# Homogenization of Variational Inequalities of Signorini Type for the $p$-Laplacian in Perforated Domains when $p \in(1,2)^{1}$ 

J. I. Díaz ${ }^{a *}$, D. Gómez-Castro ${ }^{a * *}$, A. V. Podolskiy ${ }^{b * * *}$, and T. A. Shaposhnikova ${ }^{b * * * *}$<br>Presented by Academician of the RAS V.V. Kozlov November 8, 2016

Received November 15, 2016


#### Abstract

The asymptotic behavior, as $\varepsilon \rightarrow 0$, of the solution us to a variational inequality with nonlinear constraints for the $p$-Laplacian in an $\varepsilon$-periodically perforated domain when $p \in(1,2)$ is studied.


DOI: 10.1134/S 1064562417020132

Works [4, 6] are concerned with the investigation of the asymptotic behavior of the solution of the variational inequality for the $p$-Laplace operator, where $p \in$ [ $2, n$ ) and $\varepsilon$-periodically perforated domain with nonlinear Robin type boundary condition. In the present work we investigate a similar homogenization problem for the $p$-Laplacian in the case when $p \in(1,2)$. It is known (see [2]) that for this values of $p$ the considered problems describe the motion of non-Newtonian fluids. This type of diffusion is also used to describe certain problems of Newtonian fluids in turbulent regime (see, e.g., [3]). The operator also has some interest in the context on non-linear elasticity.

Let $\Omega$ be a bounded domain in $? \mathrm{n}, \mathrm{n} \geq 3$, with a smooth boundary $\partial \Omega$. Denote $\mathrm{Y}=\left(-\frac{1}{2}, \frac{1}{2}\right)^{n}$ and let G0 be the unit ball centered at the origin. For $\delta>0$ and a given set $\mathrm{B} \subset$ ? n we define $\delta \mathrm{B}=\{\mathrm{x} \mid \boldsymbol{\delta}-1 \mathrm{x} \in \mathrm{B}\}$. We also define, for $\mathrm{j} \in ? \mathrm{n}, G_{j}^{\varepsilon}=\mathrm{a} \varepsilon \mathrm{G} 0+\varepsilon \mathrm{j}$,

$$
\tilde{\Omega}_{\varepsilon}=\{x \in \Omega \mid \rho(x, \partial \Omega)>2 \varepsilon\}, \quad G_{\varepsilon}=\bigcup_{j \in \Upsilon_{\varepsilon}} G_{\varepsilon}^{j}
$$

[^0][^1](where $0<\varepsilon$ ? 1), $\mathrm{a} \varepsilon=\mathrm{C} 0 \varepsilon \alpha, \alpha=\frac{n}{n-p}$ and
$$
\Upsilon_{\varepsilon}=\left\{j \in \mathbb{Z}^{n}:\left(a_{\varepsilon} G_{0}+\varepsilon j\right) \cap \overline{\tilde{\Omega}}_{\varepsilon} \neq \phi\right\} .
$$

It is easy to check that $\left|r_{\varepsilon}\right| \cong d \varepsilon^{-n}$, where $d>0$ is a constant. Finally, let us define $Y_{\varepsilon}^{j}=\varepsilon Y+\varepsilon j, j \in \Upsilon_{\varepsilon}$ (where we point out that $\overline{G_{\varepsilon}^{j}} \subset Y_{\varepsilon}^{j}$ and that the center of the ball $G_{\varepsilon}^{j}$ coincides with the center of $Y_{\varepsilon}^{j}$ ) and

$$
\Omega_{\varepsilon}=\Omega \backslash \overline{G_{\varepsilon}}, \quad S_{\varepsilon}=\partial G_{\varepsilon}, \quad \partial \Omega_{\varepsilon}=\partial \Omega \cap S_{\varepsilon} .
$$

In this setting we consider the following nonlinear diffusion problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u_{\varepsilon}=f, \quad x \in \Omega_{\varepsilon},  \tag{1}\\
-\partial_{v_{p}} u_{\varepsilon} \in \varepsilon^{-\gamma} \sigma\left(u_{\varepsilon}\right), \quad x \in S_{\varepsilon}, \\
u_{\varepsilon}=0, \quad x \in \partial \Omega
\end{array}\right.
$$

where $p \in(1,2), \Delta_{p} u \equiv \operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), \partial_{v_{p}} u \equiv$ $|\nabla u|^{p-2}(\nabla u, v)$ and with $v$ the outward unit normal to $S_{\varepsilon}$ and $\gamma=\alpha(p-1), f \in L^{p^{\prime}}(\Omega), p^{\prime}=\frac{p}{p-1}$, and $\sigma$ the following maximal monotone graph

$$
\sigma(\lambda)=\left\{\begin{array}{l}
\sigma_{0}(\lambda), \quad \lambda>0,  \tag{2}\\
(-\infty, 0], \quad \lambda=0, \\
\phi, \quad \lambda<0,
\end{array}\right.
$$

where $\sigma_{0} \in C^{1}(\mathbb{R}), \sigma_{0}(0)=0, \sigma_{0}^{\prime}(\lambda) \geq k_{1}>0$ and $k_{1}$ is a constant.

