives
of u are continuous on the boundaries of the layers.Therefore, on ∂−Ωi = ∂+Ωi+1 with
i = 1, . . . , p− 1, the next conditions:

ui (t,x) = ui+1 (t,x) ,
∂ui (t,x)

∂z
=
∂ui+1 (t,x)

∂z
,x ∈ ∂−Ωi, t ∈ (0, T ), (7)

and

φi (t,x) = φi+1 (t,x) ,
∂φi (t,x)

∂z
=
∂φi+1 (t,x)

∂z
,x ∈ ∂−Ωi, t ∈ (0, T ). (8)

We have to add initial conditions in Ω:

u (0,x) = u0 (x) ,ut (0,x) = v0 (x) . (9)

We shall introduce a notion of a weak solution defining the energy spaces of test functions:

Vu:={(u1,φ1), . . . , (up,φp) ∈
p∏
i=1

H1 (Ωi)
3 ×H1 (Ωi) such that ui

verifies (1) to (3) and (7)},

Vφ:={(
(
u1,φ1), . . . , (up,φp

)
) ∈

p∏
i=1

H1 (Ωi)
3 ×H1 (Ωi) such that φi

verifies (4), (6), (8) and φi ≡ 0 on ∂+Ω1}.

The boundary data, φ0, is extended to the interior of the domain Ω1. So, there exists a

function φ̂0 (t,x) for some 2 ≤ q ≤ +∞ such that

φ̂0 ∈ Lq(0, T : H1(Ω1)), φ̂0 (t,x) = φ0 (t,x) in (0, T )× ∂+Ω1 (10)

and

φ̂0 (x) = 0 in (0, T )× (∂−Ω1 ∪ ∂lΩ1). (11)

The following regularity on the data is assumed:

φ0 ∈ L2(0, T :

p∏
i=1

H1 (Ωi)) and verifies (10) and (11). (12)

fu ∈ L2(0, T :

p∏
i=1

H−1 (Ωi)
3
), (13)

fφ∈Lq(0, T :

p∏
i=1

H−1 (Ωi)), (14)

for some 2 ≤ q ≤ +∞ and

u0,v0∈Vu. (15)

We recall the weak solution of viscoelastic-gravitational problem (for more details see [1]
and [2]).
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Definition 1.1. We assume the regularity (12)-(15), on the functions fu, fφ, φ0, u0 and v0.
We say that (u, φ) is a weak solution of the problem (VGP) with the boundary conditions
(1)-(8) and (9) if (u,φ− φ0) ∈ L2(0, T : V ), utt ∈ L2(0, T : V ′u) and for any test function
(w,θ) ∈ L2(0, T : V ), v ∈ H1(0, T : V ′u) the following identities hold:∫ T

0

p∑
i=1

[〈
ρiuitt (t, ·) ,wi (t, ·)

〉
+

∫
Ωi

1

1− 2νi
divui (t,x) divwi (t,x)

− ρig

µi
∇
(
ui (t,x) · ez

)
·wi (t,x) +

ρig

µi
ezdivu

i (t,x) wi (t,x)

+∇ui (t,x) : ∇wi (t,x) + γi∇uit (t,x) : ∇wi (t,x) dx
]
dt

=−
∫ T

0

[
p∑
i=1

ρi

µi

∫
Ωi

∇φi (t,x) ·wi (t,x) dx +
〈
f iu (t, ·) ,wi (t, ·)

〉
V ′u×Vu

]
and

p∑
i=1

∫
Ωi

∇φi (t, ·) · ∇θi (t, ·) dx

=

p∑
i=1

[
4πρiG

∫
Ωi

divui (t, ·) θi (t, ·) dx +
〈
fφ (t, ·) θi (t, ·)

〉]
.

Theorem 1.2. Assumed the regularity (12)-(15) on the data fu, fφ, φ0 u0 and v0. Then
there exists a unique weak solution {u, φ} of the problem (VGP).

This theorem has been proved in previous works ([2]: for the stationary case see [1]).

2. Stabilization for t → +∞. In this section, we study the stability of viscoelastic-
gravitational problem (VGP). Therefore, we shall prove convergence of solutions of the
hyperbolic problem to solutions of the elliptic problem as t → +∞. The main concern of
this Section is to prove, that under some additional conditions on the data, the difference
of the viscoelastic and elastic solutions converges to zero, as t goes to infinity, in a suitable
functional space. {u∗, φ∗} denotes the vectorial difference between the hyperbolic solution
{u (t,x) , φ (t,x)} and the elliptic solution {u∞ (x) , φ∞ (x)}. That is, defined

u∗ (t,x) = u (t,x)− u∞ (x) , φ∗ (t,x) = φ (t,x)− φ∞ (x) ,

our goal is to prove

u∗ (t,x) −→ 0 in Vu, φ
∗ (t,x) −→ 0 in Vφ, as t→ +∞.

