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Works [4, 6] are concerned with the investigation of
the asymptotic behavior of the solution of the varia-
tional inequality for the p-Laplace operator, where p ∈
[2, n) and ε-periodically perforated domain with non-
linear Robin type boundary condition. In the present
work we investigate a similar homogenization problem
for the p-Laplacian in the case when p ∈ (1, 2). It is
known (see [2]) that for this values of p the considered
problems describe the motion of non-Newtonian flu-
ids. This type of diffusion is also used to describe cer-
tain problems of Newtonian fluids in turbulent regime
(see, e.g., [3]). The operator also has some interest in
the context on non-linear elasticity.

Let Ω be a bounded domain in ?n, n ≥ 3, with a

smooth boundary ∂Ω. Denote Y = ,   and let G0

be the unit ball centered at the origin. For δ > 0 and a
given set B ⊂ ?n we define δB = {x|δ–1x ∈ B}. We also
define, for j ∈ ?n,   = aεG0 + εj,

1 The article was translated by the authors.
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(where 0 < ε ? 1), aε = C0εα, α =   and

It is easy to check that |ϒε| ≅ dε–n, where d > 0 is a

constant. Finally, let us define   = εY + εj, j ∈ ϒε

(where we point out that  ⊂   and that the center
of the ball  coincides with the center of ) and

In this setting we consider the following nonlinear
diffusion problem

(1)

where p ∈ (1, 2), Δpu ≡ div(|∇u|p – 2∇u),  u ≡
|∇u|p – 2(∇u, ν) and with ν the outward unit normal to

Sε and γ = α(p – 1), f ∈ Lp'(Ω), p' = , and σ the

following maximal monotone graph

(2)

where σ0 ∈ C1(ℝ), σ0(0) = 0, (λ) ≥ k1 > 0 and k1 is a
constant.

We note that boundary value problem (1) with a
function such as σ(λ) in the boundary condition cor-
responds to the problem with the one-sided restric-
tions, i.e., Signorini type problem
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Let us define the following functions

(3)

(4)

This convex l.s.c. function ψ has σ as its sub differ-
ential, in the sense that

(5)

This is typically denoted σ = ∂ψ. The weak solution
of the problem (1) is defined as a function

satisfying the integral inequality

(6)

for any arbitrary function φ ∈ Kε.
Let H(λ) be the solution of the functional inclusion

(7)
where B0 > 0 is a constant. In the case of σ as in (2),
inclusion (7) has a unique solution of the form

(8)

where H0(λ) is the solution of the functional equation

(9)

Note that H0(0) = 0. If we decompose u = u+ – u–

where u+, u– ≥ 0 are the positive and negative parts of
u then we have

Also,
Lemma 1. For every s ≠ 0, 0 < H'(s) ≤ 1. In particu-

lar, H is a Lipschitz continuous function.
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then s ≤ 0. So, for s > 0, H(s) = H0(s) > 0. Hence, for
s > 0, B0H0

p – 1(s) = σ0(s – H0(s)). Differentiating with
respect to s, for s > 0

It follows that 0 < H'(s) ≤ 1. for s > 0. Since, for s < 0,
H(s) = s we finish the proof.

Remark 1. If σ is given by (2), H(s) ≤ s for all s ∈ ℝ.
For s ≤ 0 this is obvious and for s > 0 we point out that
H(0) = 0 and H'(s) ≤ 1.

Let   ∈ (Ω) be a W1, p—extension of uε, that
satisfies the following inequalities

(10)

Considering (6) it is easy to check that

Hence, using this inequality and estimations (10)
we conclude that there exists a subsequence (denote as
the original sequence), such that as ε → 0

(11)

We will use systematically that the function

(12)

is continuous in the strong topology (see [8]).
The following theorem gives us the description of

function u. What is remarkable in it is that a sequence
of variational inequalities converges to the solution of
a single-valued quasilinear equation with a Lipschitz
absortion term.

