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Abstract. In this paper we prove the existence and uniqueness of very weak

solutions to linear diffusion equations involving a singular absorption potential

and/or an unbounded convective flow on a bounded open set of IRN . In most
of the paper we consider homogeneous Dirichlet boundary conditions but we

prove that when the potential function grows faster than the distance to the

boundary to the power -2 then no boundary condition is required to get the
uniqueness of very weak solutions. This result is new in the literature and

must be distinguished from other previous results in which such uniqueness of

solutions without any boundary condition was proved for degenerate diffusion
operators (which is not our case). Our approach, based on the treatment on
some distance to the boundary weighted spaces, uses a suitable regularity of
the solution of the associated dual problem which is here established. We also
consider the delicate question of the differentiability of the very weak solution

and prove that some suitable additional hypothesis on the data is required since
otherwise the gradient of the solution may not be integrable on the domain.
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1. Introduction. In this paper we want to develop a weighted space approach to
study the existence, uniqueness and regularity of linear diffusion equations involving
singular and unbounded coefficients of the type

−∆ω + ~u · ∇ω + V ω = f on Ω, (1)

where V is a very singular potential being in general non negative and locally
integrable. To fix ideas, we shall consider mainly the case of Dirichlet boundary
conditions

ω = 0 on ∂Ω, (2)

but our weighted space approach can also be adapted to the case of Neumann
boundary conditions and, what is more remarkable, to the case of no bound-
ary conditions on ∂Ω (but still getting the uniqueness of solutions) for some
specially singular potentials (see the subsection 4.2 in section 4). Here Ω is an open

bounded smooth (for instance with ∂Ω of class C2,1) of IRN , N > 2, (the case N = 1
and u =constant is considerably simpler) . The external forcing term f(x) will be
assumed such that

f ∈ L1(Ω; δ) (3)

where the weight in this space is given by

δ(x) = d(x, ∂Ω) (4)

(sharper results will require some slight restrictions to (3) (see for instance section

4.3). We recall that (3) is optimal in the cases V ≡ 0 and ~u = ~0 as it can be shown
by explicitly computing the Green kernel for special domains.
Although we shall indicate later the detailed assumptions on the data, we anticipate
now that we shall always assume that the convective flow vector ~u satisfies{

~u ∈ LN (Ω)N , div ~u = 0 in D′(Ω) and

~u · ~n = 0 on ∂Ω
(5)

where ~n denotes the unit exterior normal vector to ∂Ω. Notice that, due to (5), the
weak solution notion adapted to equation (1) is equivalent to the one defined for
the treatment of the equation in divergent form that is

−∆ω + div (~uω) + V ω = f in Ω. (6)

It is well-known that the mathematical treatment of diffusion equations such as
(1)

(
or (6)

)
leads to quite satisfactory results (in view of some applications) when

the data f , ~u and V are assumed to be bounded. Nevertheless, the main interest
of this work concerns the limit cases in which V (x) is assumed to be a singular
function (mainly with its singularity located on ∂Ω) and/or when ~u is an unbounded
vector (satisfying (5)). Let us indicate some relevant applications leading to the
consideration of such limit cases :

1. The vorticity equation in fluid mechanics. Equation (1) can be derived from
the stationary Navier-Stokes in 2D

−∆~u+ (~u · ∇)~u+∇p = ~F (7)

taking the curl of the equation and setting

f = ~F · ~k, ω = curl ~u · ~k, (8)
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where ~k is the last element of the canonical basis in IR3 (see e.g. [46]). Never-
theless, as far as we know no satisfactory theory is available in the literature

under the general condition that ~F · ~k ∈ L1(Ω; δ).
2. Schrödinger equation with singular potentials. It is well-known that the con-

sideration of the bound states ψ(x, t) = e−iEtω(x) leads to the stationary
Schrödinger equation

−∆ω + V (x)ω = Eω in IRN . (9)

The Heisenberg uncertainty principle makes specially interesting the consid-
eration of potentials which are critically singular on ∂Ω more precisely, such
that

V (x) >
c

δ(x)2
, a.e x ∈ Ω, (10)

for some c > 0, which implies that ω =
∂ω

∂~n
= 0 on ∂Ω, so that we can assume

that ω ≡ 0 on IRN−Ω (see [15, 16]). Here we shall not consider any eigenvalue
problem like (9) but the study of (1) for potentials V (x) satisfying (10) will
be very useful for later works in this direction.

3. Linearization of singular and/or degenerate nonlinear equations. For many
different purposes, it is very convenient to “approximate” the solutions of
quasilinear diffusion equations of the type

−∆ϕ(w) + div
(
~φ(w)

)
+ g(w) = f(x) in Ω (11)

by the solutions of the associated linearized equation. This is what appears, for
instance, in the study of the stability of the associated parabolic or hyperbolic
equations and also in some control problems associated with (11). Usually, it
is assumed that ϕ is a strictly increasing function. So by considering θ := ϕ(w)
we get

−∆θ + div
(
~ψ(θ)

)
+ h(θ) = f(x) in Ω, (12)

with {
~ψ : IR→ IRN , ~ψ = ~φ ◦ ϕ−1,

h = g ◦ ϕ−1.
(13)

Now, assume that θ∞(x) is a given solution of (12), satisfying, for instance,
θ∞ = 0 on ∂Ω. Then the “formal linearization” of equation (13) around the
solution θ∞(x) coincides with equation (1) when we take

~u(x) := ~ψ
(
θ∞(x)

)
and

V (x) = h′
(
θ∞(x)

)
.

What makes difficult the study of the corresponding problem (1) is the fact
that in many cases relevant in the reaction-diffusion theory (see e.g. [26])

functions ~ψ′(r) and h′(r) present a singularity at r = 0 and so, at least on

∂Ω, the coefficients ~u and ~V are singular. A qualitative information on the
behavior of θ∞(x) near ∂Ω allows us to get the precise information about the
singularities of ~u and/or V near ∂Ω

(
which, for instance, is of the type (10)

)
.

4. Shape optimization in Chemical Engineering. When dealing with the problem
of shape optimization for chemical reactors and applying technics of shape
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differentiation, it was shown that if g ∈ W 2,∞(IR), then the solutions u0 of
the problem {

−∆u+ g(u) = f, Ω,

u = 1, ∂Ω,
(14)

are differentiable with respect to the domain in the sense of Hadamard [25]
and after developed in Murat and Simon [32, 43] and the derivative u′ in the
direction of a deformation θ ∈W 1,∞(IRn, IRn) is the solution of the problem{

−∆u′ + g′(u0)u′ = 0,

u′ + θ · ∇u ∈ H1
0 (Ω).

(15)

Applying the theory developed for the general case (1), we can give a meaning
to the shape derivative if the domain is not smooth as, for example, for root
type kinetics (see [17, 24]). These nonlinear terms g(u) are known in chemistry
as Freundlich kinetics and have signifiant importance. Once again, taking
V (x) ≡ g′

(
u0(x)

)
we arrive to problem (1).

Some previous papers dealing with data in L1(Ω; δ) and/or singular potentials

(with usually ~u = ~0) are [20, 18, 37, 1, 29, 40, 6] (see also the references therein).
We also mention that sometimes it is possible to get conclusions for the stationary

problem (1) (with ~u = ~0) through the consideration of the associated evolution
equations (see e.g. [7], [8] and its references).

In this paper we shall work with the notion of “very weak solutions” (v.w.s.) of
problem (1).

Definition 1.1. (Very weak solutions of problem (1)). Let f be in L1(Ω; δ)
and ~u ∈ LN,1(Ω)N with div (~u) = 0 in D′(Ω), ~u · ~n = 0 on ∂Ω, V measurable and

non negative function. A very weak solution ω of (1) is a function ω ∈ LN ′,∞(Ω)
satisfying

V ω ∈ L1(Ω; δ) and

∫
Ω

ω
[
−∆φ− ~u · ∇φ+ V φ

]
dx =

∫
Ω

fφ dx, (16)

for all φ ∈ C2(Ω) with φ = 0 on ∂Ω, if V ∈ L1(Ω; δ), or for all φ ∈ C2
c (Ω) if

V ∈ L1
loc(Ω).

Notice that we look for a function in the space LN
′,∞(Ω) where N ′ = N

N−1

instead of ω ∈ L1(Ω) as usual, in order to get more general assumptions on ~u and
V .

We also also point out that our study will be concentrated in the case of “absorp-
tion” potentials V (x) > 0 a.e. x ∈ Ω. In fact, as we shall see later, the study is also
applicable to some general potentials such that e.g. V (x) > −λ with 0 < λ < λ1

(λ1 being the first eigenvalue of the Laplacian on Ω with zero Dirichlet boundary
condition). As we shall show, this does not induce a restriction on the growth of the
singularity of such absorption potentials near ∂Ω (in contrast with the well-known
results for negative potentials, see e.g. [7]).

The detailed definition of the Lorentz spaces Lp,q(Ω) and some other spaces
which we shall use in our study will be the object of Section 2 of this paper. Other
preliminary results and the statement of some of our main conclusions will be also
presented there.
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The proof of the existence and uniqueness of a very weak solution (v.w.s.) for
(1) needs a deep study of the dual problem associated with (1){

−∆φ− ~u · ∇φ+ V φ = T in Ω,

φ = 0 on ∂Ω.
(17)

Notice the change of sign in the convection term. We anticipate that in some cases
no boundary condition will be assumed on φ.

In Section 3, we discuss, depending on V and ~u, the existence and the regularity
of the solution of the dual problem. After this, we shall be concerned with the
existence of the very weak solution in LN

′,∞(Ω)∩L1(Ω;V δ), when V > 0 is locally
integrable. We will show that the very weak solution ω of equation (1) under zero
Dirichlet boundary condition has its gradient in the Sobolev-Lorentz weighted space
W 1L1+ 1

N ,∞(Ω; δ) in particular we shall get the estimate∫
{x:|∇ω|(x)<λ}

δ(x)dx 6
constant

λ1+ 1
N

for all λ > 0, (18)

under the mere assumption ~u ∈ LN,1(Ω)N . Thus, we can conclude that ∇ω ∈
L1
loc(Ω).
The question of uniqueness of v.w.s. given by (16), when V is only in L1

loc(Ω)
is one of the major difficulties in this general framework. When V is sufficiently
integrable, say V ∈ LN,1(Ω), then we derive the uniqueness thanks to the regularity
of the dual problem. If V is only locally integrable, but V is bounded from below by
cδ−r, r > 2 near the boundary, then the v.w.s. is unique even when no boundary
condition is specified on ∂Ω (but we additionally know that V ω ∈ L1(Ω; δ)).