In order to simplify the study we shall not take into account convective terms (which
formally corresponds to take g = 0 in the problem (VGP)) and we shall assume also more
regularity on the data than the one which is needed for the existence of solutions. To start
with, we shall consider firstly the ”autonomous case”

fu(t, .) = fu,∞(.), fφ(t, .) = fφ,∞(.) and φ̂0(t, .) = φ̂0,∞(.).

Let’s state our main theorem concerning this case:

Theorem 2.1. Under above mentioned hypothesis as well as

vi0,u
i
0,u

i
∞ ∈ H2(Ωi), i = 1, . . . , p, (16)

we have that {
u∗ (t,x) −→ 0 in Vu
φ∗ (t,x) −→ 0 in Vφ

as t→ +∞.
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Thanks to the classical theory of ordinary differential equations in Banach spaces, a
sufficient condition to guarantee that a system is stable is the construction of a nonnegative
Lyapunov function such that when applied to a solution is a continuously non-increasing
function of t. As we shall see, the viscoelastic-gravitational problem can be considered as
an infinite dimensional dynamic system. We recall here some well-known results (see e.g.
[3]). Let (Z, d) be a complete metric space.

Definition 2.2. Let {St}t≥0 be a dynamic system on the Banach space Z and let z ∈ Z.
The ω-limit set associated to z is defined by

ω (z) := {y ∈ Z,∃tn −→∞, Stnz −→ y as n −→∞} .

Remark 1. The ω-limit set can be also written as:

ω (z) :=
⋂
s>0

⋃
t≥s

{Stz}.

Moreover, if
⋃
t≥s
{Stz} is relatively compact in Z then St (ω (z)) = ω (z) 6= ∅ (see [3]).

Theorem 2.3 (LaSalle’s invariance principle). Let E be a Lyapunov function for {St}t≥0,

(i.e. such that E (Stz) ≤ E (z) ∀t ≥ 0 and ∀z ∈ Z), and let z ∈ Z be such that
⋃
t≥s
{Stnz}

is relatively compact in Z. Then:
(i) lim

t→∞
E (Stz) = L exists,

(ii) E (y) = L,∀y ∈ ω (z) .

Theorem 2.4. ([3]). Let E be a strict Lyapunov function for {St}t≥0, (i.e. such that if

E (Stz) = E (z) ∀t ≥ 0 is verified then z is an equilibrium point for {St}t≥0). Let z ∈ Z
be such that

⋃
t≥0

{Stz} is relatively compact in Z. Let E be the set of equilibrium points of

{St}t≥0 . Therefore,

(i) E is a non-empty closed subset of Z,
(ii) d(Stz, E)→ 0 as t→∞ (i.e. ω (z) ⊂ E).

Proof of the Theorem 2.1. In order to apply the above mentioned abstract results, we need
to deal with the difference

u∗ (t,x) = u (t,x)− u∞ (x) ,

φ∗ (t,x) = φ (t,x)− φ∞ (x) ,

Asterisk will be omitted to simplify the notation. We obtain the following coupled system:

ρiuitt (t,x)− γi∆uit (t,x)−∆ui (t,x)− 1

1− 2νi
∇
(
divui (t,x)

)
=
ρi

µi
∇φi (t,x) in (0,+∞)× Ωi,

−∆φi (t,x) = 4πρGdivui (t,x) in (0,+∞)× Ωi,

+ Boundary conditions and non-zero initial conditions.

In general, the challenges for this kind of problems are to be able to construct the dynamic
system (hyperbolic/elliptic), and to find a Lyapunov function for that dynamic system and
the space selected Z. For that, we consider the system as a unique evolution equation. We
shall take the inverse Laplacian (with specified boundary conditions) on the second equation.
So, we have that:

φi (t,x) = (−∆)
−1 (

4πρiGdivui (t,x)
)
.
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If we replace this term in the first equation of (VGP) we obtain a nonlocal equation which
only involves the displacements:

ρiuitt (t,x)− γ∆uit (t,x)−∆ui (t,x)− 1

1− 2νi
∇
(
divui (t,x)

)
=
ρi

µi
∇
(

(−∆)
−1 (

4πρiGdivui (t,x)
))

in (0,+∞)× Ωi,

(17)

with the following boundary conditions:

ui (0,x) =ui0 (x)− ui∞ (x) in Ωi,

uit (0,x) =vi0 (x) in Ωi,

ui (t,x) =0 on ∂lΩi,

ui (t,x) =ui+1 (t,x) ,

∂ui (t,x)

∂z
=
∂ui+1 (t,x)

∂z
, on (0,+∞)× ∂−Ωi for i = 1, . . . , p− 1,

u1 (t,x) =0 on (0,+∞)× ∂+Ω1,

up (t,x) =0 on (0,+∞)× ∂−Ωp.