We note that boundary value problem (1) with a function such as $\sigma(\lambda)$ in the boundary condition corresponds to the problem with the one-sided restrictions, i.e., Signorini type problem

$$
\left\{\begin{array}{l}
u_{\varepsilon} \geq 0 \\
\partial_{v_{p}} u_{\varepsilon}+\varepsilon^{-\gamma} \sigma_{0}\left(u_{\varepsilon}\right) \geq 0 \text { and } \\
u_{\varepsilon}\left(\partial_{v_{p}} u_{\varepsilon}+\varepsilon^{-\gamma} \sigma_{0}\left(u_{\varepsilon}\right)\right)=0, \quad \text { on } \quad S_{\varepsilon}
\end{array}\right.
$$

Let us define the following functions

$$
\begin{gather*}
\hat{\psi}(\lambda)=\int_{0}^{\lambda} \sigma_{0}(\tau) d \tau  \tag{3}\\
\psi(\lambda)= \begin{cases}\hat{\psi}(\lambda), & \lambda \geq 0 \\
+\infty, & \lambda<0\end{cases} \tag{4}
\end{gather*}
$$

This convex l.s.c. function $\psi$ has $\sigma$ as its sub differential, in the sense that

$$
\begin{align*}
& \psi(\lambda)-\psi(\mu) \leq \xi(\lambda-\mu) \\
& \forall \lambda, \mu \in \mathbb{R}, \quad \xi \in \sigma(\lambda) \tag{5}
\end{align*}
$$

This is typically denoted $\sigma=\partial \psi$. The weak solution of the problem (1) is defined as a function

$$
u_{\varepsilon} \in K_{\varepsilon}=\left\{g \in W^{1, p}\left(\Omega_{\varepsilon}, \partial \Omega\right): g \geq 0 \text { a.e. on } S_{\varepsilon}\right\}
$$

satisfying the integral inequality

$$
\begin{gather*}
\int_{\Omega_{p}}\left|\nabla u_{\varepsilon}\right|^{p-2} \nabla u_{\varepsilon} \nabla\left(\phi-u_{\varepsilon}\right) d x+\varepsilon^{-\gamma} \int_{S_{\varepsilon}}\left(\hat{\psi}(\phi)-\hat{\psi}\left(u_{\varepsilon}\right)\right) d s  \tag{6}\\
\geq \int_{\Omega_{\varepsilon}} f\left(\phi-u_{\varepsilon}\right) d x
\end{gather*}
$$

for any arbitrary function $\phi \in K_{\varepsilon}$.
Let $H(\lambda)$ be the solution of the functional inclusion

$$
\begin{equation*}
B_{0}|H|^{p-2} H \in \sigma(\lambda-H), \tag{7}
\end{equation*}
$$

where $B_{0}>0$ is a constant. In the case of $\sigma$ as in (2), inclusion (7) has a unique solution of the form

$$
H(\lambda)=\left\{\begin{array}{l}
H_{0}(\lambda), \quad \lambda>0,  \tag{8}\\
\lambda, \quad \lambda \leq 0,
\end{array}\right.
$$

where $H_{0}(\lambda)$ is the solution of the functional equation

$$
\begin{equation*}
B_{0}\left|H_{0}\right|^{p-2} H_{0}=\sigma_{0}\left(\lambda-H_{0}\right) \tag{9}
\end{equation*}
$$

Note that $H_{0}(0)=0$. If we decompose $u=u^{+}-u^{-}$ where $u^{+}, u^{-} \geq 0$ are the positive and negative parts of $u$ then we have

$$
\begin{gathered}
H(u)=H_{0}\left(u^{+}\right)-u^{-} \\
|H(u)|^{p-2} H(u)=\left|H_{0}\left(u^{+}\right)\right|^{p-2} H_{0}\left(u^{+}\right)-\left|u^{-}\right|^{p-2} u^{-}
\end{gathered}
$$

Also,
Lemma 1. For every $s \neq 0,0<H^{\prime}(s) \leq 1$. In particular, H is a Lipschitz continuous function.

Proof. If $H_{0}(s) \leq 0$, since $\sigma_{0}(0)=0, \sigma_{0}^{\prime}(s) \geq k_{1}>0$ $0 \geq B_{0}\left|H_{0}(s)\right|^{p-2} H_{0}(s)=\sigma_{0}\left(s-H_{0}(s)\right) \geq k_{1}\left(s-H_{0}(s)\right)$,
then $s \leq 0$. So, for $s>0, H(s)=H_{0}(s)>0$. Hence, for $s>0, B_{0} H_{0}{ }^{p-1}(s)=\sigma_{0}\left(s-H_{0}(s)\right)$. Differentiating with respect to $s$, for $s>0$

$$
B_{0}(p-1) H_{0}^{p-2}(s)=\sigma_{0}^{\prime}\left(s-H_{0}(s)\right)\left(1-H_{0}^{\prime}(s)\right)
$$

$$
H_{0}^{\prime}(s)=\frac{\sigma_{0}^{\prime}\left(s-H_{0}(s)\right)}{B_{0}(p-1) H_{0}^{p-2}(s)+\sigma_{0}^{\prime}\left(s-H_{0}(s)\right)}
$$

It follows that $0<H^{\prime}(s) \leq 1$. for $s>0$. Since, for $s<0$, $H(s)=s$ we finish the proof.