The uniqueness proof relies on the L1(Ω; δ)-accretiveness property of the operator

(see [36]) Tω = −∆ω + div (~uω) when ω ∈ L1(Ω; δ−r) ∩W 1,1
loc (Ω). This is given

through the following local version of the Kato’s type inequality∫
Ω

ω+T
∗ψ dx 6

∫
Ω

ψ sign +(ω)Tω dx, whenever Tω ∈ L1
loc(Ω), ψ ∈ D(Ω), (19)

and a special approximation of test function ϕ in C2(Ω) by a sequence of functions
of the type ϕn(x) = δ(x)rhn(x) with h ∈ C2

c (Ω) and r > 0 (see Lemma 4.4). We
point out that, besides the concrete interest of (19) in itself; such an inequality
has many consequences since it allows to apply the semigroup operators theory on
suitable functional spaces.

Concerning very weak solutions (where no differentiability is asked to the function
ω), a natural question (originally set by H. Brézis in 1972 when ~u = 0) is then:
when should we have |∇ω| in L1(Ω)? The answer to this question will require some
suitable additional integrability conditions on f and ~u.

Note that to get some additional integrability for the very weak solutions ω is a
delicate task. Indeed, we shall show that for some special cases of ~u ∈ C0,α(Ω), α >
0, there exists f ∈ L1

+(Ω; δ) such that ||ω||LN′ = +∞ when N > 3.This leads to an
additional question: under what conditions could we improve the integrability of ω,
to say ω ∈ LN ′(Ω)? The answer to this question is also one of the main results of
this paper.

Before stating the study of the main equation (1), we shall recall some notations
and functional spaces that we shall use.
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2. Notations, preliminary definitions and results. Before stating our main
results concerning equation (1) we need to recall some notations and some functional
spaces which are relevant for the study of the “dual problem” (17) under very general
regularity assumptions on the coefficients ~u and T .

Definition 2.1. ( bmo(IRN )) [23]. A locally integrable function f on IRN is said

to be in bmo(IRN ) if

sup
0<diam (Q)<1

1

|Q|

∫
Q

|f(x)− fQ| dx+ sup
diam (Q)>1

1

|Q|

∫
Q

|f(x)|dx

≡ ||f ||bmo(IRN ) < +∞,

where the supremum is taken over all cube Q ⊂ IRN the sides of which are parallel
to the coordinates axes.

Here fQ =
1

|Q|

∫
Q

f(y)dy.

Definition 2.2. ( bmor(Ω) ) [11, 12]. A locally integrable function f on a Lipschitz
bounded domain Ω is said to be in bmor(Ω) (r stands for restriction) if

sup
0<diam (Q)<1

1

|Q|

∫
Q

|f(x)− fQ| dx+

∫
Ω

|f(x)|dx ≡ ||f ||bmor(Ω) < +∞, (20)

where the supremum is taken over all cube Q ⊂ Ω the sides of which are parallel to
the coordinates axes.

In this case, there exists a function f̃ ∈ bmo(IRN ) such that

f̃
∣∣∣
Ω

= f and ||f̃ ||bmo(IRN ) 6 cΩ · ||f ||bmor(Ω). (21)

Remark 1. The above definition adapted to the case where the domain Ω is
bounded, is equivalent to the definition given in [12, 11]. The main property (21)
is due to P.W Jones [27].

This extension result implies that bmor(Ω) embeds continuously into Lexp(Ω) (a
space which we shall introduce below in Definition 2.5.)

Definition 2.3. (Campanato space L2,N (Ω)) A function u ∈ L2,N (Ω) if

||u||L2(Ω) + sup
x0∈Ω,r>0

[
r−N

∫
Q(x0,r)∩Ω

|u− ur|2 dx
] 1

2

:= ||u||L2,N (Ω) < +∞.

Here

ur :=
1

|Q(x0; r) ∩ Ω|

∫
Q(x0;r)∩Ω

u(x) dx.

In fact the two above definitions are equivalent:

Theorem 2.1. [40] For a Lipschitz bounded domain Ω one has

L2,N (Ω) = bmor(Ω), with equivalent norms.

We set

L0(Ω) =
{
v : Ω→ IR Lebesgue measurable

}
and we denote by Lp(Ω) the usual Lebesgue space 1 6 p 6 +∞. Although it is
not too standard, we shall use the notation W 1,p(Ω) = W 1Lp(Ω) for the associate
Sobolev space. We shall need the following definitions:
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Definition 2.4. (of the distribution function and monotone rearrange-
ment) Let u ∈ L0(Ω). The distribution function of u is the decreasing function

m = mu : IR 7→ [0, |Ω|]

mu = mu(t) = measure
{
x : u(x) > t

}
= |
{
u > t

}
|.

The generalized inverse u∗ of m is defined by

u∗(s) = inf
{
t : |
{
u > t

}
| 6 s

}
, s ∈ [0, |Ω|[

it is called the decreasing rearrangement of u. We shall set Ω∗ =]0, |Ω| [.

We recall now the following definitions:

Definition 2.5. Let 1 6 p 6 +∞, 0 < q 6 +∞ :
• If q < +∞, one defines the following norm for u ∈ L0(Ω)

||u||p,q = ||u||Lp,q :=

[∫
Ω∗

[
t
1
p |u|∗∗(t)

]q dt
t

] 1
q

where |u|∗∗(t) =
1

t

∫ t

0

|u|∗(σ)dσ.

• If q = +∞,

||u||p,∞ = sup
0<t6|Ω|

t
1
p |u|∗∗(t).

The space Lp,q(Ω) =
{
u ∈ L0(Ω) : ||u||p,q < +∞

}
is called a Lorentz space.

• If p = q = +∞, L∞,∞(Ω) = L∞(Ω).
The dual of L1,1(Ω) is called Lexp(Ω)

Remark 2. We recall that Lp,q(Ω) ⊂ Lp,p(Ω) = Lp(Ω) for any p > 1, q > 1.

For α > 0, we define

Lαexp(Ω) =

v : Ω→ IR, sup
0<s<|Ω|

|v|∗(s)(
1− Log

s

|Ω|

)α < +∞

 ,

Lp(LogL)α =

{
f : Ω→ IR,

∫
Ω∗

[(
1− Log

s

|Ω|

)α
|f |∗(s)

]p
ds < +∞

}
.

When there is no possible confusion, we denote by the same symbol the space
product V N and V .

We recall also that if v, u ∈ L1(Ω), then

v∗u=̇ lim
λ↘0

(u+ λv)∗ − u∗
λ

exists in a weak sense and it is called the relative rearrangement of v with respect
to u. More precisely, we have the following result (see [31, 35]).

Theorem 2.2. Let Ω be a bounded measurable set in IRN, u and v two functions
in L1(Ω) and let w : Ω∗ → IR be defined by:

w(s) =

∫
{u>u∗(s)}
v(x)dx+

∫ s−|u>u∗(s)|

0

(
v
∣∣∣
{u=u∗(s)}

)
∗
(σ)dσ,

where v
∣∣∣
{u=u∗(s)}

is the restriction of v to {u = u∗(s)}.
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Then

(u+ λv)∗ − u∗
λ

⇀
λ→0

dw

ds
in

{
Lp(Ω∗)-weak if v ∈ Lp(Ω), 1 6 p < +∞
L∞(Ω∗)-weak-star if v ∈ L∞(Ω)

.

Moreover,

∣∣∣∣dwds
∣∣∣∣
Lp(Ω∗)

6 |v|Lp(Ω).

One property that we shall use for the relative rearrangement is the following
one:

Proposition 1. Let v > 0, and u be two functions in L1(Ω). Then

(v∗u)∗∗ 6 v∗∗.

There is a link between the derivative of u∗ and the relative rearrangement of
the gradient of u as it was proved in [35, 41]. We will use only the following result
(see [35])

Theorem 2.3. (a) Let u ∈W 1,1
0 (Ω), u > 0. Then

−u′∗(s) 6
s

1
N−1

Nα
1
N

N

|∇u|∗u(s) a.e in Ω∗,

and

−u′∗∗(s) 6
s

1
N−1

Nα
1
N

N

(|∇u|∗u)∗∗(s) a.e. in Ω∗.

(b) Let u ∈W 1,1(Ω). Then if Ω is a Lipschitz connected open set of IRn

−u′∗(s) 6
min(s, |Ω| − s) 1

N−1

Q(Ω)
|∇u|∗u(s),

where Q(Ω) is a suitable constant depending only on Ω.

Note that u∗ is in W 1,1
loc (Ω∗) under statements (a) and (b) (see [35, 41]).

Let V be a Banach space contained in L1
loc(Ω).The norm on V is denoted by

|| · ||V (or simply || · ||). We define the Sobolev space over V , for m ∈ IN by

WmV =
{
v ∈ L1

loc(Ω) : Dαv ∈ V for any |α| = α1 + . . .+ αN 6 m
}
.

In particular, W 1
0 V = W 1V ∩W 1,1

0 (Ω).
The following density result can be found in [22, 38, 40]:

Theorem 2.4. (Density) Let Ω be a bounded set of class C1,1. Then, the set

{ϕ ∈ C2(Ω) : ϕ = 0 on ∂Ω
}

is dense in
{
ϕ ∈W 2Lp,q(Ω) : ϕ = 0 on ∂Ω

}
, 1 < p <

+∞, 1 6 q 6 +∞.

Remark 3. Here and along the paper ~u is at least in LN (Ω)N , div (~u) = 0 in D′(Ω)
and ~u ·~n = 0 on ∂Ω, if N > 3 and ~u ∈ L2+ε(Ω), for some ε > 0 if N = 2. The value
of ~u · ~n on ∂Ω is defined through the Green’s formula (see [46]).

The following density result can be proved using the same argument as for the
Lp-case (see [46, 13])
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Proposition 2. (Density of smooth functions). Let 1 < p < +∞ and 1 6 q 6
∞. Then the closure of the set

V =
{
~u ∈ C∞c (Ω)N : div (~u) = 0 in Ω

}
in Lp,q(Ω)N (resp. (LN (LogL)α)N , α > 0 ) is the space

V :=
{
~u ∈ Lp,q(Ω)N (resp. (LN (Log L)α)N , α > 0 ) : div (~u) = 0, ~u · ~n = 0 on ∂Ω

}
.

