
SeMA (2017) 74:255–278
DOI 10.1007/s40324-017-0115-3

On the ambiguous treatment of the Schrödinger equation
for the infinite potential well and an alternative via
singular potentials: the multi-dimensional case

Jesús Ildefonso Díaz1

Received: 31 January 2017 / Accepted: 23 February 2017 / Published online: 6 March 2017
© Sociedad Española de Matemática Aplicada 2017

Abstract We start by pointing out an important ambiguity in the mathematical treatment of
the study of bound state solutions of the Schrödinger equation for infinite well type potentials
(studied for the first time in a pioneering article of 1928 by G. Gamow). An alternative to get
a “localizing effect” for the wave packet solution of time dependent Schrödinger equation
with potentials becoming singular on the boundary of a compact region � is here offered
in terms of “ Hardy type potentials” in which the potential behaves like the distance to the
boundary to the power α = −2. We show that in this case the probability to find the particle
outside� is zero once we assume that at t = 0 the particle is located in�. The paper extends
to the N -dimensional and evolution cases some previous results by the author.
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1 Introduction

This paper is a companion of a previous paper by the author concerning the one-dimensional
case [22] (already quoted in a textbook on Quantum Mechanics [54]).

We consider the Schrödinger equation with potentials V (x) becoming singular on the
boundary of a regular open bounded domain� ofR

N , N ≥ 1 after identifying (for simplicity
in our proposes) the usual parameters � (the renormalized Planck constant) and 2m (m being
the mass of the particle) with 1. So, if i = √−1, our problem becomes{

i ∂ψ
∂t = −�ψ + V (x)ψ in (0,∞) × R

N ,

ψ(0, x) = ψ0(x) on R
N .

(1)
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256 J. I. Díaz

Let us recall that in his 1928 pioneering article Gamow [40] proved, for the first time,
the tunneling effect which, among many other applications, lead to the construction of the
electronic microscope and the correct study of the alpha radioactivity. Most of his study was
concerning with the bound states ψ(x, t) = e−iEtu(x) [E denotes the energy and in the
following we shall denote it also by λ], i.e. with u(x) solving the stationary equation

− �u + V (x)u = λu in R
N , (2)

for a given potential V (x). He was specially interested in the Coulomb potential but he
offered some reasons to truncate such a potential when 0 < |x | < r ′ for some r ′ > 0. Then
he proposed to replace the resulting potential by a simple potential which keeps the main
properties of the original one: in this way he proposed, it seems that for the first time in the
literature, what today is usually called as the finite well potential

Vq,�(x) =
{
V (x) if x ∈ �,

q if x ∈ R
N − �.

(3)

In his paper � was an one-dimensional interval, as for instance (−R, R), and V (x) ≡ V0
for some V0 > 0 and q > 0, but more general situations were considered also later in the
literature. It seems that the first reference dealing with the limit case, the so called infinite
well potential,

V∞(x : R, V0) =
{
V0 if x ∈ �,

+∞ if x /∈ �,
(4)

for some V0 ∈ R (without loss of generality we can assume V0 ≥ 0) was the book by the 1977
Nobel PrixMott [48]. Since 1930 to our-days, the infinite well potential problemwas selected
as one of the best pedagogical, mathematical and physical models in Quantum Mechanics
and was considered as a basic example in any text-book in the field (see, e.g. the survey [10]
which includes 248 references on the subject). In many textbooks this case is presented as a
limit case of the associate finite well potential (3). In fact, there is an abuse of the notation in
the above terminology. What is really true is that we can introduce as a definition of solution
u of the infinite well potential problem (i.e. problem (2) with V given by (4) the function
u = limq→∞ uq with uq solution of (2) associated to the potential Vq,�(x) given by (3) (see
Lemma 2.1 of [22] and [26]). It is usually claimed that u = limq→∞ uq satisfies Eq. (2) for
the infinite well potential but, as we shall explain now, this is not correct since some other
terms appear in the limit equation (which, in fact must be understood in the distributional
sense).

In contrast with the case of the finite well potential (3) the usual study of the infinite
well potential, such as it is presented in most of the textbooks, contains an ambiguity which,
curiously enough, it seems unseen before: it is said in many textbooks that to solve the
equation in R

N outside � it is necessary to impose that the solution u(x) of (2) let u(x) ≡ 0
if x /∈ � (a better justification of this fact can be given through the approximation of such
potential by a sequence of truncated potentials Vq and passing to the limit on the associated
solutions uq as q → +∞: see [22]). Thus the study of problem (2) leads to solve the
associated Dirichlet problem on �

DP(V, λ,�)

{−�u + V (x)u = λu in �,

u = 0 on ∂�.

This Dirichlet problem can be almost explicitly solved in many cases. For instance, for the
radially symmetric case of the N -dimensional infinite well potential over a ball� = BR(0),
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for some R > 0 and with V (x) = V (|x |), the differential equation and the conservation of
the orbital angular momentum leads to the equation

− d2un,l

dr2
(r) − N − 1

r

dun,l

dr
(r) + l(l + 1)

r2
un,l + V (r)un,l = λn,lun,l (5)

with r = |x | and l ≥ 0. In the case N = 3 and (4) with V0 = 0 the solution is given by

un,l(r) = C jl(αnr)

with jl the spherical Bessel function of the first kind and αn such that

jl(αn R) = 0. (6)

If μn,l is the nth positive zero of the function jl(s), then the energies of the bound state are

λn,l := μ2
n,l

R2 ,

(see, e.g. [39,54]). For l = 0 equation (6) reduces to sin αR = 0,μn,0 = nπ and the problem
is equivalent to the one-dimensional case (see [22,39,54]). In terms of the original value of
the parameters m and �, and denoting again the energy by E we get the countable set of
energies

En,l := �
2

2m
λn,l

(see also some PDE’s textbook as, e.g., Strauss [55]).
The ambiguity in this mathematical treatment arises because the derivatives of such un,l

are discontinuous over ∂� (i.e. on r = R), and thus such un,l are not solutions of the equation
(5) in thewhole domainR

N (i.e. r ∈ [0,+∞)) in the sense of distributions but of the different
equation

− d2un,l

dr2
(r)− 2

r

dun,l

dr
(r)+ l(l + 1)

r2
un,l(r) = λn,lun(r) + kn,l(R)δ{R}(r), in (0,+∞)

(7)

with kn,l(R) 	= 0, since the second derivative develops a Dirac delta δ{R} (see also [22]).
The presence of such discontinuities was noticed previously in the literature (see, e.g. [39,
page 140] and the survey [10]) but, as far as we know, it seems that a careful analysis of this
ambiguity, and the study of some alternative potential V (x) preventing this ambiguity, was
not considered before.

Besides pointing out such ambiguity, themain goal of this paper is to present a set of results
offering some kind of alternative and extending to the N− dimensional case the results of
the author [22] dealing only with nonnegative solutions u ≥ 0 of the stationary problem
DP(V, λ,�) in the one-dimensional case, � = (−R, R).