Remark 1. If $\sigma$ is given by (2), $H(s) \leq s$ for all $s \in \mathbb{R}$. For $s \leq 0$ this is obvious and for $s>0$ we point out that $H(0)=0$ and $H^{\prime}(s) \leq 1$.

Let $\tilde{u}_{\varepsilon} \in W_{0}^{1, p}(\Omega)$ be a $W^{1, p}$-extension of $u_{\varepsilon}$, that satisfies the following inequalities

$$
\begin{align*}
\left\|\tilde{u}_{\varepsilon}\right\|_{W^{1, p}(\Omega)} & \leq K\left\|u_{\varepsilon}\right\|_{W^{1, p}\left(\Omega_{\varepsilon}\right)}  \tag{10}\\
\left\|\nabla \tilde{u}_{\varepsilon}\right\|_{L^{p}(\Omega)} & \leq K\left\|\nabla u_{\varepsilon}\right\|_{L^{p}\left(\Omega_{\varepsilon}\right)}
\end{align*}
$$

Considering (6) it is easy to check that

$$
\left\|\nabla u_{\varepsilon}\right\|_{L^{p}\left(\Omega_{\varepsilon}\right)} \leq K
$$

Hence, using this inequality and estimations (10) we conclude that there exists a subsequence (denote as the original sequence), such that as $\varepsilon \rightarrow 0$

$$
\begin{equation*}
\tilde{u}_{\varepsilon} \rightharpoonup u \quad \text { weakly in } \quad W_{0}^{1, p}(\Omega) \tag{11}
\end{equation*}
$$

We will use systematically that the function

$$
\begin{equation*}
\Phi_{p}: L^{p}(\Omega)^{N} \rightarrow L^{p^{\prime}}(\Omega)^{N}, \quad \xi \mapsto|\xi|^{p-2} \xi \tag{12}
\end{equation*}
$$

is continuous in the strong topology (see [8]).
The following theorem gives us the description of function $u$. What is remarkable in it is that a sequence of variational inequalities converges to the solution of a single-valued quasilinear equation with a Lipschitz absortion term.

Theorem 1. Let $\alpha=\frac{n}{n-p}, \gamma=\alpha(p-1), p \in(1,2)$, $n \geq 3$. Suppose that $u_{\varepsilon} \in W^{1, p}\left(\Omega_{\varepsilon}, \partial \Omega\right)$ is the weak solution of the problem (1), where $\sigma(\lambda)$ is given by formula
(2) and $\tilde{u}_{\varepsilon} \in W_{0}^{1, p}(\Omega)$ is a $W^{1, p}$-extension of $u_{\varepsilon}$ satisfying (10). Then, the function $u$ defined in (12) is a weak solution of the following problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u+\mathscr{A}(n, p)|H(u)|^{p-2} H(u)=f, \quad x \in \Omega  \tag{13}\\
u=0, \quad x \in \partial \Omega
\end{array}\right.
$$

where $H(\lambda)$ is given by formula $(8), H_{0}(\lambda)$ is a solution of the Eq. (9) for $B_{0}=\left(\frac{n-p}{p-1}\right)^{p-1} C_{0}^{1-p}, \mathscr{A}(n, p)=$ $\left(\frac{n-p}{p-1}\right)^{p-1} C_{0}^{n-p} \omega_{n}$ and $\omega_{n}$ is the surface area of the unit sphere in $\mathbb{R}^{n}$.

We will use the following auxiliary function $W_{\varepsilon}$ defined as follows

$$
W_{\varepsilon}= \begin{cases}w_{\varepsilon}^{j}, & x \in T_{\varepsilon}^{j} \backslash \overline{G_{\varepsilon}^{j}}, \quad j \in \Upsilon_{\varepsilon} \\ 1, & x \in G_{\varepsilon} \\ 0, & x \in \mathbb{R}^{n} \backslash \bigcup_{j \in \Upsilon_{\varepsilon}} T_{\varepsilon}^{j}\end{cases}
$$

where $w_{\varepsilon}^{j}$ is the solution of the following boundary value problem

$$
\begin{aligned}
& \Delta_{p} w_{\varepsilon}^{j}=0, \quad x \in T_{\varepsilon}^{j} \backslash \overline{G_{\varepsilon}^{j}} \\
& w_{\varepsilon}^{j}=1, \quad x \in \partial G_{\varepsilon}^{j} \\
& w_{\varepsilon}^{j}=0, \quad x \in \partial T_{\varepsilon}^{j}
\end{aligned}
$$

and $T_{\varepsilon}^{j}$ denotes the ball of radius $\varepsilon / 4$ which center coincides with the center of cube $Y_{\varepsilon}{ }^{j}$. It is easy to show that

$$
\begin{equation*}
\int_{\Omega_{\varepsilon}}\left|\nabla W_{\varepsilon}\right|^{q} d x \leq K \varepsilon^{n(p-q) /(n-p)} \tag{14}
\end{equation*}
$$

where $1 \leq q \leq p$. $W_{\varepsilon} \rightarrow 0$ in $W_{0}^{1, q}(\Omega)$ at $\varepsilon \rightarrow 0$, for $q<p$. Also, the $W_{0}^{1, p}$ norm is bounded, so it has a weakly convergent subsequence. The limit of that sequence must be its $W_{0}^{1, q}$ limit, hence $W_{\varepsilon} \rightharpoonup 0$ weakly in $W_{0}^{1, p}(\Omega)$ as $\varepsilon \rightarrow 0$.