Due to Proposition 2, a standard approximation argument leads to :

Lemma 2.6. For all Lipschitz mappings G : IR→ IR, and for all φ ∈ W 1
0L

N ′(Ω)

with N ′ =
N

N − 1
, one has ∫

Ω

(~u · ∇φ)G(φ) dx = 0.

Lemma 2.7. For all ω ∈ H1
0 (Ω), and for all φ ∈ H1

0 (Ω)∫
Ω

(~u · ∇ω)φdx = −
∫

Ω

~u · ∇φω dx.

Let us remark that,
• if N > 3∣∣∣∣∫

Ω

~u · ∇ω φdx
∣∣∣∣ 6 ||~u||LN ||∇ω||L2 ||φ||L2∗ where

1

2∗
+

1

2
+

1

N
= 1, (22)

• if N = 2 the above inequality holds true after replacing N by 2 + ε and 2∗ by
2(2 + ε)

ε
.

We shall need the following classical result (see [28]) :

Lemma 2.8. Let X ↪→c Y ↪→ Z be three Banach spaces each continuously em-
bedded in the next one, the first inclusion is supposed to be compact. Then, for all
ε > 0 there exists a constant cε > 0 such that ∀φ ∈ X

||φ||Y 6 ε||φ||X + cε||φ||Z .

3. Existence, uniqueness, regularity and results for the dual problem.

3.1. Case where the potential V is only measurable and bounded from
below. We first study the solvability of the dual problem (17) (equivalent to (23)
below and the regularity of its solutions.

The following result, consequence of the Lax-Milgram theorem, is a remarkable
fact due to the low regularity assumed on the data ~u and V :

Proposition 3. Let T ∈ H−1(Ω) (dual space ofH1
0(Ω)), ~u satisfying (5) and let

V ∈ L0(Ω) satisfying V > −λ for some λ ∈ [ 0, λ1) where λ1 is the first eigenvalue

of −∆ under the zero Dirichlet boundary condition. Define W =
{
ϕ ∈ H1

0 (Ω) :

(V + λ)ϕ2 ∈ L1(Ω)
}
, and let W ′ denotes its dual.

Then, there exists a unique φ ∈ H1
0 (Ω), with (V + λ)φ2 ∈ L1(Ω), such that

(P)V,T −∆φ− ~u · ∇φ+ V φ = T in W ′. (23)

Moreover,



518 J. I. DÍAZ, D. GÓMEZ-CASTRO, J. M. RAKOTOSON AND R. TEMAM

||φ||H1
0 (Ω) =

(∫
Ω

|∇φ|2dx
) 1

2

6
λ1

λ1 − λ
||T ||H−1(Ω),

(∫
Ω

(V + λ)φ2dx

) 1
2

6

(
λ1

λ1 − λ

) 1
2

||T ||H−1(Ω),

V φ ∈ L1
loc(Ω).

If furthermore V ∈ L1
loc(Ω), then the equation (23) holds in the sense of distributions

in D′(Ω)

Proof. We endow W with the following norm

[ϕ]2W = ||ϕ||2H1
0 (Ω) +

∫
Ω

(V + λ)ϕ2dx.

Let us consider the bilinear form on W given by

a(ψ,ϕ) =

∫
Ω

∇ψ · ∇ϕdx−
∫

Ω

~u · ∇ψϕdx+

∫
Ω

(V + λ)ψϕdx

−λ
∫

Ω

ψϕdx, (ψ,ϕ) ∈W 2.

Then, by Lemmas 2.6 and 2.7

a(ψ,ψ) =

∫
Ω

|∇ψ|2−λ
∫

Ω

ψ2dx+

∫
Ω

(V +λ)ψ2dx > α0

[∫
Ω

(V + λ)ψ2 +

∫
Ω

|∇ψ|2
]
,

(24)
with α0 > 0.

According to the above remark (22), since ~u ∈ LN (Ω)N , the bilinear form is
continuous on W and we have

|a(ψ,ϕ)| 6M [ψ]W [ϕ]W ,

with M = 3(1+ ||~u||LN ). Moreover, since W ↪→ H1
0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω) ↪→W ′

we have

〈T, ψ〉H−1H1
0
6 ||T ||H−1 [ψ]W , ∀ψ ∈W.

Thus we may apply the Lax-Milgram theorem to derive the existence of a unique
φ ∈W , such a(φ, ψ) = 〈T, ψ〉H−1H1

0
∀ψ ∈W. The estimate on φ follows from (24).

If V ∈ L1
loc(Ω) then one has

D(Ω) ⊂W.

Moreover, since

∫
Ω

(V + λ)φ2dx is finite, the Cauchy-Schwarz inequality yields

0 6
∫

Ω′
(V + λ)|φ|dx 6

(∫
Ω

(V + λ)φ2dx

) 1
2
(∫

Ω′
(V + λ)dx

) 1
2

< +∞ (25)

for any open set Ω′ relatively compact in Ω.
Writing ∫

Ω′
|V φ|dx 6

∫
Ω′

(V + λ)|φ|dx+ λ

∫
Ω

|φ|dx,

the right hand is finite taking into account (25) and the fact that φ ∈ L2(Ω) . Thus,
we have ∀Ω′ ⊂⊂ Ω, V φ ∈ L1(Ω′). We conclude that V φ ∈ L1

loc(Ω).
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As usual in some problems of Quantum Mechanics (see e.g. Lemma 2.1 of [15])
it is very useful to approximate the solution φ ∈ H1

0 (Ω) of the dual problem (23)
found in Proposition 3 by a sequence of solutions φk corresponding to a sequence
of bounded potentials Vk approximating V . Let us define Vk by

Vk = min(V, k).

Proposition 4. (Approximation by bounded potentials). Let T ∈ H−1(Ω), ~u
and V as in Proposition 3. Then, the sequence φk ∈ H1

0 (Ω) of solutions of the
problems

(P)Vk,T :

∫
Ω

∇φk · ∇ψdx−
∫

Ω

~u∇φkφdx+

∫
Ω

Vkφkψdx = 〈T, ψ〉, ∀ψ ∈ H1
0 (Ω),

converges to φ strongly in H1
0 (Ω), where φ is the unique solution of (P)V,T found

in Proposition 3.

Sketch of the proof of Proposition 4. One has, following the arguments of the Propo-
sition 3, that

||φk||H1
0

+

(∫
Ω

(Vk + λ)φ2
kdx

) 1
2

6 2

(
λ1

λ1 − λ

)
||T ||H−1(Ω). (26)

Thus, φk remains in a bounded set of H1
0 (Ω). So we may assume that it converges

to a function ϕ weakly in H1
0 (Ω) and a.e. in Ω. The above relation (26) implies

that: (∫
Ω

(V + λ)ϕ2dx

) 1
2

+ ||ϕ||H1
0
6 2

(
λ1

λ1 − λ

)
||T ||H−1(Ω). (27)

This shows that ϕ ∈ W (where W is the space defined in the proof of Proposition

3). Moreover, since for all ψ ∈ W we have ~uψ ∈ L2∗′(Ω) (see the above remark),
we deduce

lim
k→+∞

∫
Ω

~u · ∇φkψdx =

∫
Ω

~u · ∇ϕψdx. (28)

The sequence (Vk + λ)φkψ satisfies Vitali’s condition, since for any measurable
subset B ⊂ Ω, we have∣∣∣∣∫

B

(Vk + λ)φkψdx

∣∣∣∣ 6 2

(
λ1

λ1 − λ

)
||T ||H−1(Ω)

(∫
B

(V + λ)ψ2dx

) 1
2

(29)

and

lim
k→+∞

(Vk + λ)(x)φk(x)ψ(x) = (V + λ)(x)ϕ(x)ψ(x). (30)

Thus

lim
k→+∞

∫
Ω

(Vk + λ)φkψdx =

∫
Ω

(V + λ)ϕψdx. (31)

We then deduce that ϕ is solution of the problem (P)V,T and by uniqueness ϕ = φ.
Therefore, the whole sequence φk converges to φ weakly in W and strongly in L2(Ω).

To prove the strong convergence in H1
0 (Ω), let us note, using the equations

(P)Vk,T and (P)V,T , that

lim
k→+∞

∫
Ω

|∇φk|2dx+

∫
Ω

(Vk + λ)φ2
kdx = λ

∫
Ω

φ2dx+ 〈T, φ 〉

=

∫
Ω

(V + λ)φ2 +

∫
Ω

|∇φ|2dx.
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Therefore, if we introduce Uk = (∇φk;φk
√
Vk + λ) ∈ L2(Ω)N+1, U∞

= (∇φ;φ
√
V + λ) we have

• lim
k→+∞

|Uk|2L2(Ω)N+1 = |U∞|2L2(Ω)N+1 ,

• Uk converges to U∞ weakly in L2(Ω)N+1.

Thus Uk converges to U∞ strongly in L2(Ω)N+1.

Remark 4. Let us notice that for φ ∈ L2(Ω) the conditions (V + λ)φ2 ∈ L1(Ω)
and |V |φ2 ∈ L1(Ω), φ ∈ L2(Ω) are equivalent. Indeed, since V + λ = |V + λ|,∫

Ω

|V |φ2dx 6
∫

Ω

(V + λ)φ2dx+ λ

∫
Ω

φ2 6
∫

Ω

|V |φ2dx+ 2λ

∫
Ω

φ2dx.

For this reason, from now, we will assume that λ = 0.

Proposition 5. Under the same assumptions as for Proposition 3 (with λ = 0),
if T > 0, T ∈ L1(Ω) ∩H−1(Ω) then φ > 0.

Proof. We have φ− ∈W and

0 > −
∫

Ω

|∇φ−|dx−
∫

Ω

V φ−dx =

∫
Ω

Tφ−dx > 0.

Thus

φ− = 0.

For the treatment of (1) we shall need some additional regularity for the solu-
tions of the dual problem (23) independent of ~u or V . We start by proving the
boundedness of φ by means of some rearrangement technics ([35] p.126 of Th 5.5.1,
see also [45]).

We point out that L
N
2 ,1(Ω) ↪→ H−1(Ω).