In some sense, our main aim can be stated in terms of the following inverse free boundary
problem: find a class of potentials V (x) such that the solution of the Schrödinger Eq. (1)
let localized for any t > 0, in the sense that if we start with a localized initial wave packet
ψ0 ∈ H1(R : C), i.e. such that

support ψ0 ⊂ �,

then the particle still remains permanently confined in � in the sense that

supportψ(t, .) ⊂ � for any t > 0.
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We recall that, in contrastwithClassicalMechanics, inQuantumMechanics the incertitude
appears (the Heisenberg principle). For instance for a free particle (i.e. with V (x) ≡ 0), in
nonrelativistic Quantum Mechanics, if the wave function ψ(t, .) at time t = 0 vanishes
outside some compact region � then at an arbitrarily short time later the wave function is
nonzero arbitrarily far away from the original region � . This is an easy consequence of the
free propagator (see, e.g., [51]). Thus the wave function instantaneously spreads to infinity
and the probability of finding the particle arbitrarily far away from the initial region is nonzero
for any t > 0. Recall that this concerns a nonrelativistic theory and so this superluminal
propagation is not a philosophical contradiction. See also [18,38,39,42–44]. Nevertheless,
there aremany relevant applications for which it is very important to have some kind of partial
localization of the particle and so in many textbooks the infinite well potential is presented
as an example of simple potential for which such partial localization occurs. Unfortunately,
this is no coherent since the solution obtained trough the associated Dirichlet problem is not
solution of the Schrödinger Eq. (1) but only of a variation of it. In some sense themodified Eq.
(7) can be understood as the equation corresponding to an effective potential which presents
a singularity on ∂� of the type C/d(x, ∂�). Indeed, formally we can write

kn,l(R)δ{R}(r) = kn,l(R)δ{R}(r)
u(r)

u(r)

and since we know that Kn,E |R − r | ≤ un(r) ≤ Kn,E |R − r | for r ∈ [0, R) (see, e.g. [50]
and [11]) we get that Eq. (7) can be understood as the equation associated to the effective
potential

W (|x |) = l(l + 1)

|x |2 + (−kn,l(R))δ{R}(|x |)
|R − |x || .

In the more general class of potentials V (x) with a singularity on ∂� of the type

C

d(x, ∂�)α
≤ V (x) ≤ C

d(x, ∂�)α
a.e. x ∈ �, (8)

for some α > 0 and some C > C ≥ 0 the answer to the confinement question depends
strongly of the value of α. For α ∈ (0, 2) it can be proved (see, e.g., [22] and part iv) of
Theorem 4.1 below) that there is a tunneling effect since (support ψ(t, .)) ∩ (RN−�) 	= φ

for t > 0. The main goal of this paper is to show that this changes drastically if α = 2
(case in which V (x) can be called as Hardy type absorption potentials for many different
reasons which will be presented in this paper). The case α > 2 requires some special notion
of solution (see [26]) and will be treated separately in a different paper. So, our main result
(see Theorem 4.1 below) proves that if α = 2 the probability to find the particle outside � is
zero assumed that at t = 0 it is located in �.

Notice that in the radial case the singularity at the origin is always present (even for
bounded potentials) due to the term l(l+1)

r2
un,l(r), nevertheless there is a large class of singular

potentials presenting singularities for other values of r > 0. This is the case, for instance of
the so called Pösch-Teller potential (see [49])

V (x) = V (|x |) = 1

2
V0

{
k(k − 1)

sin2 α |x | + μ(μ − 1)

cos2 α |x |
}

, (9)

for some V0, α > 0, k, μ ≥ 0 , intensively studied since 1933 (see, e.g. the monograph [41]).
The special case of V0 = 2, α = 1 and μ = 0 was studied in [17] as an important examples
of the so-called supersymmetric potentials (SUSY).
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The content of this paper is organized in the following way. In Sect. 2 we show the
localization of the associated eigenfunctions by using an energy method which allow to show
that the eigenfunctions of the corresponding eigenvalue problem on � are “ flat solutions”

(in the sense that
∂u

∂n
= 0 on ∂�). We also extend, in Sect. 2, the study of flat solutions

for a class of problems in which the singularity over ∂� is not presented by any absorption
potential but for a diffusion coefficient. This remarkable property of some linear problems
seems to be not considered before in the previous literature except in a recent paper dealing
with some eigenvalue problem under symmetry assumptions (see [35]).

The application of the super and subsolution method to the study of the flat eigenfunctions
of the associated Dirichlet problem is presented in Sect. 3. In some sense this can be under-
stood as the natural extension to the N - dimensional case of the technique of proof developed
in [22] for the one-dimensional case. Unfortunately the situation becomes much harder for
N > 1 (for instance, there is a lack of information on the classification of the set of nodal
solutions of the auxiliary semilinear problem, in contrast to the very rich answers given in
[28,31] for N = 1). In fact we improve the results of [22] since here the study is not limited
to the first eigenfunction (which is positive in �) but to any eigenfunction corresponding to
the set of countable eigenvalues. The estimates, near ∂�, found in this section are sharper
than the ones obtained in Sect. 2.

Finally, Sect. 4 is devoted to the consideration of the evolution problem (1). Besides to state
and prove the main result of this paper (Theorem 4.1) we present several commentaries on
possible generalizations. In particular it shown that the wave function ψ(t, x) corresponding
to the Pösch–Teller potential can exhibit “ holes” for finite-time intervals, in contrast with
many other singular potential satisfying (44) with α ∈ [0, 2) (see [18,42–44]).

2 An energy method for the study of flat eigenfunctions

2.1 The Schrödinger equation with singular potentials

As mentioned before, given a potential V ∈ L1
loc(�), V > 0 on �, an open regular bounded

set ofR
N , N ≥ 1 (the value of V onR−� being irrelevant for our purposes: see Remarks 2.3

and 4.2 below), the study of problem (2) leads to the consideration of the associated Dirichlet
problem on �

DP(V, λ,�)

{−�u + V (x)u = λu in �,

u = 0 on ∂�.

In which follows we shall consider Hardy type absorption potentials, i.e. such that

C

d(x, ∂�)2
≤ V (x) ≤ C

d(x, ∂�)2
a.e. x ∈ �, (10)

for some C > C > 0. It is useful to introduce the following notation:

Definition 2.1 We say that a function u ∈ H1
0 (�) is a “ flat solution” of problem

DP(V, λ,�) if u satisfies DP(V, λ,�), u(x) 	= 0 for a.e. x ∈ � and
∂u

∂n
= 0 on ∂�.

A very detailed analysis of the eigenvalues and eigenfuctions of the linear problem
DP(V, λ,�), under condition (10) for the special case of C = C > 0, was carried out
in [16] (see also some classical approach in some PDE’s or Quantum Mechanics textbooks,
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260 J. I. Díaz

as, e.g. [39,51,54,55]) but they do not consider the possibility to get flat solutions as eigen-
functions.

As a general first result we have:

Proposition 2.1 Assume (10), then there exists a sequence of eigenvalues λn → +∞, λ1 >

λ1,� (the first eigenvalue for the Dirichlet problem for the −� operator on �), λ1 is isolated
and u1 > 0 on �.