Proof of Theorem 1. Taking into account (3) and using the monotonicity of function $|\lambda|^{p-2} \lambda$ for $p>1$, from inequality (6) we derive that $u_{\varepsilon}$ satisfies the following inequality

$$
\begin{gather*}
\int_{\Omega_{\varepsilon}}|\nabla \phi|^{p-2} \nabla \phi \nabla\left(\phi-u_{\varepsilon}\right) d x+\varepsilon^{-\gamma} \int_{S_{\varepsilon}} \sigma_{0}(\phi)\left(\phi-u_{s}\right) d s  \tag{15}\\
\geq \int_{\Omega_{\varepsilon}} f\left(\phi-u_{\varepsilon}\right) d x
\end{gather*}
$$

for any function $\phi \in K_{\varepsilon}$.
Let $v \in C_{0}{ }^{\infty}(\Omega)$ and let us consider $\phi=v-W_{\varepsilon} H(v)$ as a test function, where $H(\lambda)$ is defined by (8). Notice that $\phi_{S_{\varepsilon}}=v-H(v) \geq 0$ due to Remark 1, and hence $\phi \in K_{\varepsilon}$. Let us define $\psi_{\varepsilon}=\phi-\tilde{u}_{\varepsilon}$, and rewrite (15) as $I_{\varepsilon}^{1}+I_{\varepsilon}^{2} \geq I_{\varepsilon}^{3}$ where

$$
I_{\varepsilon}^{1}=\int_{\Omega_{\varepsilon}}\left|\nabla\left(v-W_{\varepsilon} H(v)\right)\right|^{p-2} \nabla\left(v-W_{\varepsilon} H(v)\right) \nabla \psi_{\varepsilon} d x
$$

$$
I_{\varepsilon}^{2}=\varepsilon^{-\gamma} \int_{S_{\varepsilon}} \sigma(v-H(v)) \psi_{\varepsilon} d s, \quad I_{\varepsilon}^{3}=\int_{\Omega_{\varepsilon}} f \psi_{\varepsilon} d x
$$

Let us define

$$
\begin{gathered}
\xi_{1}=\Phi_{p}\left(\nabla\left(v-W_{\varepsilon} H(v)\right)\right) \\
\xi_{2}=\Phi_{p}(\nabla v), \quad \xi_{3}=\Phi_{p}\left(\nabla\left(W_{\varepsilon} H(v)\right)\right)
\end{gathered}
$$

We write $I_{\varepsilon}^{1}=J_{\varepsilon}^{1}+J_{\varepsilon}^{2}+J_{\varepsilon}^{3}$, where

$$
\begin{gathered}
J_{\varepsilon}^{1}=\int_{\Omega_{\varepsilon}}\left(\xi_{1}-\left(\xi_{2}-\xi_{3}\right)\right) \cdot \nabla \psi_{\varepsilon} d x \\
J_{\varepsilon}^{2}=\int_{\Omega_{\varepsilon}} \xi_{2} \cdot \nabla \psi_{\varepsilon} d x, \quad J_{\varepsilon}^{3}=-\int_{\Omega_{\varepsilon}} \xi_{3} \cdot \nabla \psi_{\varepsilon} d x
\end{gathered}
$$

Lemma 3 below implies the inequality $\mid \xi_{1}-\left(\xi_{2}-\right.$ $\left.\xi_{3}\right) \left\lvert\, \leq C\left(\left|\xi_{2} \| \xi_{3}\right|\right)^{\frac{p-1}{2}}\right.$. Hence, we can write

$$
\begin{gathered}
\left|J_{\varepsilon}^{1}\right| \leq K \int_{\Omega_{\varepsilon}}|\nabla v|^{\frac{p-1}{2}}\left|\nabla\left(W_{\varepsilon} H(v)\right)\right|^{\frac{p-1}{2}} \\
\times\left(\left|\nabla\left(W_{\varepsilon} H(v)\right)\right|^{\frac{p}{2}}|\nabla v|+\left|\nabla u_{\varepsilon}\right|\right) d x \\
\leq K \int_{\Omega_{\varepsilon}}\left(|\nabla v|^{\frac{p-1}{2}}\left|\nabla\left(W_{\varepsilon} H(v)\right)\right|^{\frac{p+1}{2}}+|\nabla v|^{\frac{p+1}{2}}\left|\nabla\left(W_{\varepsilon} H(v)\right)\right|^{\frac{p-1}{2}}\right. \\
\left.+|\nabla v|^{\frac{p-1}{2}}\left|\nabla\left(W_{\varepsilon} H(v)\right)\right|^{\frac{p-1}{2}}\left|\nabla u_{\varepsilon}\right|\right) d x \\
\leq K \int_{\Omega_{\varepsilon}}\left(\left|\nabla W_{\varepsilon}\right|^{\frac{p+1}{2}}+\left|\nabla u_{\varepsilon}\right|\left|\nabla W_{\varepsilon}\right|^{\frac{p-1}{2}}\right) d x .
\end{gathered}
$$