Proposition 6. (L∞-estimates). Let φ be the solution of (23) when T ∈ LN
2 ,1(Ω),

V > 0. Then φ ∈ L∞(Ω) and there exists a constant KN (Ω) independent of ~u and
V such that

||φ||L∞(Ω) 6 KN (Ω)||T ||
L
N
2
,1(Ω)

.

Proof. We shall argue in a way similar to the proof of Theorem 5.3.1 in [35]. Ac-
cording to Proposition 4 , it is enough to prove the proposition for V ∈ L∞+ (Ω), and
and for T > 0, since the equation (23) is linear. Thus φ > 0, therefore, in this proof
v = |φ| = φ, but we shall keep the notation v because in the general case we cannot
use anymore this maximum principle. Let v = |φ|, Gs(σ) = (σ − v∗(s))+ sign (σ),
σ ∈ IR, s ∈ Ω∗. The mapping σ 7→ Gs(σ) is Lipschitz. Then following Lemma 2.6∫

Ω

(~u · ∇φ)Gs(φ) dx = 0.

Therefore, we derive∫
Ω

∇φ · ∇Gs(φ) =

∫
v>v∗(s)

|∇φ|2dx =

∫
Ω

T (x)Gs(φ)(x)dx−
∫

Ω

V (x)Gs(φ)dx.

Differentiating this relation with respect to s, we find

d

ds

∫
v>v∗(s)

|∇φ|2dx = −v′∗(s)
∫
v>v∗(s)

(
T (x)− V (x)

)
dx 6 −v′∗(s)

∫ s

0

T∗(σ)dσ
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where T∗ is the monotone rearrangement of T (we use the fact that V > 0).
Therefore, we arrive at [

|∇φ|2
]
∗v(s) 6 −v

′
∗(s)

∫ s

0

T∗(σ)dσ. (32)

Since

|∇φ| = |∇v|, and − v′∗(s) 6
s

1
N−1

Nα
1
N

N

|∇v|∗s(s)

(
the PSR property (see Theorem 3 of [35])

)
and |∇v|∗v 6

[
|∇v|2

] 1
2

∗v, we infer from

(32)

− v′∗(s) 6
s

2
N−2

(Nα
1
N

N )2

∫ s

0

T∗(σ)dσ. (33)

Thus, integrating (33) between 0 to |Ω|, we find

||φ||L∞ 6 cN

∫ |Ω|
0

s
2
N T∗∗(s)

ds

s
≡ cN ||T ||

L
N
2
,1(Ω)

.

An analogous result can be obtained when T = −div (~F ), with ~F ∈ LN,1(Ω)N .

Proposition 7. Let N > 2, and let φ be a solution of (23) when T = −div (~F ), ~F ∈
LN,1(Ω)N if N > 3, ~F ∈ L2+ε(Ω)2 if N = 2. Then φ ∈ L∞(Ω) and there exists a
constant KN (Ω) > 0 independent of ~u and V such that

||φ||L∞(Ω) 6 KN (Ω)||~F ||LV with LV = LN,1(Ω)N if N > 3, L2+ε(Ω)2 if N = 2.

Proof. For convenience, we write F for ~F . Thanks to Proposition 4, we can use the
same test function Gs(φ) as in the proof of Proposition 6. Then∫

Ω

∇φ · ∇Gs(φ)dx+

∫
Ω

V (x)Gs(φ)dx =

∫
Ω

F · ∇Gs(φ)dx.

We differentiate this equation with respect to s as before, for a.e. s ∈ Ω∗, and find[
|∇v|2

]
∗v(s)− v

′
∗(s)

∫
v>v∗(s)

V (x)dx =
[
F · ∇φ

]
∗v(s). (34)

Since, V > 0 and v′∗(s) 6 0, we obtain[
|∇v|2

]
∗v(s) 6

[
|F |2

] 1
2

∗v

[
|∇v|2∗v

] 1
2 (s), (35)

[
|∇v|2

] 1
2

∗v(s) 6
[
|F |2

] 1
2

∗v(s). (36)

We have as before:

− v′∗(s) 6
s

1
N−1

Nα
1
N

N

[
|∇v |2

] 1
2

∗v(s). (37)

We infer that for a.e. s

− v′∗(s) 6
s

1
N−1

Nα
1
N

N

[
|F |2

] 1
2

∗v. (38)
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Integrating this relation between 0 and |Ω| and using the Hardy-Littlewood inequal-
ity (see [35] p.118-121) we obtain

||φ||L∞ 6

cN
∫

Ω∗

σ
1
N−1

(
|F |2)

1
2
∗∗(σ)dσ, if N > 3,

c2,ε‖F ‖L2+ε(Ω)2 , if N = 2.

We conclude as in [35] p. 118-120, Proposition 5.2.2.

Remark 5. The problem considered in this Section 3.1 was previously considered

by other authors in the special case of −→u ≡ −→0 (see, e.g. [14] and its references),
nevertheless we emphasize that the results of this section must be understood as
preliminary results with respect the study we shall present in the following sections
of this paper. In particular, what is specially important for us is to obtain a con-
tinuous dependence estimate with respect to the data (namely the velocity −→u , the
potential V, and the right hand side f) since we need to carry out several pertur-
bations of those data in the next sections. As far as we know, such estimates are
new in the literature (and, of course, they were not given in the above mentioned
reference).

3.2. Some regularity results with an integrable potential V and bounded
from below. As a first consequence of Proposition 3 and Proposition 7 we can
deduce Meyer’s type regularity giving a better information on the gradient of the
solution of (23).

Proposition 8. (W 1Lp,q-estimate) Let N > 2. Assume that there exists p > N
and q ∈ [ 1,+∞], such that~u ∈ Lp,q(Ω)N V > 0, V ∈ Lr,q(Ω), r =

Np

N + p
,

T = −div (~F ) with ~F ∈ Lp,q(Ω)N .

Then, the unique solution φ of the equation (23) belongs to W 1Lp,q(Ω). Moreover,
there exists a constant Kpq > 0 independent of ~u such that :

||∇φ||Lp,q(Ω) 6 Kpq (1 + ||~u||Lp,q + ||V ||Lr,q ) ||F ||Lp,q(Ω)N .

Proof. (We shall simply write F, F0, F1 for ~F , ~F0, ~F1). We first assume that
~u ∈ V. We know from Proposition 7 that φ ∈ L∞(Ω) and that there exists a

constant independent of ~u, V and ~F and V such that

||φ||∞ 6 KN (Ω)||F ||Lp,q(Ω). (39)

Therefore, there exists a vector field F0 ∈ Lp,q(Ω)N such that

V φ = −div (F0) and ||F0||Lp,q 6 K1,N (Ω)||V ||Lr,q ||φ||∞,

that is

||F0||Lp,q 6 K1N (Ω)||V ||Lr,q ||F ||Lp,q(Ω).

Setting F1 = F − F0, we can write (23) as

−∆φ = −div (F1 − ~uφ). (40)

But, we have ~uφ ∈ Lp,q(Ω)N since φ ∈ L∞(Ω) according to the above Proposition 7.
Hence

||~uφ||Lp,q(Ω)N 6 ||~u||Lp,q ||φ||L∞ 6 KN ||F ||Lp,q ||~u||Lp,q .
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We may apply the W 1Lp,q result to (40) (see [42, 9, 2, 36]) to deduce that

||∇φ||Lp,q 6 Kp||F1 − ~uφ||Lp,q 6 KpNq(1 + ||~u||Lp,q + ||V ||Lr,q )||F ||Lp,q . (41)

For the general case, we consider uk ∈ V such that uk → u strongly in Lp,q(Ω)N .
Let φk be the solution of equation (23) where φ is replaced by φk

−∆φk − ~uk∇φk + V φk = T = −div (F ).

The sequence (φk)k satisfies

||φk||L∞ 6 KN ||F ||Lr,q and ||φk||H1
0
6 ||T ||H−1 ,

and then (φk)k converges weakly in H1
0 (Ω) to φ the solution of (23) . Since φk

satisfies (41) , we deduce that φ also satisfies (41) and (23) .

As an immediate consequence of the above result.

Proposition 9. Let ~u and ~F be in Lp,∞(Ω)N for some p > N . Then, the solution
of (23) satisfies

φ ∈ C0,α(Ω) with α = 1− N

p
.

Proof. According to the Sobolev embedding (see [35]), we have

W 1Lp,∞(Ω) ↪→ C0,α(Ω), with α = 1− N

p
.

Now we shall consider the case of more general data ~u and V .

Proposition 10. Assume that ~u and ~F are in bmor(Ω)N and V is in bmor(V ).
Then the solution φ of the equation (23) satisfies

1. ~uφ ∈ bmor(Ω)N

2. ∇φ ∈ bmor(Ω)N .

Proof. Since bmor(Ω) ↪→ Lp,q(Ω) for all p > N and q ∈ [1,+∞], we deduce from
Proposition 8 and Proposition 9 that :

φ ∈ C0,α(Ω) ∀α ∈ [0, 1 [ and −∆φ = −div ( ~F1 − ~uφ),

where ~F1 was defined in the proof of Proposition 8 (see equation (40)). From Ste-
genga multiplier’s result, ~uφ ∈ bmor(Ω)N whenever ~u is in bmor(Ω)N [44, 47].

Therefore ~F1 − ~uφ ∈ bmor(Ω)N . We may appeal to Campanato’s result [10] to
derive then that ∇φ ∈ bmor(Ω)N and

||∇φ||bmor 6 K
(
||F ||bmor + ||~uφ||bmor + ||F0||bmor

)
.

We shall end this paragraph by proving a W 2Lp,q(Ω)-regularity result for the
solutions of the dual problem (23) which will lead to interesting conclusions for the
direct problem (1).

For this, we shall use the following ADN constant

Ks
pq = sup

v∈H1
0 (Ω)∩W 2Lp,q(Ω)

||v||W 2Lp,q(Ω)

||v||Lp,q(Ω) + ||∆v||Lp,q(Ω)
, (42)

which is finite due to the well-known Agmon-Douglis-Nirenberg’s regularity result
combined with the Marcinkiewicz interpolation Theorem.