Proof We start by arguing as in the proof of Theorem 3.2 of [30]. For any h ∈ L2(�) we
define the operator Th = z ∈ H1

0 (�) solution of the linear problem{−�z + V (x)z = h in �,

z = 0 on ∂�.
(11)

This operator is well defined since problem (11) has a unique (weak) solution z ∈ H1
0 (�).

This follows from applying the Lax-Milgram Lemma to the associated bilinear form in
H1
0 (�)

a(u, v) =
∫

�

∇u · ∇vdx +
∫

�

V (x)uv dx

which is well-defined, continuous and coercive. Indeed, taking into account that

V (x) ≤ C

d(x, ∂�)2
a.e. x ∈ �,

(thanks to assumption (10)) Hardy’s inequality implies that

1

C

∫
�

V (x)u2dx ≤
∫

�

u2

d(x)2
dx ≤ k

∫
�

|∇u|2 dx

for some suitable constant k = k(�) and then

a(u, u) ≤ C ‖u‖2
H1
0 (�)

for some C > 0, which implies that a is continuous (the coerciveness of a is obvious since
V (x) ≥ C/max� d(x, ∂�)2). Thus, for any h ∈ L2(�), there exists a unique Th ∈ H1

0 (�)

solution of the above equation and it is easy to see that the composition with the (compact)
embedding H1

0 (�) ⊂ L2(�) is a selfadjoint compact linear operator T̃ = i ◦ T : L2(�) →
L2(�) for which we obtain in the usual way a sequence of eigenvalues λn → +∞. By
well-known results (see e.g. [12,51]) we know that λ1 > 0. In fact, since V (x) ≥ 0, we
know that λ1 > λ1,�. Moreover we know that λ1 is isolated and that u1 > 0. ��
Remark 2.1 As mentioned in the Introduction, we recall that in the one-dimensional case

� = (−R, R) we have λ1,� =
( π

2R

)2
and that by well known results, if � = BR(0) ⊂ R

N

and V (x) = V (|x |) with N > 1 then λ1,� >
( π

2R

)2
.

As usual in Quantum Mechanics we shall pay attention to the associate eigenfunctions
with normalized L2-norm, i.e. such that

‖un‖L2(�) = 1. (12)

The following result shows that the only assumption (10) suffices to ensure that any
eigenfunction un is a flat solution.
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Theorem 2.1 Let un be an eigenfunction associated to the eigenvalue λn. Then un is a flat
solution of DP(V, λn,�). In fact, there exists K n > 0 such that

|un(x)| ≤ Knd(x, ∂�)2 a.e. x ∈ �. (13)

The main idea of the proof will consist in the use of an appropriate set of test functions and
aMoser-type iterative argument (see [34,36]) leading to a quantitative estimate of ‖un‖L∞(�)

in terms of λn . Notice that taking ϕ = un as test function, and using (10) we conclude that∫
�

|∇un |2 dx +
∫

�

C

δ(x)2
|un |2 dx ≤ λn

∫
�

|un |2 dx = λn . (14)

This provides an estimate of ‖u‖H1
0 (�) in terms of λn . In the one-dimensional case, since

H1
0 (�) ⊂ L∞(�) this implies an L∞-estimate but this is not so if N ≥ 2. Moreover, we

shall get a sharper L∞-estimate valid for any dimension N .
Given n ∈ N and M, κ > 0, we consider the set of truncate test functions of the form

ϕ(x) = v2κ+1
n,M (x), with vn,M (x) := min{|un(x)| , M}sign(un(x)). (15)

Since ϕ ∈ H1
0 (�) is an appropriate test function

(2κ + 1)
∫

�

∣∣v2κM (x)
∣∣ |∇un |2 dx +

∫
�

C

δ(x)2

∣∣∣v2κ+1
M (x)

∣∣∣ |un | dx
≤ (2κ + 1)

∫
�

∣∣v2κM (x)
∣∣ |∇un |2 dx +

∫
�

V (x)
∣∣∣v2κ+1

M (x)
∣∣∣ |un | dx

= λn

∫
�

∣∣∣v2κ+1
M (x)

∣∣∣ |un | dx (16)

where from now and in what follows we use the simplified notation vM = vn,M and

δ(x) = d(x, ∂�).

The following lemma was proved in [34] for the case n = 1 (and some other additional
conditions) but it can be easily adapted to the case of changing sign eigenfunctions.

Lemma 2.1 [34] Let n ∈ N and M, κ > 0. Then

limM→+∞
∫
�

C
δ(x)2

∣∣∣v2(κ+1)
M (x)

∣∣∣ dx = limM→+∞
∫
�

C
δ(x)2

∣∣∣v2κ+1
M (x)

∣∣∣ |un | dx
= ∫

�
C

δ(x)2

∣∣∣u2(κ+1)
n (x)

∣∣∣ dx ≤ λn
∫
�

∣∣∣u2(κ+1)
n (x)

∣∣∣ dx .
Proof Since |vM | ↗ |un |monotonically as M ↗ +∞, for a.e. x ∈ �, we get the conclusion
from the monotone convergence theorem and the inequality∫

�

C

δ(x)2

∣∣∣v2(κ+1)
M (x)

∣∣∣ dx ≤
∫

�

C

δ(x)2

∣∣∣v2κ+1
M (x)

∣∣∣ |un | dx
≤ λn

∫
�

∣∣∣v2κ+1
M (x)

∣∣∣ |un | dx ≤ λn

∫
�

∣∣∣u2(κ+1)
n (x)

∣∣∣ dx,
which is a consequence of the energy estimate (16) (remember that we already know the

uniform in M estimate
∫
�

∣∣∣u2(κ+1)
n (x)

∣∣∣ dx ≤ 2Rλ
2(κ+1)
n ). ��

A Moser-type iterative argument leads to an inequality which can be understood as an
inverse Hölder type inequality:
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Lemma 2.2 [34] Let n ∈ N and let q ∈ (1,+∞) if N ≤ 2 and q = 2∗ := 2N/(N − 2) if
N ≥ 3. Then there exists a sequence κm → +∞ if m → +∞ and a constant C(q,C, λn,�)

such that

‖un‖2(κm+1)q ≤ C(q,C, λn,�) ‖un‖q for any m ∈ N. (17)

In particular,

‖un‖∞ ≤ C(q,C, λn,�) ‖un‖q .

Remark 2.2 The proof of this lemma is identical to the one given in [34] although there are
some slight differences in the framework considered there. The dependence with respect �

appears not only because, obviously, λn depend on � but also because in the proof it is used
that C� ≤ 1/δ2(x) for any x ∈ � and for some C� > 0.

Proof of Theorem 2.1 From Lemma 2.1

[∫
�

C

δ(x)2

∣∣∣u2(κ+1)
n (x)

∣∣∣ dx]
1

2(κ+1) ≤ λ
1

2(κ+1)
n ‖un‖2(κ+1) .