Applying Hölder's inequality for $p$ on the second term

$$
\left|J_{\varepsilon}^{1}\right| \leq K\left\{\left.| | \nabla W_{\varepsilon}\right|_{L^{\frac{p+1}{2}(\Omega)}} ^{\frac{2}{p+1}}+\left\|\nabla u_{\varepsilon}\right\|_{L^{p}(\Omega)}\left(\int_{\Omega}\left|\nabla W_{\varepsilon}\right|^{\frac{p}{2}}\right)^{\frac{p-1}{p}} d x\right\} \rightarrow 0
$$

as $\varepsilon \rightarrow 0$, by taking into account that $\frac{p}{2}, \frac{p+1}{2}<p$ and estimate (14). Moreover, convergence (11) implies

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} J_{\varepsilon}^{2}=\int_{\Omega}|\nabla V|^{p-2} \nabla_{V} \nabla(v-u) d x \tag{16}
\end{equation*}
$$

Consider $J_{\varepsilon}^{3}$. Splitting $\nabla\left(W_{\varepsilon} H(v)\right)=W_{\varepsilon} \nabla H(v)+$ $H(v) \nabla W_{\varepsilon}$, since $W_{\varepsilon} \nabla H(v) \rightarrow 0$ in $L^{p}(\Omega)^{N}, \Phi_{p}$ is continuous and $\psi_{\varepsilon}$ is bounded in $W^{1, p}$ we have that

$$
\lim _{\varepsilon \rightarrow 0} J_{\varepsilon}^{3}=-\lim _{\varepsilon \rightarrow 0} \int_{\Omega_{\varepsilon}} \Phi_{p}\left(H(v) \nabla W_{\varepsilon}\right) \cdot \nabla \psi_{\varepsilon} d x
$$

On the other hand, it is easy to check that

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \int_{\Omega_{\varepsilon}}\left|\nabla W_{\varepsilon}\right|^{p-2} \nabla W_{\varepsilon} \cdot \nabla\left(|H(v)|^{p-2} H(v) \psi_{\varepsilon}\right) \\
& \quad=\lim _{\varepsilon \rightarrow 0} \int_{\Omega_{\varepsilon}} \Phi_{p}\left(H(v) \nabla W_{\varepsilon}\right) \cdot \nabla \psi_{\varepsilon} d x
\end{aligned}
$$

Hence

$$
\begin{aligned}
& J_{\varepsilon}^{3}=-\int_{\Omega_{\varepsilon}}\left|\nabla W_{\varepsilon}\right|^{p-2} \nabla W_{\varepsilon} \cdot \nabla\left[|H(v)|^{p-2}\right. \\
& \left.\times H(v)\left(v-W_{\varepsilon} H(v)-u_{\varepsilon}\right)\right] d x+\alpha_{\varepsilon}
\end{aligned}
$$

where $\alpha_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$. From Green's formula we derive that $J_{\varepsilon}^{3}=K_{\varepsilon}^{1}+K_{\varepsilon}^{2}$

$$
\begin{gathered}
K_{\varepsilon}^{1}=-\sum_{j \in \Upsilon_{\varepsilon}} \int_{\partial G_{\varepsilon}^{j}} \partial_{v_{p}} w_{\varepsilon}^{j}|H(v)|^{p-2} H(v)\left(v-H(v)-u_{\varepsilon}\right) d s, \\
K_{\varepsilon}^{2}=-\sum_{j \in \Upsilon_{\varepsilon}} \int_{\partial T_{\varepsilon}^{j}} \partial_{v_{p}} w_{\varepsilon}^{j}|H(v)|^{p-2} H(v)\left(v-u_{\varepsilon}\right) d s+\alpha_{\varepsilon}
\end{gathered}
$$

Taking into account that $\gamma=\alpha(p-1), u_{\varepsilon} \geq 0$ on $S_{\varepsilon}$ and

$$
\begin{gather*}
\left.\partial_{v_{p}} w_{\varepsilon}^{j}\right|_{\partial G_{\varepsilon}^{j}}=\frac{(n-p) \varepsilon^{-\frac{n}{n-p}}}{(p-1) C_{0}\left(1-\kappa_{\varepsilon}\right)}  \tag{17}\\
\left.\partial_{v_{p}} w_{\varepsilon}^{j}\right|_{\partial T_{\varepsilon}^{j}}=\frac{(n-p) 2^{2(n-1) /(p-1)} C_{0}^{(n-p) /(p-1)} \varepsilon^{1 /(p-1)}}{(p-1)\left(1-\kappa_{\varepsilon}\right)} \tag{18}
\end{gather*}
$$

where $\kappa_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$ and that $\gamma=\alpha(p-1)$ we obtain, taking into account (9) that

$$
\begin{gathered}
K_{\varepsilon}^{1}+I_{\varepsilon}^{2}=\varepsilon^{-\gamma} \int_{S_{\varepsilon}}\left[\sigma(v-H(v))-B_{0}|H(v)|^{p-2} H(v)\right] \\
\times\left(v-H(v)-u_{\varepsilon}\right) d s+\beta_{\varepsilon} \\
=\varepsilon^{-\gamma} \int_{S_{\varepsilon}}\left[\left|v_{-}\right|^{p-2} v_{-}\right]\left(v_{+}-H\left(v_{+}\right)-u_{\varepsilon}\right) d s+\beta_{\varepsilon} \\
=\varepsilon^{-\gamma} \int_{S_{\varepsilon}}\left[\left|v_{-}\right|^{p-2} v_{-}\right]\left(-u_{\varepsilon}\right) d s+\beta_{\varepsilon} \leq \beta_{\varepsilon},
\end{gathered}
$$

where $\beta_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$ since $u_{\varepsilon} \geq 0$ on $S_{\varepsilon}$.
We will use the next lemma to pass to the limit in $K_{\varepsilon}^{1}$ (see [10]).