We shall improve now the regularity obtained in Proposition 10. We consider
ε0 > 0 (fixed) so that Ks

pqε0||~u||Lp,q(Ω) 6
1
2 .
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Proposition 11. (W 2Lp,q(Ω) regularity for p > N) Let φ be the solution of
(23) when T ∈ Lp,q(Ω), p > N, q ∈ [1,+∞]. Assume, furthermore, that ~u ∈
Lp,q(Ω)N and V ∈ Lp,q(Ω). Then

φ ∈W 2Lp,q(Ω).

Moreover, there exist constants cε0 , KpqN > 0 such that

||φ||W 2Lp,q(Ω) 6
KpqNcε0(1 + ||V ||Lp,q + ||~u||Lp,q(Ω))

1−Ks
pqε0||~u||Lp,q(Ω)

||T ||Lp,q(Ω).

Proof. We assume first that ~u ∈ V. Arguing as in Proposition 8, since we can assume

that T = div ~F for suitable ~F we get that the solution φ of (23) is in W 1Lp,q(Ω)
and then

−∆φ = ~u∇φ+ T − V φ ∈ Lp,q(Ω).

By the Agmon-Douglis-Nirenberg regularity results and the Marcinkiewicz inter-
polation theorem we deduce that φ ∈ W 2Lp,q(Ω). Moreover, since p > N and
q ∈ [ 1,+∞], we have the following continuous embeddings :

W 2Lp,q(Ω) ↪→ C1(Ω) ↪→ Lp,q(Ω).

The first inclusion is compact so we may appeal to Lemma 2.8 to derive that ∀ ε > 0,
there exists cε > 0 such that

||∇φ||∞ 6 ε||φ||W 2Lp,q(Ω) + cε||φ||Lp,q(Ω). (43)

From the equation satisfied by φ, we have

||∆φ||Lp,q(Ω) 6 ||~u||Lp,q(Ω)||∇φ||∞ + ||T ||Lp,q(Ω) + ||V ||Lp,q ||φ||∞, (44)

and using the ADN constant

||φ||W 2Lp,q(Ω) 6 Ks
pq

(
||φ||Lp,q(Ω) + ||∆φ||Lp,q(Ω)

)
. (45)

We combine those last three equations and derive that for any ε > 0

||φ||W 2Lp,q(Ω)(1− εKs
pq||~u||Lp,q(Ω)) 6 Ks

pq||φ||Lp,q(Ω)

(
1 + cε||~u||Lp,q(Ω)

)
+Ks

pq||T ||Lp,q(Ω)(1+ ||V ||Lp,q )K2N .(46)

Next, we consider ~uk ∈ V such that ~uk → ~u ∈ V. Then, choosing ε = ε0 > 0 such

that ε0K
s
pq sup

k
|| ~uk||Lp,q(Ω) 6

1

2
, we deduce from relation (46) that φk corresponding

to the solution of (23) , that is −∆φk − ~uk · ∇φk + V φk = T ∈ Lp,q(Ω), belongs to
a bounded set of W 2Lp,q(Ω) when k varies. Therefore, the strong limit φ in C1(Ω)
is the solution of (23) and it satisfies also the relation (46) for all ε ∈]0, ε0 ]. From
Proposition 6, we have

||φ||Lp,q(Ω) 6 KN (Ω)||T ||Lp,q(Ω). (47)

Combining relations (46) and (47) with ε = ε0, we derive the result.

The case where p = N can also be treated in the same way provided that the
norm of ~u in LN,1(Ω) is small enough in the sense that

||~u||LN,1(Ω) 6 θKs0
N1 for some θ ∈ [ 0, 1 [, (48)

Ks0
N1 = Ks

N1 sup
φ∈H1

0 (Ω)∩W 2LN,1(Ω)

||∇φ||∞
||φ||W 2LN,1

. (49)
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Proposition 12. (Regularity in W 2LN,1(Ω)). Let φ be the solution of (23) when
T ∈ LN,1(Ω), V ∈ LN,1(Ω). Assume that ~u satisfies relation (48). Then φ ∈
W 2LN,1(Ω). Moreover, there exists a constant K ′N (Ω) (independent of ~u) such that

||φ||W 2LN,1(Ω) 6
K ′N (Ω)(1 + ||V ||LN,1)

1−Ks0
N1||~u||LN,1

||T ||LN,1(Ω).

Proof. The proof follows the same argument as for the proof of Proposition 11.
Nevertheless, the embedding W 1LN,1 ⊂ C(Ω) is not compact and this explains the
condition (48).

There are many other spaces between the space Lp,1(Ω) and LN,1(Ω) for which
we can obtain a regularity result for the second derivatives of φ.

Here we want only to consider the space Λ = (LN (LogL)
β
N )N for β > N − 1.

Indeed this space is included in LN,1(Ω) and contains Lp(Ω) for all p > N .

Theorem 3.1. (Regularity in W 2LN (Ω)). Let T and V be in LN (Ω), ~u ∈ Λ,
div (~u) = 0 and ~u · ~n = 0 on ∂Ω. Then the unique solution φ of (23) belongs to

W 2LN (Ω) and choosing ε > 0 such that ε||~u||Λ 6
1

2
, there exists a constant Kε > 0

such that

||φ||W 2LN (Ω) 6
Kε(1 + ||~u||Λ + ||V ||LN )

1− ε||~u||Λ
||T ||LN (Ω).

The proof firstly depends on the following Trudinger’s type embedding :

Lemma 3.1. (Trudinger’s embedding) We have

W 1
0L

N (Ω) ↪→ L
1
N′
exp(Ω).

Moreover, for all v ∈W 1
0L

N (Ω)

sup
t6|Ω|

|v|∗(t)(
1 + Log

|Ω|
t

) 1
N′

6 K0||∇v||LN (Ω), with K0 =
1

Nα
1
N

N

.

Proof. According to the pointwise Sobolev inequality for the relative rearrangement,
we have for u = |v| (see Theorem 2.3)

− u′∗(s) 6
s

1
N−1

Nα
1
N

N

|∇u|∗u(s). (50)

We integrate this formula from t to |Ω| knowing that u∗(|Ω|) = 0, and using the
Hölder inequality, we get

u∗(t) 6
1

Nα
1
N

N

∫ |Ω|
t

s
1
N−1|∇u|∗u(s)ds 6

1

Nα
1
N

N

(
Log
|Ω|
t

) 1
N′

|| |∇u|∗u||LN . (51)

Therefore from (51), implies using Theorem 2.2

sup
t6|Ω|

u∗(t)(
1 + Log

|Ω|
t

) 1
N′

6
1

Nα
1
N

N

|| |∇u|∗u||LN 6
1

Nα
1
N

N

||∇u||LN .

The key result for the proof of Theorem 3.1 is the following compactness inclusion:
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Theorem 3.2. (Compact inclusion for W 1
0L

N (Ω)). W 1
0L

N (Ω) is compactly

embedded in Lαexp(Ω) for α >
1

N ′
.

Proof. Let (un)n be a bounded sequence in W 1
0L

N (Ω). We may assume that un ⇀ u
in W 1

0L
N (Ω)-weakly and almost everywhere in Ω. Let c = Max

n
||un−u||

L
1
N′
exp

< +∞.

For ε > 0, there exists δ > 0 such that

c(
1 + Log

|Ω|
t

)α− 1
N′

6 ε for all t 6 δ.

Therefore, we have : if t 6 δ

|un − u|∗(t)(
1 + Log

|Ω|
t

)α 6
c(

1 + Log
|Ω|
t

)α− 1
N′

6 ε;

if t > δ then, since |un − u|∗ is nonincreasing

|un − u|∗(t) 6
1

δ

∫ δ

0

|un − u|∗(s)ds,

so that

sup
t>δ

|un − u|∗(t)(
1 + Log

|Ω|
t

)α 6
1

δ

∫ δ

0

|un − u|∗(s)ds.

The right hand side of this inequality tends to zero as n goes to infinity. Hence, for
n > nε with nε large enough

sup
0<t<|Ω|

|un − u|∗(t)(
1 + Log

|Ω|
t

)α 6 ε.

As a corollary of the above theorem, since W 2LN ∩W 1
0L

N ↪→ W 1
0L

α
exp ↪→ LN ,

we have:

Corollary 1. (of Theorem 3.2) Let α > 1
N ′ . Then, for every ε > 0, there exists

cε > 0 such that ∀ v ∈W 2LN (Ω)∩ H1
0 (Ω)

||∇v||Lαexp 6 ε||∆v||LN + cε||v||LN .

Proof. We use the equivalence of norms ||v||W 2LN (Ω)∩H1
0
≡||∆v||LN + ||v||LN and

apply Lemma 2.8 with

Y = W 1
0L

α
exp(Ω), X = W 2LN (Ω) ∩H1

0 (Ω), Z = LN (Ω).

Proof of Theorem 3.1. We first assume that ~u ∈ V, and T ∈ L∞(Ω). Then, the
unique solution φ of (23) satisfies

||∆φ||LN 6 ||T ||LN + ||~u · ∇φ||LN + ||V ||LN ||φ||∞
6 KN (1 + ||V ||N )||T ||N + ||~u · ∇φ||LN . (52)
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We have

||~u · ∇φ||NLN 6
∫

Ω∗

|~u|N∗ |∇φ|N∗ dt

6 sup
t∈Ω∗

|∇φ|N∗ (t)(
1 + Log

|Ω|
t

)β ∫
Ω∗

|~u|N∗ (t)

(
1 + Log

|Ω|
t

)β
dt,

which implies

||~u∇φ||LN 6 ||∇φ||Lαexp ||~u||Λ with α =
β

N
>

1

N ′
. (53)

Let ε > 0 be fixed. There exists cε > 0 such that

||~u · ∇φ||LN 6 (ε||∆φ||LN + cε||φ||LN )||~u||Λ
(see Corollary 1 of Theorem 3.2). Combining this with relation (52), we have
∀ ε > 0, ∃ c1ε > 0

||∆φ||LN (1− ε||~u||Λ) 6 c1ε(1 + ||~u||Λ + ||V ||LN )||T ||LN . (54)

Secondly, we consider T ∈ LN (Ω) and ~u ∈ V. There exist ~uk ∈ V such that ~uk → ~u
strongly in Λ and Tk ∈ L∞(Ω) with

||Tk||LN 6 ||T ||LN .
Then from relation (54), the solution φk of (23) satisfies

||∆φk||LN (1− ε|| ~uk||Λ) 6 c1ε(1 + ||~uk||Λ + ||V ||LN )||T ||LN . (55)

We choose ε0 > 0 such that

ε0 sup
k
||uk||Λ 6

1

2
.