Then, by Lemma 2.2, for any fixed q ∈ (1,+∞) and for each m ∈ N,

[∫
�

C

δ(x)2

∣∣∣u2(κm+1)
n (x)

∣∣∣ dx]
1

2(κm+1) ≤ λ
1

2(κm+1)
n ‖un‖2(κm+1)q ≤ C(q,C, λn, R) ‖un‖q .

Making m → +∞ we get that there exists Kn = Kn(q,C, λn, R) such that

1

δ(x)2
|un(x)| ≤ sup

y∈�

ess
1

δ(y)2
|un(y)| ≤ Kn

which proves (13). ��
As a particular consequence of Theorem 2.1 it is possible to offer a correct alternative to

the “localizing” process suggested by Gamow in his paper [40].

Corollary 2.1 Let � be an open regular bounded set of R
N , N ≥ 1. For any q ∈ [0,+∞)

consider the potential

Vq,�(x) =
{
V (x) if x ∈ �,

q if x ∈ R
N − �.

Assume (10). Then there exists a countable set of eigenvalues λn and eigenfunctions ũn,q of
the Schrö dinger equation

− �u + Vq,�(x)u = λnu in R
N , (18)

such that

ũn(x) =
{
un(x) if x ∈ �,

0 if x ∈ R
N − �,

where λn and un(x) are the eigenvalues and eigenfunctions of the Dirichlet problem
DP(V, λ,�). Moreover the same conclusion holds for q = +∞ if we define the corre-
sponding solution as ũn,∞(x) = limq↗+∞ ũn,q(x).
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Proof of Corollary 2.1 Thanks to Theorem 2.1we have ũn ∈ H1(RN ).Moreover onR
N −�

we trivially have −�u + Va,�(x)u = λnu, so the conclusion follows. The convergence
ũn,∞(x) = limq↗+∞ ũn,q(x) follows the same arguments as in the one-dimensional case
(see Lemma 2.1 of [22] and Proposition 4 of [26]). ��
Remark 2.3 Notice that noDirac delta is generated on the boundary ∂� oncewe assume (10).
Moreover, by construction of the extension ũn(x) over R

N − � the value of of the extension
of V (x) over R

N − � is irrelevant. Notice that this is peculiar to the special construction
of our solution ũn since otherwise some conditions on the behaviour of V (x) for |x | large
enough must be assumed for the existence of weak solutions (see, e.g. [15,37,51] and their
references).

Remark 2.4 It is possible to consider some unbounded domains of � with the help of the
modification of the eigenvalue problem with an auxiliary weight function (so that the right
hand side reads as λnσ(x)u for some weight function σ(x)). Some related results can be
found in [32,35,36].

2.2 Flat solution of a problem with singular diffusion coefficient (without
absorption term)

In fact, the same type of localizing conclusions also holds for other types of linear eigenvalue
problems in which the singularity appears merely in the diffusion operator. Consider for
instance the singular diffusion problem

SD(a,�, f )

{−div(a(|x |)∇u) = f (x)
u = 0

in �,

on ∂�,
(19)

where now we assume

� = BR(0), for some R > 0,

and the crucial assumption

a(|x |) = δ(x)−γ = (R − |x |)−γ for some γ ∈ (0, 1). (20)

By defining the weighted Sobolev space W 1,p(�, δ−γ ) as usual (see, e.g. [36,47]),
equipped with the norm

‖u‖W 1,p(�,δ−γ ) :=
⎛
⎝ ∑

|α|≤1

∫
�

∣∣Dαu
∣∣p δ(x)−γ dx

⎞
⎠

1/p

the existence (comparison and uniqueness) of a weak solution u ∈ H1
0 (�, δ−γ ) of the linear

singular problem is a well-known result if f ∈ L2(�, δ−γ ) and, in fact, the existence and
comparison of the so-called “ entropy solutions” holds if f ∈ L1(�, δ−γ ) (see, e.g. [19] and
its references). As a matter of fact, by applying the Hardy inequality it is possible to show
that

‖u‖
W 1,p

0 (�,δ−γ )
:=

⎛
⎝ ∑

|α|=1

∫
�

∣∣Dαu
∣∣p δ(x)−γ dx

⎞
⎠

1/p

is an equivalent norm for the space H1
0 (�, δ−γ ) and that the existence, comparison and

uniqueness, of weak solutions u ∈ H1
0 (�, δ−γ ) can be extended to more general right
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hand side data f ∈ L2(�, σ ) for some weight function σ(|x |) once that the embedding
H1
0 (�, δ−γ ) ⊂ L2(�, σ ) is compact. In the radial case, by taking the weights

ρ(r) := r N−1(R − r)−γ and σ(r) := r N−1(R − r)β,

the result holds if[
γ > −1 and β ≥ −1

]
or

[
β < −1 and γ > −2 − β

]
. (21)

(see [35]).

Theorem 2.2 Assume f ∈ L2(�, (R − |x |)β) such that

| f (x)| ≤ Cδ(x)1+γ+β a.e. x ∈ �. (22)

Then u is a flat solution and

|u(x)| ≤ K δ(x)1+γ a.e. x ∈ �.

Proof Consider the auxiliary radially symmetric problem with singular diffusion

SD(a, λ, β, R) =
{−div(a(|x |)∇U ) = λ(R − |x |)βU in �,

U = 0 on ∂�.

under conditions (21). It was shown in ([35]) that there is a first eigenvalue λ1 of
SD(a, λ, β, R) which is simple and that, modulo a multiplicative constant, the associated
eigenfunction U1 satisfies

0 < U (|x |) ≤ K (R − |x |)1+γ a.e. x ∈ �.

Then, by taking

u(x) = C

λ1
(R − |x |)βU (|x |)

we have that −div(a(|x |)∇u) ≤ −div(a(|x |)∇u) on � and since u ≤ u on ∂� we get that
u(x) ≤ K δ(x)1+γ a.e. x ∈ � thanks to the comparison principle. The proof of u(x) ≥
−K δ(x)1+γ a.e. x ∈ � is similar. ��
Remark 2.5 Notice that the conclusion holds even if f (x) is singular near the boundary ∂�.

For instance functions of the type f (x) = Cδ(x)−θ satisfy all the requirements to generate
a flat solution in u ∈ H1

0 (�, δ−γ ) if we take θ ∈ (0, 1/2). In the case of L1−solutions it is
enough to assume θ ∈ (0, 1).

Remark 2.6 Many variations of the above theorem can be proved. For instance, it is pos-
sible to consider weighted p-Laplacian quasilinear diffusion operators, the equation can be
generalized to equations containing transport and absorption terms and the result holds for
transmission solutions for non necessarily symmetric domains � such that � ⊃ BR(0), for
some R > 0 and we assume

f (x) =
{
fR(x) if x ∈ BR(0),
0 if x ∈ � − BR(0),

with fR ∈ L2(�, (R − |x |)β) satisfying (22). In that case the (unique) solution of
SD(a,�, f ) is given by

u(x) =
{
uR(x) if x ∈ BR(0)
0 if x ∈ � − BR(0).
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Remark 2.7 In contrast to the large amount of papers on elliptic free boundary problems (see,
e.g. the monographs [2,21]) the occurrence of flat solutions when the only “ mechanism”
justifying such aphenomenon is the singularity of the diffusion coefficient seems tohavebeing
unexplored in the previous literature. This property could justify, perhaps, the appearance of
some free boundaries for some quasilinear equations under anomalous criteria to the usual
ones and which involve (in different ways) the 1-Laplacian operator (see, e.g. [1,25]).