Theorem 1. Let α = , γ = α(p – 1), p ∈ (1, 2),

n ≥ 3. Suppose that uε ∈ W1, p(Ωε, ∂Ω) is the weak solu-
tion of the problem (1), where σ(λ) is given by formula
(2) and  ∈ (Ω) is a W1, p-extension of uε satisfying
(10). Then, the function u defined in (12) is a weak solu-
tion of the following problem

(13)

where H(λ) is given by formula (8), H0(λ) is a solution of

the Eq. (9) for B0 = , !(n, p) =

ωn and ωn is the surface area of the unit

sphere in ℝn.
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We will use the following auxiliary function Wε
defined as follows

where  is the solution of the following boundary
value problem

and  denotes the ball of radius ε/4 which center
coincides with the center of cube . It is easy to show
that

(14)

where 1 ≤ q ≤ p. Wε → 0 in (Ω) at ε → 0, for q < p.

Also, the  norm is bounded, so it has a weakly
convergent subsequence. The limit of that sequence
must be its  limit, hence Wε  0 weakly in

(Ω) as ε → 0.
Proof of Theorem 1. Taking into account (3) and

using the monotonicity of function |λ|p – 2λ for p > 1,
from inequality (6) we derive that uε satisfies the fol-
lowing inequality

(15)

for any function φ ∈ Kε.
Let v ∈ С0

∞(Ω) and let us consider φ = v – WεH(v)
as a test function, where H(λ) is defined by (8). Notice
that   = v – H(v) ≥ 0 due to Remark 1, and hence
φ ∈ Kε. Let us define ψε = φ – , and rewrite (15) as
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Hence

where αε → 0 as ε → 0. From Green’s formula we

derive that  =  + 

Taking into account that γ = α(p – 1), uε ≥ 0 on Sε
and

(17)
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where κε → 0 as ε → 0 and that γ = α(p – 1) we obtain,
taking into account (9) that

where βε → 0 as ε → 0 since uε ≥ 0 on Sε.
We will use the next lemma to pass to the limit

in  (see [10]).
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Due Lemma 2 we deduce that
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we derive that u satisfies following inequality
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This inequality implies that u is a weak solution of
the problem (13).

In the next theorem we will prove the convergence
in the norm of space (Ωε) of the solution of the
problem (1) with a corrector to the solution of the
homogenized problem.

Theorem 2. Let α = , γ = α(p – 1), p ∈ (1, 2),

n ≥ 3. Suppose that uε ∈ W1, p(Ωε) is a weak solution of the
problem (1) and u is a weak solution of the problem (13)
possessing the additional smoothness u ∈ W1, ∞(Ω). Then
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In particular, since Wε → 0 in W1, q(Ω) for q < p, we
have, for all q < p
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we take, as a test function, v = –Ψε, where Ψε = u –
WεH(u) –  and  is a W1, p-extension uε on Ω. Let us
define,

By adding (22) and the integral identity for u, we
obtain  +  +  ≥ , where

It is clear that ,  → 0 as ε → 0 due to weak con-
vergence and the fact that |Gε| → 0. We define
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 → 0. We will use the following inequality (see [2]).
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as ε → 0. Using Holder’s inequality (21), which con-
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APPENDIX A

AN AUXILIARY LEMMA

Lemma 3. Let p ∈ (1, 2), n ≥ 2. Then there exists con-
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in these new variables takes the following form

By squaring this inequality we get

Consider function

Decomposing functions (1 – 2ξ/k + 1/k2)β for β =
p – 1, (p – 2)/2 in Taylor series as k → ∞, k > 1 + ,
and identifying the coefficients of corresponding
degrees, we obtain
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where α and β depend only on p and ξ. Hence,
f(k, ξ) → 0 as k → ∞. Thus there exists k1 > 1 + 
such that f(k, ξ) < 1 for all k > k1, |ξ| ≤ 1. It’s easy to
show that function f(k, ξ) is continuous on the set D =
{(k, ξ)|1 ≤ k ≤ k1, |ξ| ≤ 1}. So there exists a positive con-
stant M that depends on p such that |f(k, ξ| ≤ M.

Hence, function | f | is bounded by max(M, 1) for all
permissible k and ξ.
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