Then φk remains in a bounded set of W 2LN (Ω) ∩ H1
0 (Ω). So it converges to φ

weakly in W 2LN (Ω) ∩H1
0 (Ω) and we have

||∆φ||LN (1− ε0||~u||Λ) 6 c1ε0(1 + ||~u||Λ + ||V ||LN )||T ||LN , (56)

and

||φ||LN 6 |Ω| 1N ||φ||∞ 6 KN (Ω)||T ||LN (Ω)

(according to Proposition 6). This gives the results.

4. Very weak solutions of problem (1) with and without the Dirichlet
boundary condition. We now want to apply all those regularity results to the
study of equation (1). We first start with some definitions of the weak solution
associated with (1).

4.1. Existence and regularity of the very weak solution for a locally in-
tegrable potential V > 0. We start by considering the existence of very weak
solutions of equation (1) with the Dirichlet boundary condition (23) when the po-
tential V is a nonnegative locally integrable function.

We can use the definition of very weak solution (see Definition 1.1).

Theorem 4.1. Let f ∈ L1(Ω; δ). Let ~u be in Lp,1(Ω)N with div (~u) = 0 in D′(Ω),
~u · ~n = 0 on ∂Ω. Furthermore, assume that either p > N or p = N and ||~u||LN,1 <
Ks0
N1 (see (48)). Then, there exists a very weak solution ω in the sense of (16),

which is unique, if V ∈ Lp,1(Ω).
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Remark 6. In section 4.2, we shall discuss the uniqueness of the v.w.s when
V /∈ LN,1(Ω).

Proof. First, we assume that f > 0. Let uj ∈ V be such that ~uj → ~u strongly in
Lp,1(Ω)N and fj ∈ L∞(Ω) such that 0 6 fj(x) 6 f(x) a.e and fj(x) → f(x) a.e.
According to Proposition 4, Proposition 11 or Proposition 12, there exists a unique
function ωj > 0 such that{

−∆ωj + ~uj · ∇ωj + Vjωj = fj ,

ωj ∈ H1
0 (Ω) ∩W 2Lp,1(Ω),

(57)

which is equivalent to saying that
∫

Ω

ωj

[
−∆φ− ~uj · ∇φ

]
dx =

∫
Ω

fjφdx−
∫

Ω

Vjωjφdx,

∀φ ∈W 2Lp,1(Ω) ∩H1
0 (Ω).

(58)

We argue as in [20, 18, 36]. Let E be a measurable subset of Ω and χE its characteris-
tic function. Then, there exists a non negative function φj ∈W 2Lm(Ω), ∀m < +∞,
satisfying {

−∆φj − ~uj∇φj = χE in Ω,

φj = 0 on ∂Ω.
(59)

We consider a small number ε > 0 such ε sup
j
||~uj ||LN,1 6

1

2
. Therefore, we have

||φj ||W 2LN,1 6 K0||χE ||LN,1 6 K1|E|
1
N .

Thus∫
E

ωjdx =

∫
Ω

ωj
[
−∆φj − ~uj∇φj

]
dx 6

∫
Ω

fjφj 6 K1

(∫
Ω

|fj |δ
)
||φj ||W 2LN,1

6 K0|E|
1
N

∫
Ω

|fj |δdx. (60)

By the Hardy-Littlewood property we conclude that

sup
t6|Ω|

t
1
N′ |ωj |∗∗(t) 6 K0

∫
Ω

|fj |δdx 6 K0

∫
Ω

|f |δdx. (61)

Moreover, choosing φ = ϕ1 as the test function with −∆ϕ1 = λ1ϕ1, and ϕ1 = 0 on
∂Ω, we have

λ1

∫
Ω

ωjϕ1dx+

∫
Ω

Vjωjϕ1dx 6 ||∇ϕ1||∞ ||ωj ||LN′,∞ ||~uj ||LN,1 + c

∫
Ω

|fj |δdx

6 c
(
1 + ||~uj ||LN,1

) ∫
Ω

|fj |δdx,

for a suitable constant c > 0. Thus Vjωj remains in a bounded set of L1(Ω; δ) and∫
Ω

Vjωjδdx 6 c
(
1 + ||~uj ||LN,1

) ∫
Ω

|fj |δdx. (62)

If f has a constant sign, we write fj = fj+ − fj− with fj+ = max(fj , 0) > 0.
Denoting by ω+

j the v.w.s. associated to fj+ and by ω−j the one associated to

fj−,we see that ωj = ω+
j − ω

−
j satisfies (58) and we have also the estimates (61)

and (62).
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In particular, since |ωj | 6 ω+
j + ω−j∫

Ω

Vj |ωj |δdx 6 c
(
1 + ||uj ||LN,1

) ∫
Ω

|fj |δdx. (63)

We conclude that (ωj)j converges weak-* to ω in LN
′,∞(Ω) =

(
LN,1(Ω)

)∗
. To

obtain a strong convergence, we need a local estimate of the gradient. For that
purpose, we shall prove the boundedness of ωj in the Lorentz-Sobolev weighted

space W 1L1+ 1
N ,∞(Ω; δ). For this, we shall need the following result due to Philippe

Bénilan and co-authors whose proof can be found in [5] Lemma 4.2, with general-
ization in [40].

Proposition 13. Let v ∈ L1(Ω, δα), and α ∈ [ 0, 1 ]. Assume that there exists a
constant c0 > 0 such that for all k > 0

Tk(v) := min(|v|; k) sign (v) ∈W 1L2(Ω, δα),

and ∫
Ω

|∇Tk(v)|2δαdx+

∫
Ω

|Tk(v)|2δαdx 6 c0k. (64)

Then, there exists a constant c, depending continuously on c0 > 0, such that for all
λ > 0 ∫

{x:|∇v|(x)>λ}
δα(x)dx 6

c

λ1+ 1
N+α−1

.

In particular, if vj is a sequence converging weakly in L1(Ω) to a function v,
satisfying the inequality (64)∫

Ω

|∇Tk(vj)|2δαdx 6 c0k ∀j, ∀k,

then vj converges to v weakly in W 1,q(Ω′) for all q ∈
[
1,

N + α

N + α− 1

[
and all Ω′ ⊂

⊂ Ω, with a subsequence, vj(x)→ v(x) a.e. in Ω.

We first need to prove the following a priori estimate :

Proposition 14. Let ωj be the solution of (57), ω its weak limit in LN
′,∞(Ω).

Under the same assumptions as for Theorem 3.1, there exists a constant c0 > 0
such that: ∫

Ω

∣∣∇Tk(ωj)
∣∣2δdx+

∫
Ω

∣∣∇Tk(ω)
∣∣2δdx 6 c0k ∀ k > 0, ∀ j.

Proof. Let ϕ1 be the first eigenvalue of the Dirichlet problem −∆ϕ1 = λ1ϕ1 in
Ω, ϕ1 = 0 on ∂Ω. Then, there exist constants such that c1δ(x) 6 ϕ1(x) 6
c2δ(x) ∀x ∈ Ω. We consider the approximate problem given in equation (57)
say {

−∆ωj + ~uj · ∇ωj + Vjωj = fj ,

ωj ∈W 1,1
0 (Ω) ∩W 2Lp,1(Ω),

with |fj(x)| 6 |f(x)|, fj → f a.e, ~uj → ~u in Lp,1(Ω)N−strongly and ωj → ω

weakly-* in LN
′,∞(Ω).
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For k > 1, we choose Tk(ωj)ϕ1 as a test function; then VjωjTk(ωj)ϕ1 > 0 and
we derive after some integrations by parts :∫

Ω

|∇Tk(ωj)|2ϕ1dx+ λ1

∫
Ω

ϕ1

(∫ ωj

0

Tk(σ)dσ

)
dx (65)

−
∫

Ω

~uj · ∇ϕ1

∫ ωj

0

Tk(σ)dσdx6c2k
∫

Ω

|f |δdx.

This relation implies:∫
Ω

|∇Tk(ωj)|2δ(x) 6 c3k

∫
Ω

|ωj |δdx+ c2k

∫
Ω

|f |δdx+ c3k

∫
Ω

|~uj | |ωj |dx. (66)

By the Hölder inequality∫
Ω

|~uj | |ωj |dx 6 c4||~uj ||LN,1 · ||ωj ||LN′,∞ 6 c4||~uj ||
∫

Ω

|f |δdx. (67)

From relation (66) and (67), we then have :∫
Ω

|∇Tk(ωj)|2δ(x)dx 6 c5(1 + ||~uj ||LN,1)

(∫
Ω

|f |δdx
)
k. (68)

Letting j → +∞, we deduce from (68) and Proposition 13 :∫
Ω

|∇Tk(ω)|2δ(x)dx 6 c0k with c0 = c5(1 + ||~u||LN,1)

∫
Ω

|f |δdx.

Then the LN
′,∞-regularity of ω implies∫

Ω

|Tk(ω)|2δdx 6 c0k

∫
Ω

|ω|dx.

Corollary 2 (of Propositions 13 and 14). Let ω be as in the proof of the previous
proposition. Then, there exists a constant c6 > 0 such that

||∇ω||
L1+ 1

N
,∞(Ω;δ)

6 c6

∫
Ω

|f(x)|δ(x)dx.

In particular, we have, for all q < 1 +
1

N
,∫

Ω

|∇ω|qδ(x)dx 6 cq

∫
Ω

|f(x)|δ(x)dx.

To pass to the limit in (57), we argue as in [19] p. 1041. We emphasize the main
differences due to the additional term ~u · ∇ω.

Let us note that by the above Proposition 11, we have (for a subsequence still
denoted as (ωj)j) that

1. ωj(x)→ ω(x) a.e. (and thus Vjωj → V ω a.e. in Ω).

2. ωj ⇀ ω weakly in W 1,q(Ω; δ), ∀ q < 1 +
1

N
.

3. ωj → ω strongly in Lr(Ω), for any r < N ′.

In particular, we deduce from the above statement 1., relation (63) and Fatou’s
lemma

Lemma 4.1. Under the assumptions of Theorem 4.1 and Proposition 14 one has∫
Ω

V |ω|δdx 6 c
(

1 + ||u||LN,1
)∫

Ω

|f |δdx.
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Lemma 4.2. Under the assumptions of Theorem 4.1 and Proposition 14 one has

lim
j→+∞

∫
Ω

|~ujωj − ~uω|dx = 0.