3 Application of the super and subsolution method to the study of flat
solutions

3.1 On the radially symmetric semilinear auxiliary problem

In this subsection we shall pay attention to the radially symmetric problem DP(V, λ,�)

when we assume that

� = BR(0), for some R > 0 and V (x) = V (|x |) for a.e. x ∈ �.

As in the one-dimensional case ([22]) it will be useful to start by considering the auxiliary
semilinear eigenvalue type problem

P(R,m, V0, λ) ≡
{−�v + V0 |v|m−1 v = λv, v ≥ 0 in �,

v = 0, on ∂�,

for a given V0 > 0 and m ∈ (0, 1). We shall prove:

Proposition 3.1 (i) Let

λ# = R2N2
(23)

with ωN := |B1(0)|. Then, for any λ > λ#, there exists a radially symmetric weak
solution uλ of problem P(R,m, V0, λ) such that

‖vλ‖L∞(�) ≤ C

λ
1

1−m

(24)

for some C > 0 depending only on R. In addition the above weak solutions vλ have
compact support in � and satisfy

vm(x) ≤ Kd(x, ∂(support vm))2/(1−m) for any x ∈ support vm (25)

for some constant K .

(ii) For λ > λ# , there exists K > 0

Kd(x, ∂(support vm))2/(1−m) ≤ vm(x) for any x ∈ support vm (26)

for some constant K .

Proof Since λ# =
( |�|

ωN

)2N
, the first part of property i) is a particular case of Theorem 1 of

[24] (see also [30]). We also recall that by the results of [46] any solution of P(R,m, V0, λ)

must be radially symmetric. So, it remains to prove estimate (25) and (26). If we make the
change of variables

vλ(x) =
(
V0
λ

) 1
1−m

U (
√

λx), (27)
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with vλ solution of P(R,m, V0, λ), then U satisfies

P(L ,m) =
{−�U + |U |m−1U = U in BL(0),
U = 0 on ∂BL(0),

(28)

with

L = √
λR.

In order to get the estimates mentioned in i) and ii) we shall use the fact that

−U ′′(r) − N − 1

r
U ′(r) + f (U (r)) = 0

where

f (x, u) := um − u.

Then

F(r) :=
∫ r

0
f (s)ds = r2

2
− rm+1

m + 1
.

Notice that f (s) < 0 if 0 < s < 1 := r f and f (s) > 0 if 1 < s. On the other hand F(s) < 0
if 0 < s < rF = (2/(1 + m))1/(1−m) and F(s) > 0 for s > rF . As a matter of fact, if
U1 ∈ C1([0, L]) is the solution of the one-dimensional equation[−U ′′

1 (r) + f (U1(r)) = 0 r ∈ (0, 1),
U ′
1(0) = 0,U1(L) = 0,

it was shown in [22] that the flat solution satisfies that

U1(0) = rF

and that

1√
2

∫ rF

U1(x)

dr

(−F(r))1/2
= |x | , for |x | ≤ L ,

where L is such that

L = 1√
2

∫ rF

0

dr

(−F(r))1/2
. (29)

Notice that L < +∞ due to the assumption m ∈ (0, 1). Moreover, it was shown in [22] that

0 ≤ U1(r) ≤ M |L − r | 1−m
2 for some M > 0.

Notice that U1(r) is a supersolution to our problem and that it satisfies estimate (25).
Comingback to theN-dimensional problem,weknow thatU ∈ C1([0, L]) and thatU ′(r) ≤ 0
for any r ∈ [0, L]. Moreover, as mentioned before, there exists L0 ∈ (0, L] such that

U (r) = 0 for any r ∈ [L0, L].
Without loss of generality we can assume that there exists L1 ∈ (0, L0) such that

0 < U (L1) ≤ 1.
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On the ring r ∈ (L1, L0) we know that 0 ≤ U (r) ≤ 1, so that −F(U (.)) is a monotone
non-decreasing function ofU over such ring. Let us define Y (s), when s ∈ [0, L0 − L1], by
the expression

U (r) = Y (L1 + s).

Then Y ′(s) ≤ 0 and

Y ′′(s) + N − 1

L1 + s
Y ′(s) = − f (Y (s)).

Since

N − 1

L0
≤ N − 1

L1 + s
≤ N − 1

L1
if s ∈ [0, L0 − L1]

we get

Y ′′(s) + N − 1

L1
Y ′(s) ≤ −F ′(Y (s)) ≤ Y ′′(s) + N − 1

L0
Y ′(s).

Multiplying by Y ′(s) we have

e−�s(
1

2

(
Y ′(s)

)2
e�s)′ ≤ −F(Y (s))′ ≤ e−�s(

1

2

(
Y ′(s)

)2
e�s)′ (30)

where

� := N − 1

L1
and � := N − 1

L0
.

In particular, since Y ′(s) = Y (s) = 0 if s = L0 − L1, by integrating in (30) we get

−
√
2e−�s

√
−e�s F(Y (s)) ≤ −Y ′(s) ≤ −

√
2e−�s

√
−e�s F(Y (s)). (31)

Thus, if for a positive parameter θ we denote by ηθ (s) to the solution of the ordinary differ-
ential equation {−η′

θ (s) = θ
√−F(η(s))

ηθ (L − L1) = 0,

by the comparison of solutions for ordinary differential equations, we get that

ηθ (s) ≤ Y (s) ≤ ηθ (s) for any s ∈ (δ, L0 − L1]
for some δ, θ, θ > 0.Thanks to the estimate (31) we get that there exist two positive constants
M < M such that

Mτ
1−m
2 ≤ 1√

2

∫ τ

0

dr√−F(r)
≤ Mτ

1−m
2 (32)

for any τ ∈ (0, 1) and (25) (26) follows. ��
Remark 3.1 We recall that by the results of [45] then there is a unique flat solution of problem
P(L ,m) for a suitable L = √

λR, but we do not know if this value of L corresponds exactly
to

√
λ#R . In the one-dimensional case this value of L can be determined explicitly: see

expression γ (2/(1 + m))1/(1−m)) in formula (2.6) of [22]).
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3.2 Non-radially symmetric case

In the case of a general regular open bounded set � of R
N it is possible to improve the

estimate given in Theorem 2.1 implying that the eigenfunctions are flat solutions.

Theorem 3.1 Assume (10). Let un be the normalized eigenfunction of DP(V, λn,�) asso-
ciated to the eigenvalue λn. Then there exists m ∈ (0, 1/2) and a constant K n,E such that

|un(x)| ≤ Kn,Ed(x, ∂�)
2

1−m a.e. x ∈ �. (33)

Proof From (10) and Theorem 2.1 we know that{−�un + V (x)un = λnu ≤ λn |u| ≤ λnK nd(x, ∂�)2 in �,

un = 0 on ∂�.