Lemma 2. Let $p>1, h_{\varepsilon} \in H_{0}^{1}(\Omega)$ and $h_{\varepsilon} \rightharpoonup u_{0}$ as $\varepsilon \rightarrow 0$ in $H_{0}^{1}(\Omega)$, then

$$
\left|2^{2(n-1)} \varepsilon \sum_{j=1}^{N_{\varepsilon}} \int_{\partial T_{\varepsilon / 4}^{j}} h_{\varepsilon} d S-\omega_{n} \int_{\Omega} h_{0} d x\right| \rightarrow 0, \quad \varepsilon \rightarrow 0
$$

where $\omega_{n}$ is the surface area of the unit sphere in $\mathbb{R}^{n}$.

Due Lemma 2 we deduce that

$$
\begin{gathered}
K_{\varepsilon}^{1} \rightarrow \mathscr{A}(n, p) \int_{\Omega}|H(v)|^{p-2} H(v)(v-u) d x \\
\text { as } \quad \varepsilon \rightarrow 0
\end{gathered}
$$

where $\mathscr{A}(n, p)=\left(\frac{n-p}{p-1}\right)^{p-1} C_{0}^{n-p} \omega_{n}$. From (15)-(19) we derive that $u$ satisfies following inequality

$$
\begin{gather*}
\int_{\Omega}|\nabla u|^{p-2} \nabla v \nabla(v-u) d x \\
+\left.\mathscr{A}(n, p) \int_{\Omega}|H(v)|^{p-2} H(v)\right|^{p-2}(v-u) d x  \tag{20}\\
\geq \int_{\Omega} f(v-u) d x
\end{gather*}
$$

This inequality implies that $u$ is a weak solution of the problem (13).

In the next theorem we will prove the convergence in the norm of space $W_{0}^{1, p}\left(\Omega_{\varepsilon}\right)$ of the solution of the problem (1) with a corrector to the solution of the homogenized problem.

Theorem 2. Let $\alpha=\frac{n}{n-p}, \gamma=\alpha(p-1), p \in(1,2)$, $n \geq 3$. Suppose that $u_{\varepsilon} \in W^{1, p}\left(\Omega_{\varepsilon}\right)$ is a weak solution of the problem (1) and $u$ is a weak solution of the problem (13) possessing the additional smoothness $u \in W^{1, \infty}(\Omega)$. Then

$$
\begin{equation*}
\left\|\nabla\left(u_{\varepsilon}+W_{\varepsilon} H(u)-u\right)\right\|_{L^{p}\left(\Omega^{\varepsilon}\right)} \rightarrow 0, \quad \text { as } \quad \varepsilon \rightarrow 0 \tag{21}
\end{equation*}
$$

In particular, since $W_{\varepsilon} \rightarrow 0$ in $W^{1, q}(\Omega)$ for $q<p$, we have, for all $q<p$

$$
\left\|\nabla\left(u_{\varepsilon}-u\right)\right\|_{L^{q}\left(\Omega_{\varepsilon}\right)} \rightarrow 0, \quad \varepsilon \rightarrow 0
$$

Remark 2. Under some smoothness hypothesis of $\sigma_{0}$ and $f, u \in W^{1, \infty}(\Omega)$ is often achieve. See $[1,5,7,9]$.

Proof of Theorem 2. Inequality (6) implies that

$$
\begin{gathered}
\int_{\Omega_{\varepsilon}}\left|\nabla u_{\varepsilon}\right|^{p-2} \nabla u_{\varepsilon} \nabla\left(\phi-u_{\varepsilon}\right) d x \\
+\int_{S_{\varepsilon}} \sigma_{0}(\phi)\left(\phi-u_{\varepsilon}\right) d s \geq \int_{\Omega_{\varepsilon}} f\left(\phi-u_{\varepsilon}\right) d x
\end{gathered}
$$

In inequality (22) we substitute $\phi=u-W_{\varepsilon} H(u)$ and in the weak formulation of problem (13), namely,

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla v d x & +\mathscr{A}(n, p) \int_{\Omega}|H(u)|^{p-2} H(u) v d x \\
& =\int_{\Omega} f v d x
\end{aligned}
$$

we take, as a test function, $v=-\Psi_{\varepsilon}$, where $\Psi_{\varepsilon}=u-$ $W_{\varepsilon} H(u)-\tilde{u}_{\varepsilon}$ and $\tilde{u}_{\varepsilon}$ is a $W^{1, p_{-}}$-extension $u_{\varepsilon}$ on $\Omega$. Let us define,

$$
\xi_{1}^{\varepsilon}=\Phi_{p}\left(\nabla u_{\varepsilon}\right), \quad \xi_{2}=\Phi_{p}(\nabla u)
$$