Proof. Since ~uj → ~u in LN,1(Ω), and a.e. in Ω, we have

lim
j→+∞

~uj(x)ω(x) = ~u(x)ω(x) a.e.

It is enough to show that (~ujωj)j satisfies Vitali’s condition : ∀ ε > 0 ∃η > 0 such
that if E ⊂ Ω is measurable with |E| 6 η then

lim sup
j→+∞

∫
E

|~ujωj |dx 6 ε.

But from Hölder’s inequality we have∫
E

|~ujωj |dx 6 ||~uj ||LN,1(E)||ωj ||LN′,∞(Ω) 6 c||~uj ||LN,1(E),

so that

lim sup
j→+∞

∫
E

|~ujωj |dx 6 c||~u||LN,1(E).

Since

||~u||LN,1(E) −−−−→
|E|→0

0,

we derive that it satisfies the Vitali condition. Therefore, we have proved the
lemma.

Then we have the following result analogous to Lemma 2.3 of [19].

Lemma 4.3. We assume that V ∈ L1
loc(Ω), and V > 0. Then

Vjωjδ ⇀ V ωδ weakly in L1
loc(Ω).

Furthermore, if V ∈ L1(Ω; δ), then

Vjωjδ ⇀ V ωδ weakly in L1(Ω).

Proof. Let t ∈ IR+. Consider a sequence of functions γm in C1(IR)∩W 1,∞(IR) such
that

γ′m > 0 ∀ s ∈ IR,

γm(s) → −1 for s < −t as m→ +∞,
γm(s) → 1 for s > t as m→ +∞,
γm(s) = 0 on − t 6 s 6 t,

and let ϕ1 ∈ C2(Ω) with −∆ϕ1 = λ1ϕ1 in Ω, ϕ1 = 0 on ∂Ω, λ1 > 0.
Taking ϕ1γm(ωj) as a test function in relation (57) we get∫

Ω

∇ωj · ∇
(
ϕ1γm(ωj)

)
+

∫
Ω

Vjωjϕ1

(
γm(ωj)

)
dx +

∫
Ω

~uj · ∇ωjγm(ωj)ϕ1dx

=

∫
Ω

fjγm(ωj)ϕ1dx. (69)
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We write ∇ωjγm(ωj) = ∇
[∫ ωj

0

γm(σ)dx

]
so that∫

Ω

(~uj · ∇ωj)γm(ωj)ϕ1dx = −
∫

Ω

div (ujϕ1)

∫ ωj

0

γm(σ)dσdx

= −
∫

Ω

~uj∇ϕ1

(∫ ωj

0

γm(σ)dσ

)
dx.

As m→ +∞, treating the remaining terms in (69) as in [19], we derive∫
|ωj |>t

Vj |ωj |δdx 6 c

[∫
|ωj |>t

|f |δdx+

∫
|ωj |>t

|ωj |δdx+

∫
|ωj |>t

|~uj | |ωj |dx

]
. (70)

This relation proves that Vjωjδ remains in a bounded set of L1(Ω) but also that the

set
{
Vj |ωj |δ, j ∈ IN

}
is x compact for the σ(L1;L∞)-topology, so we may appeal

to the Dunford-Pettis to conclude. Indeed, let us set

Γj(t) :=

∫
|ωj |>t

|f(x)|δ(x)dx+

∫
|ωj |>t

|ωj |δdx+

∫
|ωj |>t

|~ujωj |dx.

For a.e. t > 0,

lim
j→+∞

Γj(t) = Γ(t) =

∫
|ω|>t

|f(x)|δ(x)dx+

∫
|ω|>t

|ω|δdx+

∫
|ω|>t

|~uω|dx,

and ∣∣∣{|ω| > t
}∣∣∣+ sup

j

∣∣∣{|ωj | > t
}∣∣∣ 6 constant

t
−−−−→
t→+∞

0,

we deduce that for any ε > 0, there exists tε > 0 such that, for all j ∈ IN,

Γj(tε) 6 ε.

Let Ω0 ⊂ Ω such that V δ ∈ L1(Ω0) (thus Ω0 6= Ω if V is only locally integrable).
Then by the Lebesgue convergence dominate theorem for a.e. t,

lim
j→+∞

∫
Ω0

∣∣∣χ|ωj |6t(x)Vjωj(x)− χ{|ω|6t}(x)V (x)ω(x)
∣∣∣δ(x)dx = 0,

since

lim
|A|→0

∫
A

V |ω|δdx = 0
(
V ωδ ∈ L1(Ω)

)
.

Therefore there exists η > 0 such that if A ⊂ Ω0, |A| 6 η, then for all j ∈ IN,∫
A∩{|ωj |6tε}

Vj |ωj |δdx 6 ε.

Hence, for all j ∈ IN, all A ⊂ Ω0, with |A| 6 η∫
A

Vj |ωj |ϕdx 6 Γj(tε) +

∫
A

Vj |ωj |δdx 6 2ε.

This conclude the proof of Lemma 7.

The passage to the limit, we will distinguish two different cases :
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1. Case V ∈ L1(Ω; δ) For all φ ∈ C2(Ω), φ = 0, we have

lim
j

∫
Ω

Vjωjφdx =

∫
Ω

V ωφdx (71)

(since
φ

δ
∈ L∞(Ω) and Vjωjδ converges to V ωδ for σ(L1;L∞) topology).

Therefore, since

−
∫

Ω

ωj∆φdx−
∫

Ω

~ujωj∇φdx+

∫
Ω

Vjωjφdx =

∫
Ω

fjφdx, (72)

we let j → +∞ to deduce that ω is a v.w.s. using Lemma 4.2 and the
convergences of ωj .

2. Case V ∈ L1
loc(Ω) We consider φ ∈ W 2LN,1(Ω) with support φ be a compact

in Ω. Then the same argument holds since Vjωjδ tends to V ωδ weakly in
L1
loc(Ω). Then (71) and (72) hold true

∫
Ω

ω
[
−∆φ− ~u∇φ+ V φ

]
dx =

∫
Ω

fφdx,

∀φ ∈W 2LN,1(Ω), support(φ) compact in Ω.
(73)

If V ∈ Lp,1(Ω), the solution is unique. Indeed, if we denote by ω the difference of
two solutions then∫

Ω

[
−∆ϕ− ~u∇ϕ+ V ϕ

]
ωdx = 0 ∀ϕ ∈ C2(Ω), ϕ = 0 on δΩ.

Let us consider the function φ solution of{
−∆φ− ~u∇φ+ V φ = sign (ω),

φ ∈ H1
0 (Ω).

(74)

Then φ ∈W 2LN,1Ω ↪→ C1(Ω) for V ∈ LN,1(Ω). Thus∫
Ω

ω
[
−∆φ− ~u∇φ+ V φ

]
dx = 0, (75)

since
{
ϕ ∈ C2(Ω) : ϕ = 0 on ∂Ω

}
is dense in W 2LN,1(Ω) ∩H1

0 (Ω). Combining the

relations (74) and (75) we find :∫
Ω

|ω|dx = 0 i.e. ω ≡ 0.

4.2. A result of uniqueness of solution when the potential is bounded
from below by c δ−r, r > 2. The purpose of this section is to show the following
uniqueness result.

Theorem 4.2. Assume that V is locally integrable V > 0, and such that

∃ c > 0, V (x) > cδ(x)−r, in a neighborhood U of the boundary, with r > 2.

Then, the v.w.s. ω found in Theorem 4.1 is unique.

This theorem relies on the following general result which does not require any
information about the boundary condition, since the required additional information
is written in another way :
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Theorem 4.3. (Comparison principle) Let ω be in L1(Ω; δ−r)∩W 1,1
loc (Ω), r > 1.

Let ω ∈ LN
′,∞(Ω) and ~u ∈ Lp,1(Ω) with p > N or p = N with a small norm.

Assume that
Lω≡̇ −∆ω + div (~uω) 6 0 in D′(Ω).

Then
ω 6 0 in Ω.

As an immediate corollary of the above theorem we have

Corollary 3. of Theorem 4.3 Assume the hypotheses of Theorem 4.3 hold and
let f ∈ L1

loc(Ω). Then there exists at most one function ω ∈ L1(Ω; δ−r) ∩W 1,1
loc (Ω),

r > 1 solution of Lω = f in D′(Ω).

For the proof of Theorem 4.3, we need the following extension of the Kato’s
inequality whose proof is similar to the one given in [30] :

Theorem 4.4. (Local Kato’s inequality) Let ω ∈W 1,1
loc (Ω) with ~u ω ∈ L1

loc(Ω).
Assume that Lω = − ∆ω + div (~u ω) belongs to L1

loc(Ω). Then

1. ∀ψ ∈ D(Ω), ψ > 0,

∫
Ω

ω+L∗ψdx 6
∫

Ω

ψsign +(ω)L(ω)dx,

i.e. L(ω+) 6 sign +(ω)L(ω) in D′(Ω).

2. L(|ω|) 6 sign (ω)L(ω) in D′(Ω).
Here

sign +(σ) =

{
1 if σ > 0,

0 if σ 6 0,
sign (σ) =

{
1 ifσ > 0,

−1 if σ < 0,

L∗ψ = −∆ψ − ~u · ∇ψ, for ψ ∈ C∞c (Ω).

Proof. Following [30], we first remark that for any α ∈ C∞c (Ω), L(αω) ∈ L1(Ω)
since, one has, in D′(Ω),

L(αω) = αLω − ω∆α− 2∇ω · ∇α+ (~uω) · ∇α ∈ L1(Ω).

Thus, the conclusion 1 will be proved if we show that

L(αω)+ 6 sign +(αω)L(αω) in D′(Ω).

For this purpose, we may assume that ω ∈ W 1,1(Ω) with compact support and

Lω ∈ L1(Ω). Moreover, if ρj ∈ C∞c (IRN ) is a sequence of mollifiers, and ω ? ρj ∈
C∞c (Ω) we have

L(ω ? ρj) = Lω ? ρj → Lω in L1(Ω).

So, it is sufficient to show the inequality number for ω ∈ C∞c (Ω). From here, we
argue as for the case where L is replaced by the Laplacian operator (see Proposition
1.5.4 p.21 in [30] for more details). We approximate the functions sign + by a
sequence of convex, non-decreasing functions hε such that

lim
ε→0

h′ε(t) = sign +(t); lim
ε→0

hε(t) = t+

sup
ε>0
|h′ε|(t) is independent of ε.