So, by the comparison principle, un(x) ≤ ûn(x) a.e. x ∈ �, where ûn ≥ 0 is the unique
solution of {−�ûn + V (x )̂un = λnK nd(x, ∂�)2 in �,

ûn = 0 on ∂�.

In particular, if we denote

δ(x) = d(x, ∂�) (34)

then

−�ûn + C

δ(x)2
ûn ≤ λnK nδ(x)

2.

Now, let x0 ∈ ∂� and for m ∈ (0, 1/2) consider the barrier function

U (x; x0) = K |x − x0| 2
1−m .

It was shown in Lemma 6 of [21] that

−�U + μ|U |m−1U = C(K ) |x − x0| 2m
1−m ,

with

C(K ) := (μKm − Km−1m
(1−m)(2m + N (1 − m)

(1 − m)m
).

In particular, if K = Kμ

Kμ <

[
μ(1 − m)2

2(2m + N (1 − m)

] 1
1−m

, (35)

we have that C(Kμ) > 0 (notice that C(K ) = 0 if in (35) the symbol < is replaced by =).
Consider the set

�R(x0) := � ∩ BR(x0).

It is clear that δ(x) ≤ |x − x0| on �R(x0). Then if K satisfies (35) we get

−�U + μ

K (1−m)δ(x)2
U ≥ −�U + μ

K |x − x0|2
U = −�U + μ

|U |1−m
U

= C(K ) |x − x0| 2m
1−m ≥ C(K )δ(x)

2m
1−m .
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Thus, if

μ

K (1−m)
μ

≤ C (36)

and

C(Kμ)R
2m
1−m ≥ λnK n R

2 (37)

we have that

−�ûn + C

δ(x)2
ûn ≤ −�U + C

δ(x)2
U in �R(x0)

(recall that 2m
1−m < 2 since m ∈ (0, 1/2)). Notice that conditions (36) and (37) hold if we

take μ large enough, then

R ≤
[
C(Kμ)

λnK n

] (1−m)
2(1−2m)

(38)

(notice that C(Kμ) ↗ +∞ if μ ↗ +∞). On the other hand, by choosing R large enough
we trivially have

ûn ≤ U on ∂�R(x0),

since on ∂�R(x0) − ∂� (i.e. if |x − x0| = R)

ûn(x) ≤ ‖ûn‖∞ ≤ U (x) = KμR
2

1−m

once we assume

R ≥
(‖ûn‖∞

Kμ

) 1−m
2

. (39)

In consequence, by taking μ large enough we can choose R satisfying (38) and (39). Then,
for such a choice of μ and R, by the comparison principle,

ûn(x) ≤ Kμ |x − x0| 2
1−m in �R(x0).

Moreover, as x0 ∈ ∂� is arbitrarily chosen, by taking the envelop ofU (x; x0)when x0 ∈ ∂�,

we get the conclusion. The estimate from above of un is obtained in a similar way. ��
Remark 3.2 Notice that m ∈ (0, 1/2) implies that 2

1−m < 4 and thus the improved estimate
(33) and the standard regularity for linear equations shows that the solution un is at least
of class C3(�) (see also [29] and [33]). This same conclusion can be obtained by using as
supersolutionU (x) = Cδ(x)b for some b < 4 and playingwith theEuler ordinary differential
equation in a similar way to Lemma 2.8 of [3] (see also [4]).

We shall end this subsection by showing an estimate from below for the eigenfunctions
un .

Proposition 3.2 We have

Kd(x, ∂�)
2

1−m ≤ |un(x)| a.e. x ∈ �.
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Proof Let ω ⊂ �. Assume for simplicity that un(x) > 0 on ω. Then, for any ε > 0 small,
m ∈ (0, 1) and for any x0 ∈ ∂ωε, where

ωε = {x ∈ ω such that d(x, ω) ≥ ε},
let u be the unique solution of the eigenvalue type problem{−�u + μum = λn(�)g(x)u in ω,

u = 0 on ∂ω,
(40)

for

λn(ωε)

λn(�)
≥ g(x) ≥ C(K )d(x, ωε)

2m
1−m a.e. x ∈ ωε,

λn(ωε)

λn(�)
= g(x) on ω − ωε,

(we know that λn(ωε) > λn(�)). Then, if ωε is a ball, arguing as in the above subsection
and using local barrier functions we conclude that

u(x) ≥ Cd(x, ωε)
2

1−m a.e. x ∈ ωε.

Since we cannot apply directly the comparison principle, we shall apply the iterative method
of super and subsolutions so that if u(x) and u(x) are respectively a subsolution and a
supersolution of DP(V, λn,�) such that

u(x) ≤ u(x) for any x ∈ �, (41)

then we get the existence of a minimal u∗(x) and maximal u∗(x) solution of DP(V, λn,�)

such that

u(x) ≤ u∗(x) ≤ u∗(x) ≤ u(x) for a.e. x ∈ �.

As a subsolution we take u(x) extended by zero on � − ωε and as a supersolution we take
the solution of {−�un + V (x)un = λn ‖un‖∞ in �,

un = 0 on ∂�.

Notice that by well known results

un(x) ≥ Cd(x,�) a.e. x ∈ �.

By taking ω small enough we know (see [30]) that λn(ωε) is large enough and that
∥∥u∥∥∞

can be assumed as small as desired, so that we have (41). Since ε and ω are arbitrarily chosen
we get the result. ��
Remark 3.3 Notice the absence of contradictionwith some papers showing the non-existence
of solutions (see, e.g. [13]) in which they consider non-absorption Hardy potentials, i.e. with
non positive constants C and C .

Remark 3.4 Some of the ideas of this paper can be adapted to the study the existence of
“large solutions” of the same type of linear equation{−�u + V (x)u = f (x) in �,

u = +∞ on ∂�,
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when the potential V satisfies (10) (see [23]). Notice that in contrast with [3] it is not required
the presence in the equation of any superlinear term of the form um with m > 1. We recall
(Theorem 2.10 of [33]) that given f ∈ L1(� : δ), f (x) ≥ 0 a.e. x ∈ �, V0 > 0, the
existence of a large solution of the semilinear problem{−�v + V0vm = f (x) in �,

v = +∞ on ∂�,

requires now the crucial assumption m > 1.

4 The evolution case

As mentioned in the Introduction we consider the Schrödinger equation with potentials
becoming singular on the boundary of a regular open bounded domain � of R

N , N ≥ 1. As
before, we identify � and 2m with 1. So our problem becomes{

i ∂ψ
∂t = −�ψ + V (x)ψ in (0,∞) × R

N ,

ψ(0, x) = ψ0(x) on R
N .