(18)

Therefore, the space of the states is assumed as Z := Vu × Vu. Taking into account the
proof described in [1] and [2] for uniqueness of weak solutions, we construct the Lyapunov
function E in the following way:

E

((
u
ut

))
:=

p∑
i=1

[
4π
(
ρi
)2
G

2
[

∫
Ωi

(∣∣uit (t,x)
∣∣2 + 4πρiGγi

∣∣∇uit (t,x)
∣∣2) dx

+ 2πρiG

∫
Ωi

(
∣∣∇ui (t,x)

∣∣2 +
4πρiG

1− 2ν
divui (t,x)

2
)

+

∫
Ω

ρ

µ

(∣∣∣∇ (−∆)
−1 (

4πρGdivui (t,x)
)∣∣∣2) dx].

We take z :=

(
u0 − u∞

v0

)
and the dynamic system given by

Stz :=

(
u (t, .)
ut (t, .)

)
with u (t, .) being the solution of the above mentioned non local problem (17), (18). The
main hypothesis we want to verify is that the function E is a strict Lyapunov function for
{St}t≥0. So, this coincides exactly with the argument used to prove the uniqueness of weak

solutions of hyperbolic problem (see [1] and [2]). Now, we prove that E(Stz) ≤ E(z) ∀t ≥ 0
and ∀z ∈ Z:

p∑
i=1

[2π
(
ρi
)2
G[

∫
Ωi

(∣∣uit (t,x)
∣∣2 + 4πρiGγi

∣∣∇uit (t,x)
∣∣2) dx

+ 2πρiG

∫
Ωi

(
∣∣∇ui (t,x)

∣∣2 +
4πρiG

1− 2ν
divui (t,x)

2
)

+

∫
Ω

ρ

µ

(∣∣∣∇ (−∆)
−1 (

4πρGdivui (t,x)
)∣∣∣2) dx]

≤
p∑
i=1

[2π
(
ρi
)2
G[

∫
Ωi

(
|v0|2 + 4πρiGγi

∣∣∇vi0
∣∣2) dx
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+ 2πρiG

∫
Ωi

(
∣∣∇(ui0 − ui∞)

∣∣2 +
4πρiG

1− 2ν
div(ui0 − ui∞)2)

+

∫
Ω

ρi

µi

(∣∣∣∇ (−∆)
−1 (

4πρGdiv(ui0 − ui∞)
)∣∣∣2) dx].

As u∞ is a stationary solution the above inequality coincides with the continuous dependence
estimate given in (see [1] and [2]). It is verified that E is a strict function due to definition
of weak solution of the evolution problem.
Finally, we shall check that

⋃
t≥0

{Stz} is relatively compact in Z to complete the proof. By

using the time derivative integration of E (Stz), we obtain that

sup
t∈[0,T ]

p∑
i=1

[∫
Ωi

∣∣uit∣∣2 dx]+

∫ T

0

∫
Ωi

∣∣∇uit
∣∣2 dxdt+ sup

t∈[0,T ]

p∑
i=1

∫
Ωi

∣∣∇ui
∣∣2 dx

+ sup
t∈[0,T ]

p∑
i=1

∫
Ωi

(divui)2 dx + sup
t∈[0,T ]

p∑
i=1

∫
Ωi

∣∣∇φi(t,x)
∣∣2 dx

≤ C[

∫ T

0

p∑
i=1

(∥∥f iu(t, .)
∥∥2

H−1 +
∥∥f iφ(t, .)

∥∥2

H−1 +

∥∥∥∥ ∂∂t (f iφ)(t, .)