By adding (22) and the integral identity for $u$, we obtain $I_{1}^{\varepsilon}+I_{2}^{\varepsilon}+I_{3}^{\varepsilon} \geq I_{4}^{\varepsilon}$, where

$$
\begin{gathered}
I_{1}^{\varepsilon}=\int_{\Omega_{\varepsilon}}\left(\xi_{1}^{\varepsilon}-\xi_{2}\right) \cdot \nabla \Psi_{\varepsilon} d x, \quad I_{2}^{\varepsilon} \int_{G_{\varepsilon}} \xi_{2} \cdot \nabla \Psi_{\varepsilon} d x \\
I_{3}^{\varepsilon}=\varepsilon^{-\gamma} \int_{S_{\varepsilon}} \sigma(u-H(u)) \Psi_{\varepsilon} d x \\
-\mathscr{A}(n, p) \int_{\Omega}|H(u)|^{p-2} H(u) \Psi_{\varepsilon} d x \\
I_{4}^{\varepsilon}=\int_{G_{\varepsilon}} f \Psi_{\varepsilon} d x
\end{gathered}
$$

It is clear that $I_{2}^{\varepsilon}, I_{4}^{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$ due to weak convergence and the fact that $\left|G_{\varepsilon}\right| \rightarrow 0$. We define

$$
\xi_{3}^{\varepsilon}=\Phi_{p}\left(\nabla\left(W_{\varepsilon} H(u)\right)\right), \quad \xi_{4}^{\varepsilon}=\Phi_{p}\left(\nabla\left(u-W_{\varepsilon} H(u)\right)\right)
$$

We decompose $I_{1}^{\varepsilon}=J_{1}^{\varepsilon}+J_{2}^{\varepsilon}+J_{3}^{\varepsilon}$, where

$$
J_{1}^{\varepsilon}=\int_{\Omega_{\varepsilon}}\left(\xi_{1}^{\varepsilon}-\xi_{4}^{\varepsilon}\right) \cdot \nabla \Psi_{\varepsilon} d x
$$

$J_{2}^{\varepsilon}=\int_{\Omega_{\varepsilon}}\left(\xi_{4}^{\varepsilon}-\xi_{2}+\xi_{3}^{\varepsilon}\right) \cdot \nabla \Psi_{\varepsilon} d x, \quad J_{3}^{\varepsilon}=-\int_{\Omega_{\varepsilon}} \xi_{3}^{\varepsilon} \cdot \nabla \Psi_{\varepsilon} d x$.
Applying Lemma 3 we have that

$$
\begin{gathered}
\left|J_{2}^{\varepsilon}\right| \leq C \int_{\Omega_{\varepsilon}}|\nabla u|^{\frac{p-1}{2}}\left|\nabla\left(W_{\varepsilon} H(u)\right)\right|^{\frac{p-1}{2}} \\
\times\left|\nabla\left(u-W_{\varepsilon} H(u)-u_{\varepsilon}\right)\right| d x \rightarrow 0, \quad \text { as } \quad \varepsilon \rightarrow 0
\end{gathered}
$$

On the other hand, we can write

$$
\begin{aligned}
J_{3}^{\varepsilon}= & -\int_{\Omega_{\varepsilon}}\left|\nabla W_{\varepsilon}\right|^{p-2} \nabla W_{\varepsilon} \nabla\left(|H(u)|^{p-2} H(u) \Psi_{\varepsilon}\right) d x+\delta_{\varepsilon} \\
& =-\sum_{j \in \Upsilon_{\varepsilon}} \int_{\partial G_{\varepsilon}^{j}} \partial_{v_{p}} w_{\varepsilon}^{j}|H(u)|^{p-2} H(u) \Psi_{\varepsilon} d s \\
& -\sum_{j \in \mathrm{Y}_{\varepsilon}} \int_{\partial T_{\varepsilon}^{j}} \partial_{v_{p}} w_{\varepsilon}^{j}|H(u)|^{p-2} H(u) \Psi_{\varepsilon} d s+\delta_{\varepsilon}
\end{aligned}
$$

where $\delta_{\varepsilon} \rightarrow 0$. Therefore, $J_{3}^{\varepsilon}+I_{3}^{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$, due to the explicit expression of $\partial_{v_{p}} w_{\varepsilon}^{j}$ and $H$. So, finally,
$J_{1}^{\varepsilon} \rightarrow 0$. We will use the following inequality (see [2]). For all $1<p<2$ and $\xi, \eta \in \mathbb{R}^{n}$

$$
\begin{equation*}
C \frac{|\xi-\eta|^{2}}{|\xi|^{2-p}+|\eta|^{2-p}} \leq\left(|\xi|^{p-2} \xi-|\eta|^{p-2} \eta\right)(\xi-\eta) \tag{23}
\end{equation*}
$$

Hence, for $\xi=\xi_{1}^{\varepsilon}$ and $\xi=\xi_{4}^{\varepsilon}$, we deduce that

$$
\begin{aligned}
& C \int_{\Omega_{\varepsilon}} \frac{\left|\nabla\left(u_{\varepsilon}-u+W_{\varepsilon} H(u)\right)\right|^{2}}{\left|\nabla u_{\varepsilon}\right|^{2-p}+\left|\nabla\left(u-W_{\varepsilon} H(u)\right)\right|^{2-p}} d x \\
& \quad \leq \int_{\Omega_{\varepsilon}}\left(\xi_{1}^{\varepsilon}-\xi_{4}^{\varepsilon}\right) \cdot \nabla \Psi_{\varepsilon} d x=J_{1}^{\varepsilon} \rightarrow 0 .
\end{aligned}
$$

as $\varepsilon \rightarrow 0$. Using Holder's inequality (21), which concludes the proof.