(42)

We consider the case of potentials with a singularity over ∂� , i.e., such that there exists
q ∈ [0,+∞) such that

Vq,�(x) =
{
V (x) if x ∈ �,

q if x ∈ R
N − �,

(43)

and V ∈ L1
loc(�) satisfies

C

d(x, ∂�)α
≤ V (x) ≤ C

d(x, ∂�)α
a.e. x ∈ �, (44)

for some α > 0 and some C > C ≥ 0. Our interest is the study of the time evolution of
localized initial wave packets ψ0 ∈ H1(R : C), i.e. such that

support ψ0 ⊂ �.

The behaviour of the support of the particle ψ(t, .) depends of the exponent α. Let us
study the permanent confinement in � question under assumption (44) and more specially
for α = 2 (condition (10)).

Theorem 4.1 Assume (10) and let ψ0 ∈ H1(RN : C) such that support ψ0 ⊂ �.Then

(i) For q > 0 consider the the extended potential V (x) = Vq,�(x) given by (43). Then
Problem (42) has a unique solution ψ ∈ C([0,+∞) : L2(RN : C)) with ψ ∈L2(0, T :
H1(RN : C)) and Vq,�(x)ψ ∈L2(0, T : L2(RN : C)) for any T > 0.

(ii) The problem ⎧⎨
⎩

i ∂ψ
∂t = −�ψ + V (x)ψ in (0,∞) × �,

ψ = 0 on (0,∞) × ∂�,

ψ(0, x) = ψ0(x) on �,

(45)

has a unique solution ψ� ∈ C([0,+∞) : H2(� : C)∩H1
0 (� : C)), and we have the

Galerkin decomposition

ψ�(t, x) =
∞∑
n=1

ane−iλn t un(x), (46)
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with convergence at least in L2(� : C), where λn and un are the eigenvalues and
eigenfunctions given in Proposition 2.1 (renormalized by (12)) for any n and

an =
∫

�

ψ0(x)un(x)dx .

(iii) Assume that

∞∑
n=1

|an | Kn < +∞ (47)

where Kn > 0 was given in Theorem 2.1. Then

|ψ�(t, x)| ≤ Kd(x, ∂�)2 for any t > 0 and a.e. x ∈ �, (48)

for some K > 0. In consequence, the unique solution of (42) for the extended potential
Vq,�(x) is given by

ψ(t, x) =
{

ψ�(t, x) if x ∈ �,

0 if x ∈ R
N − �,

(49)

and thus support ψ(t, .) ⊂ � for any t > 0.
(iv) (Tunneling effect or instantaneous propagation). If V (x) satisfies (44) with α ∈ [0, 2)

then

(supportψ(t, .)) ∩ (RN−�) 	= φ for t > 0.

Proof To prove i) we rewrite problem (42) in terms of an abstract Cauchy problem over the
Banach space X = L2(RN : C) of the form{

dv
dt (t) + Av(t) = 0 in X

v(0) = v0
(50)

with v(t) = ψ(t, , .) and A : D(A) → X defined by{
D(A) = {w ∈ H1

0 (RN : C) such that (−� + V (x))w ∈L2(RN : C)}
Aw = i(−� + V (x))w, if w ∈D(A).

Then the operator A is m-accretive in X. Indeed, given g ∈L2(RN : C) to study the existence
of solution of the equation Aw + μw = g, for any μ > 0 we observe that if g = gr + igi
and w = wr + iwi then we had to solve the uncoupled system{−�wr + Vq,�(x)wr + μwr = −gi (x) in R

N ,

−�wi + Vq,�(x)wi + μwi = gr (x) in R
N .

(51)

The bilinear form

a(u, v) =
∫
RN

∇u · ∇vdx +
∫
RN

(Vq,�(x) + μ)uv dx

is clearly coercive in H1(RN ) which shows the uniqueness of solutions of (51) once that
Vq,�(x)w ∈L2(RN : C). Moreover, given M > 0, by truncating the potential Vq,�(x) by

V M
q,�(x) =

{
Vq,�(x) if Vq,�(x) < M,

M if Vq,�(x) ≥ M,
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the associated bilinear form

aM (u, v) =
∫
RN

∇u · ∇vdx +
∫
RN

(V M
q,�(x) + μ)uv dx

is not only coercive but also continuous on H1(RN ). Then, by applying the Hille–Yosida
theorem (see, e.g. [12,51]) we get the existence and uniqueness of a solution wM=wM,r +
iwM,i of the associated uncoupled system (51). Moreover by multiplying by wM we get the
estimate ∥∥∇wM,r

∥∥2
L2(RN )

+
∫
RN

(
V M
q,�(x) + μ

2

)
w2

M,rdx ≤ C(μ) ‖gi‖2L2(RN )
.

Since by the comparison principle we get that
∣∣wM,r (x)

∣∣ ≥ ∣∣wM ′,r (x)
∣∣ for a.e. x ∈ R

N if
M ′ > M , then the monotone convergence implies the existence of a subsequence such that
wM,r → wr in L2(RN ) (and thus ∇wM,r ⇀ ∇wM in L2(RN )). In consequence

‖∇wr‖2L2(RN )
+

∫
RN

(
Vq,�(x) + μ

2

)
w2
r dx ≤ C(μ) ‖gi‖2L2(RN )

,

and so we get the existence of wr ∈ H1(RN ) such that Vq,�(x)wr∈L2(RN ). The existence
(and uniqueness) of solutions for the case of wi is entirely similar. The regularity mentioned
on ψ in i) (and some other additional regularity properties) can be obtained in a standard
way by multiplying by ψ (see [14]).
The proof of (ii) is similar to the one of part (i) but now we rewrite problem (45) in terms of
an abstract Cauchy problem (50) on the Banach space X = L2(� : C) with v(t) = ψ(t, , .)
and A : D(A) → X defined by{

D(A) = {w ∈ H1
0 (� : C) such that (−� + V (x))w ∈L2(� : C)}

Aw = i(−� + V (x))w if w ∈D(A).

Then the operator A is m-accretive in X. Indeed, given g ∈L2(� : C) the existence of
solution of the equation Aw + μw = g, for any μ > 0 is consequence of the application of
the Lax-Milgram theorem to the bilinear form

a(u, v) =
∫

�

∇u · ∇vdx +
∫

�

(V (x) + μ)uv dx

since now it is coercive in H1
0 (�) [it suffices to applyHardy’s inequality as in Proposition 2.1].

The accretivity is again a consequence of the Hardy’s inequality and the fact that C > 0
in (10). Moreover by adapting to our framework some previous results in the literature
for free particles V = 0 (see, e.g. Remark 1.4.36 of [14] and also [51]) we can get a
Galerkin decomposition as mentioned in (46). Indeed, since the operator defined in the proof
of Proposition 2.1] is compact we know that (un)n≥1 is a Hilbert basis of L

2(�). Then given
ψ0 ∈ L2(RN : C), ψ0=ψ0,r + iψ0,i we define an = an,r + ian,i by

an,r :=
∫

�

ψ0,r (x)un(x)dx and an,i :=
∫

�

ψ0,i (x)un(x)dx

so that

ψ0 =
∞∑
n=1

anun(x).