∥∥∥∥2

H−1

)
dt

+

∫
∂+Ω1

|φ0 (s) v0 (s) · n| ds+

p∑
i=1

∫
Ωi

∣∣vi0 (x)
∣∣2 dx

+

p∑
i=1

∫
Ωi

∣∣∇vi0 (x)
∣∣2 dx +

p∑
i=1

∫
Ωi

∣∣∇ui0 (x)
∣∣2 dx +

p∑
i=1

∫
Ωi

divui0 (x)
2
dx

+

∫ T

0

∫
∂+Ω1

∣∣∣∣φ0 (t, s)
∂

∂n
φ0 (t, s)

∣∣∣∣ ds+

∫ T

0

∫
∂+Ω1

∣∣∣∣φ0 (t, s)
∂2

∂t∂n
φ0 (t, s)

∣∣∣∣ ds],
for a suitable positive constant C (depending on T , Ωi and the constants ρi, µi, νi, γi

and G). Now, we prove that {ut (t, .)} is relatively compact in Vu. Firstly, we derive the
viscoelastic-gravitational problem with respect to time. We obtain the following problem
with the above boundary condition:

ρiuittt (t,x)− γi∆uitt (t,x)−∆uit (t,x)− 1

1− 2νi
∇divuit (t,x)

=
ρi

µi
∇φit (t,x) in (0,∞)× Ωi,

(19)

with

uit (0,x) =vi0 (x) in Ωi,

uitt (0,x) =γ∆vi0 (x) + ∆ui0 (x)−∆ui∞ (x) +
1

1− 2ν
∇divui0 (x) in Ωi.

By the regularity on data (12)-(15), we can infer that ut ∈ L∞(0,∞ : H1(Ω)). If we multiply
the problem (19) by utt and integrate, next inequality holds:

ρi
d

dt

∫
Ωi

(∣∣uitt(t,x)
∣∣2 +

∣∣γi∇uitt(t,x)
∣∣2 +

∣∣∇uit(t,x)
∣∣2

+
1

1− 2νi
∣∣divuit(t,x)

∣∣2) dx
≤C(ε)ρi

µi

∫
Ωi

(∣∣∇φit(t,x)
∣∣2 +

∣∣uitt(t,x)
∣∣2) dx + C,

(20)
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where C(ε) is the constant of the inequality of Young. If now we derive the second equation
of viscoelastic-gravitational model with respect to time, we get for C > 0 that:

p∑
i=1

(∫
Ωi

∣∣∇φit(t,x)
∣∣2 dx)1/2

≤ C
p∑
i=1

∥∥uit(t, ·)∥∥L2(Ωi)
,

and using Poincaré inequality we get∫
Ωi

∣∣uitt(t,x)
∣∣2 dx ≤ C ∫

Ωi

∣∣∇uitt(t,x)
∣∣2 dx.

Finally, we take ε small enough and integrate in time we arrive to a L∞−estimate. The
supposed additional regularity vi0, ui0, ui∞ ∈ H2(Ωi), i = 1, . . . , p allows us to conclude
that uit ∈ L∞

(
0,∞ : L2(Ωi)

)
which implies that uitt, divu

i
t ∈ L∞

(
0,∞ : L2(Ωi)

)
and φit ∈

L∞
(
0,∞ : H1(Ωi)

)
.

Now we shall consider the non-autonomous case. Under some additional regularity it is
possible to apply the main idea of proof of the above result. We suppose now that

φ0 ∈W 1,∞(0,+∞ :

p∏
i=1

H1 (Ωi)) and verifies (10) and (11). (21)

fu ∈W 1,∞(0,+∞ :

p∏
i=1

L2 (Ωi)
3
), (22)

fφ∈W 1,∞(0,+∞ :

p∏
i=1

L2 (Ωi)), (23)

for some 2 ≤ q ≤ +∞ and

fu(t, .)→ fu,∞(.) in

p∏
i=1

L2 (Ωi) as t→ +∞, (24)

fφ(t, .)→ fφ,∞(.) in

p∏
i=1

L2 (Ωi) as t→ +∞, (25)

φ̂0(t, .)→ φ̂0,∞(.) in H1(Ω1) as t→ +∞. (26)

Theorem 2.5. Assume the above conditions and (16). Then the conclusion of Theorem
2.1 remains valid.

Proof. We adapt to this framework the main ideas of [4]. Thanks to the regularity assumed
on the data, as in the last part of the proof of Theorem 2.1, we obtain the additional reg-
ularity uitt ∈ L∞

(
0,∞ : L2(Ωi)

)
and uit ∈ L∞

(
0,∞ : H1(Ωi)

)
, φit ∈ L∞

(
0,∞ : H1(Ωi)

)
.

This implies that the ω-limit set is not empty. In fact, there exists a subsequence, tn → +∞
such that the convergence (given in the definition of the ω-limit set) takes place strongly
in the space Z := Vu × Vu (since the compactness arguments of the proof of of Theorem
2.1 remain valid under the additional regularity assumed on the data). Then any element
of the ω-limit set must be a solution of the associated stationary system. Moreover, since
we have uniqueness of solutions for the associated stationary system, the convergence takes
place independently of the subsequence tn and the conclusion holds.
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