APPENDIX A

## AN AUXILIARY LEMMA

Lemma 3. Let $p \in(1,2), n \geq 2$. Then there exists constant $C=C(n, p)$ such that for all $a, b \in \mathbb{R}^{n}$ following inequality is valid

$$
\| a-\left.b\right|^{p-2}(a-b)-\left(|a|^{p-2} a-|b|^{p-2} b\right) \left\lvert\, \leq C(|a||b|)^{\frac{p-1}{2}}\right.
$$

Proof. Without loss of generality we can assume that $|a| \geq|b|>0$. Let $u=\frac{a}{|a|}, v=\frac{b}{|b|},|u|=|v|=1, \xi=u \cdot v$, $\xi \in[-1,1], k=\frac{a}{|b|} \geq 1$. The desired inequality written in these new variables takes the following form

$$
\| k u-\left.v\right|^{p-2}(k u-v)-\left(k^{p-1} u-v\right) \mid \leq C k^{(p-1) / 2}
$$

By squaring this inequality we get

$$
\begin{gathered}
\Re(k, \xi)=\left(k^{2}-2 k \xi+1\right)^{p-1}+k^{2(p-1)}+1-2 k^{p-1} \xi \\
-2\left(k^{2}-2 k \xi+1\right)^{(p-2) / 2}\left(k^{p}+1-k \xi-k^{p-1} \xi\right) \leq C^{2} k^{p-1}
\end{gathered}
$$

Consider function

$$
\begin{aligned}
f(x, \xi) & =\frac{\Re(k, \xi)}{k^{p-1}}=k^{p-1}\left(1-\frac{2 \xi}{k}+\frac{1}{k^{2}}\right)^{p-1} \\
+k^{p-1} & +k^{1-p}-2 \xi-2\left(1-\frac{2 \xi}{k}+\frac{1}{k^{2}}\right)^{(p-2) / 2} \\
& \times\left(k^{p-1}-\xi-k^{p-2} \xi+k^{-1}\right)
\end{aligned}
$$

Decomposing functions $\left(1-2 \xi / k+1 / k^{2}\right)^{\beta}$ for $\beta=$ $p-1,(p-2) / 2$ in Taylor series as $k \rightarrow \infty, k>1+\sqrt{2}$, and identifying the coefficients of corresponding degrees, we obtain

$$
f(k, \xi)=\alpha k^{1-p}+\beta k^{p-2}+o\left(\frac{1}{k}\right)
$$

where $\alpha$ and $\beta$ depend only on $p$ and $\xi$. Hence, $f(k, \xi) \rightarrow 0$ as $k \rightarrow \infty$. Thus there exists $k_{1}>1+\sqrt{2}$ such that $f(k, \xi)<1$ for all $k>k_{1},|\xi| \leq 1$. It's easy to show that function $f(k, \xi)$ is continuous on the set $D=$ $\left\{(k, \xi)\left|1 \leq k \leq k_{1},|\xi| \leq 1\right\}\right.$. So there exists a positive constant $M$ that depends on p such that $\max _{\in} \mid f(k, \xi \mid \leq M$. $(k, \xi) \in D$
Hence, function $|f|$ is bounded by $\max (M, 1)$ for all permissible $k$ and $\xi$.

## ACKNOWLEDGMENTS

The research of D. Gómez-Castro is supported by a FPU fellowship from the Spanish government. The research of J.I. Díaz and D. Gómez-Castro was partially supported by the project ref. MTM 2014-57113P of the DGISPI (Spain).

## REFERENCES

1. E. Di Benedetto, Nonlinear Anal. Theory Methods Appl. 7, 827-850 (1983).
2. J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries, Vol. 1: Elliptic Equations (Pitman, London, 1985).
3. J. I. Díaz and F. De Thelin, SIAM J. Math. Anal. 25, 1085-1111 (1994).
4. D. Gómez, M. E. Pérez, A. V. Podol'skiy, and T. A. Shaposhnikova, Dokl. Math. 92, 433-438 (2015).
5. A. V. Ivanov, Trudy Mat. Inst. im. V.A. Steklova 160, 3-285 (1982).
6. W. Jäger, M. Neuss-Radu, and T. A. Shaposhnikova, Nonlin. Anal. Real World Appl. 15, 367-380 (2014).
7. O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations (Nauka, Moscow, 1968; Academic, New York, 1987).
8. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linèires (Dunod, Paris, 1969; Editorial URSS, Moscow, 2010).
9. P. Tolksdorf, J. Differ. Equations 51, 126-150 (1984).
10. M. N. Zubova and T. A. Shaposhnikova, Differ. Equations 47 (1), 78-90 (2011).

[^0]:    ${ }^{1}$ The article was translated by the authors.

[^1]:    ${ }^{a}$ Instituto de Matemática Interdisciplinar and Dept. Mat.
    Aplicada, Fac. Mat. Plaza de las Ciencias n3 28040,
    Madrid, Spain
    ${ }^{b}$ Faculty of Mechanics and Mathematics, Moscow, Moscow State University, 119992 Russia
    *e-mail: jidiaz@ucm.es
    **e-mail: dgcastro@ucm.es
    ***e-mail: originalea@ya.ru
    ****e-mail: shaposh.tan@mail.ru