For k ∈ N consider let ψ0,k ∈ L2(� : C) and ψ�,k (t, x) defined by
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ψ0,k(x) =
k∑

n=1

anun(x),

and

ψ�,k(t, x) =
k∑

n=1

ane−iλn t un(x). (52)

It is clear that ψ�,k ∈ C([0,+∞) : H2(� : C)∩H1
0 (� : C)) and that ψ�,k(0, .) = ψ0,k(.).

Moreover

i
∂ψ�,k

∂t
=

k∑
n=1

ane−iλn tλnun =
k∑

n=1

ane−iλn t (−�un + V (x)un) = − �ψ�,k + V (x)ψ�,k,

so ψ�,k is the solution of problem (45) corresponding to the initial datum ψ0,k . Since the
set

∪
k≥1

{
k∑

n=1

anun;
(
an,r

)
1≤n≤k ,

(
an,i

)
1≤n≤k ⊂ R

k

}

is dense in L2(� : C) we get the Galerkin decomposition (46).
Conclusion (iii) follows from Theorem 2.1 and assumption (47) since

∣∣ψ�,k(t, x)
∣∣ ≤

k∑
n=1

|an |
∣∣∣e−iλn t

∣∣∣ |un(x)|
≤

k∑
n=1

|an | Knd(x, ∂�)2 for any t > 0 and a.e. x ∈ �. (53)

Moreover, the extension ψ(t, x) by zero outside �, given by (49) satisfies that ψ ∈
C([0,+∞) : L2(RN : C)) with ψ ∈L2(0, T : H1(RN : C)) and Vq,�(x)ψ ∈L2(0, T :
L2(RN : C)) for any T > 0 and solves the problem (1), so it coincides with the uniqueness
of solution of it obtained in i).
Property iv) is consequence of theUnique Continuation Property obtained under the assump-
tion (44) and α ∈ [0, 2) (see, e.g. Theorem XIII.57 of [20,53]). The conclusion can also be
obtained as an application of the Paley-Wiener theorem (see, e.g. [52]). ��
Corollary 4.1 Under the conditions of Theorem 4.1 assumption (47) holds if for instance

an ≡ 0 for any n ≥ n0, for some n0 ∈ N.

��
Remark 4.1 I conjecture that conclusion (48) can be obtained trough the use of some energy
method similar to the one used in the elliptic case (see Theorem 2.1) and that (47) holds once
we know merely that ψ0 ∈ H1

0 (� : C) but at this moment their proofs are open questions.

Remark 4.2 The case q = +∞ can be also considered (see Corollary 2.1). In fact, for the
existence of a solution satisfying that support ψ(t, x) ⊂ � for any t > 0 the value of V on
R

N−� is irrelevant (see Remark 2.3).

Since no assumption on the connectness of the domain � was made in Theorem 4.1 the
conclusion applies to domains with “ holes”:
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Corollary 4.2 (i) Assume (10) and

�= �0 − ∪r
k=1Dk, for some regular open bounded sets,�0, Dk of R

N with Dk ⊂⊂�0.

Then, if ψ0 ∈ H1(RN : C) and ψ0(x) = 0 for a.e. x ∈ ∪r
k=1D for some and assumption

(47) holds then the same happens for ψ(t, x), for any t > 0.
(ii) Consider the Pösch–Teller potential (9) and let ψ0 ∈ H1(RN : C) such that ψ0(x) = 0

for a.e. |x | ∈ [0,+∞) −
(
[ jπ

α
,

( j+1)π
α

] ∪ [mπ
α

,
(m+1)π

α
]
)
with 0 ≤ j < j + 1 < m.

Then support ψ(t, x) ⊂ {x ∈ R
N such that |x | ∈ [ jπ

α
,

( j+1)π
α

] ∪ [mπ
α

,
(m+1)π

α
]} for any

t > 0.

Proof i) is a direct consequence of Theorem 4.1. For the proof of ii) it is enough to observe
thatV (|x |) is π

α
periodic and that if we take � = {x ∈ R

N such that |x | ∈ (
jπ
α

,
( j+1)π

α
) ∪

(mπ
α

,
(m+1)π

α
)} then the Pösch–Teller potential (9) satisfies assumption (10). ��

Remark 4.3 The conclusion of the above Corollary can be contrasted with the study of the
cases in which the potential V grows as d(x, ∂�)−α with α ∈ [0, 2) considered, for instance,
in [18,42–44], where it was shown that the wave function ψ(t, x) cannot exhibit “ holes” for
finite-time intervals. Although the study of the Pösch-Teller potential was initiated with the
important paper [49], as far as we know, no rigorous proof of the statement ii) was given in
the previous literature.

Remark 4.4 As mentioned in the case of the associate eigenvalue problem (Remark 2.4) the
case of � unbounded can be also considered under suitable assumptions on V (x) for |x |
large. For instance, if V (x) = V (|x |) we can assume

C

r2
≤ V (r) ≤ C

r2
for r ∈ (0, ε) for some ε > 0 (54)

and

C ≤ lim inf
r→+∞ V (r)r2 ≤ lim sup

r→+∞
V (r)r2 ≤ C .

Notice that under the above condition the spectrum is still countable (see, e.g., [39]). This is
the case, for instance, of the “ effective potential” associated to the Yukawa potential: also
called “ screened Coulomb potential” )

W (r) = L0

μr2
+ k

r
e− r

a

with L0 the angular momentum, μ the reduced mass and k, a > 0 some given parameters.
In that case, the conclusion is the existence of solutions (for suitable initial data) such that{ |ψ(t, |x |)| ≤ K |x |2 for any t > 0 and |x | ∈ (0, ε) for some ε > 0,

|ψ(t, |x |)| → 0 as |x | → +∞.

Remark 4.5 As a variant of Theorem 4.1 (see also Remark 3.4), when the potential V satisfies
(10) and under suitable assumptions on the initial data, it is possible to show the existence
of “large solutions” of the linear problem⎧⎨

⎩
i ∂ψ

∂t = −�ψ + V (x)ψ in (0,∞) × �,

ψ = +∞ on (0,∞) × ∂�,

ψ(0, x) = ψ0(x) on �,

(55)

(see [23]).
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Remark 4.6 The case α > 2 remains similar to the case α = 2 but the notion of solution
must be understood in a suitable way (see the examples given in [37] and the mathematical
study of the associated stationary problem made in [26]).

Remark 4.7 A different type of localizing results concerning the non-linear Schrödinger
equation, arising in nonlinear optics,

i�
∂ψ

∂t
= − �

2

2m
�ψ + a|ψ |σ ψ, in (0,∞) × R

N ,

can be established if σ ∈ (−1, 0). We recall that in most of the papers in the literature it is
assumed σ = 2, nevertheless there are many applications in which σ ∈ (−1, 0). In a series of
papers in collaboration with Bégout [5–9] we prove precise estimates on the location of the
support of ψ(x, t), whose boundary gives rise to a free boundary associated to the problem.
The techniques of proof are some extensions of the ones of [2] and are entirely different to
the ones used in the present paper.
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