Thus, for all ψ ∈ C∞c (Ω), ψ > 0, we have∫
Ω

hε(ω)L∗ψdx 6
∫

Ω

ψh′ε(ω)Lωdx, (76)

where L∗ψ = −∆ψ − ~u · ∇ψ.
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Indeed, ψh′ε(ω) is in C∞c (Ω) and then the convexity of hε implies∫
Ω

ψh′ε(ω)Lωdx > −
∫

Ω

hε(ω)∆ψdx+

∫
Ω

~uψh′ε(ω) · ∇ωdx.

Since div (~u) = 0, and h′ε(ω)∇ω = ∇hε(ω) we have∫
Ω

~uψh′ε(ω) · ∇ωdx =

∫
Ω

~uψ · ∇hε(ω)dx = −
∫

Ω

~u · ∇ψhε(ω)dx.

Thus we get (76).
As in [30], letting ε→ 0, we have∫

Ω

ω+L∗ψdx 6
∫

Ω

ψsign +(ω)Lωdx ∀ψ ∈ D(Ω), ψ > 0.

We derive conclusion 1, as in [30], for ω ∈ W 1,1
c (Ω) and the same for conclusion

2.

To extend the set of test functions from D(Ω) to other sets of functions we need
the following approximation result.

Lemma 4.4. (Approximation of functions in Wm,∞(Ω) by a sequence in

Wm,∞
c (Ω)) Let Wm,∞

c (Ω) =
{
ϕ ∈Wm,∞(Ω) with compact support

}
, 1 < m < +∞

and assume that ∂Ω is of class Cm, r > 0. Then, for ϕ ∈Wm,∞(Ω) there exists a
sequence (ϕn)n, ϕn ∈Wm,∞

c (Ω), such that

1. δr(Dαϕn)→ δr(Dαϕ) strongly in L∞(Ω), for all α such that |α| < r.

2. Moreover, if ϕ ∈W 1,∞
0 (Ω) then

sup
n
||∇ϕn||∞ 6 cΩ||∇ϕ||∞, (cΩ with independent of ϕ),

δr(Dαϕn)→ δr(Dαϕ) strongly in L∞(Ω) for |α| < r + 1.

3. If ϕ > 0 then one can take ϕn > 0.
4. If ϕ ∈ Cm(Ω) then ϕn ∈ Cmc (Ω). By the density of C∞c (Ω) in Cmc (Ω), ϕn in

this case can be taken in C∞c (Ω).

Proof. Let h ∈ C∞(IR) be such that 0 6 h 6 1, h(σ) =

{
1 if σ > 1,

0 if σ 6 0
.

Since ∂Ω ∈ Cm, δ is of class Cm in a neighborhood U of ∂Ω (see [22]). Let
0 < ε < 1 be such that {

x ∈ Ω : δ(x) 6 ε
}
⊂ U

and define, for x ∈ Ω,

hε(x) = h

(
2δ(x)− ε

ε

)
, (77)

so that hε(x) = 1 if δ(x) > ε, hε(x)→ 1 as ε→ 0, and hε(x) = 0 if δ(x) < ε/2.
One has

|Dαhε(x)| 6 c ε−|α|, for a constant c > 0 independent of x and ε.

Since we have, by Leibniz’s formula

Dα
(
ϕ(1− hε)

)
(x) =

∑
β+γ=α

cγβD
βϕ(x)Dγ(1− hε)(x), (78)

(cγβ are constant depending only on γ, β) and for γ 6= 0.

δr(x)
∣∣Dγhε(x)

∣∣ 6 c ε−|γ|+r, (79)
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we then deduce, that

δr(x)
∣∣Dα

(
ϕ(1− hε)

)
(x)
∣∣ 6 c

 ∑
β+γ=α, γ 6=0

|Dβϕ(x)|ε−|γ|+r + δr|Dαϕ|(1− hε)

 .
Therefore

sup
x∈Ω

δr(x)
∣∣Dαϕ(1− hε)(x)

∣∣ 6 c ε−|α|+r. (80)

Taking ε =
1

n
, and ϕn = h 1

n
ϕ is convenient for large n > n0. If furthermore

ϕ ∈W 1,∞
0 (Ω) then

|ϕ(x)| 6 δ(x)||∇ϕ||∞.
Hence,

δr
∣∣Dα

(
ϕ(1− hε)

)
(x)
∣∣

6 c δr+1(x)ε−|α| + c
∑

β 6=0,β+γ=α

∣∣Dβϕ|(x)
∣∣Dγ(1− hε)|δr(x) 6 c ε−|α|+r+1.

On the other hand
on δ(x) 6 ε

∣∣∇(ϕhε)(x)
∣∣ 6 |ϕ(x)|∇hε(x)|+ 2||∇ϕ||∞ 6 c ||∇ϕ||∞

[
1 +

δ(x)

ε

]
6 c ||∇ϕ||∞,

on δ(x) > ε
∣∣∇ϕn(x)

∣∣ 6 2||∇ϕ||∞.
Moreover, one has

δr(x)
∣∣∣∇(ϕ(1− hε)

)∣∣∣(x) 6 δr|Dϕ|(x)
(
1− hε(x)

)
+ c δr+1(x)||∇ϕ||∞|∇hε| 6 c εr.

Thanks to the above approximation lemma we can modify the set of the test
functions in the Kato’s inequality as follows

Corollary 4. (of Theorem 4.4: Variant of Kato’s inequality) Let ω be in

W 1,1
loc (Ω) ∩ LN ′,∞(Ω), ω ∈ L1(Ω; δ−r) for r > 1 and ~u ∈ LN,1(Ω)N with div (~u) =

0, ~u · ~n = 0. Assume furthermore that Lω = −∆ω + div (~uω) is in L1(Ω; δ).
Then for all φ ∈ C2(Ω), φ = 0 on ∂Ω, φ > 0 one has

1.

∫
Ω

ω+L∗φdx 6
∫

Ω

φ sign +(ω)L(ω)dx,

2.

∫
Ω

|ω|L∗φdx 6
∫

Ω

φ sign (ω)L(ω)dx,

where L∗φ = −∆φ− ~u · ∇φ = −∆φ− div (~uφ).

Proof. Let φ > 0 be in C2(Ω) with φ = 0 on ∂Ω. Then according to Lemma 4.4,
we have a sequence φn ∈ C2

c (Ω), φ > 0, such that{
δr∆φn → δr∆φ in C(Ω) for r > 1,

δr∇φn → δr∇φ in C(Ω)N , ||∇φn||∞ 6 c||∇φ||∞.

Therefore

lim
n→+∞

∫
Ω

ω+∆φndx = lim
n→+∞

∫
Ω

ω+δ
−r · δr∆φndx =

∫
Ω

ω+∆φdx,

since ω+ ∈ L1(Ω; δ−r) and r > 1.
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By the Lebesgue dominated convergence theorem, one has

lim
n→+∞

∫
Ω

~u · ∇φnω+dx =

∫
Ω

~u · ∇φω+dx, since ~u · ω+ ∈ L1(Ω)N .

Therefore∫
Ω

ω+L∗φdx = lim
n→∞

∫
Ω

ω+L∗φndx 6 lim
n→+∞

∫
Ω

φnsign +ω sign +Lωdx

=

∫
Ω

φ sign +ωLω (since
|φn|
δ

6 ||∇φn||∞ 6 c||∇φ||∞).

Now we come to the proof of the uniqueness result stated in Theorem 4.2.

Proof of Theorem 4.2. Since the v.w.s. ω satisfies V ω ∈ L1(Ω; δ), so if V > c δ−r,
for r > 2, we have in a neighborhood U of ∂Ω∫

Ω

|ω|δ−(r−1)dx 6 c

∫
U

V |ω|δdx+ c1

∫
Ω

|ω|dx < +∞.

Thus ω ∈ L1(Ω; δ−r̃) with r̃ = r − 1 > 1 for r > 2.
If ω1, ω2 are two v.w.s. then ω = ω1 − ω2

Lω = L(ω1 − ω2) = −∆ω + div (~uω) = −V ω ∈ L1(Ω; δ).

We deduce from the Corollary 4 of Theorem 4.4 that ∀φ > 0, φ ∈ C2(Ω), φ = 0
on ∂Ω ∫

Ω

|ω|L∗φdx 6 −
∫

Ω

φ sign (ω)V ωdx = −
∫

Ω

φV |ω|dx 6 0.

For ~u ∈ Lp,1(Ω)N , (p > N as in the statement of Theorem 4.2) let us consider
φ0 ∈ H1

0 (Ω) solution of

L∗φ0 = −∆φ0 − ~u∇φ0 = 1.

Then φ0 > 0, φ0 ∈W 2Lp,1(Ω) according to the above regularity result, (see Propo-
sitions 11 or 12) and φ0 can be approximated by a sequence φ0j ∈ C2(Ω), φ0j > 0,
φ0j = 0 on ∂Ω satisfying

L∗jφ0j = −∆φ0j − ~uj · ∇φ0j = 1, ~uj → ~u in Lp,1, ~uj ∈ V,

so that

||φ0j ||W 2Lp,1 6 c.

Indeed, we may assume that φ0j converges weakly to a function φ0 in W 2Lp,1(Ω),

∇φ0j(x)→ ∇φ0(x) and φ0j(x)→ φ0(x) a.e. x ∈ Ω.

Since ∫
Ω

|ω| | ~uj − ~u| 6 || ~uj − ~u||LN,1 |ω|LN′,∞ ,

and

||∇φ0j ||∞ 6 c,

we deduce that

lim
j→+∞

∫
Ω

|ω|~uj · ∇φ0j =

∫
Ω

|ω|~u · ∇φ0dx.

Thus

L∗φ0 = 1, φ0 ∈W 2LN,1(Ω) ∩H1
0 (Ω).
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By uniqueness φ0 = φ0 and then L∗jφ0j ⇀ L∗φ0 weakly in LN,1. Since, we have∫
Ω

|ω|L∗φ0jdx 6 0.

0 6
∫

Ω

|ω|dx =

∫
Ω

|ω|L∗jφ0jdx 6
∫

Ω

|ω|(L∗jφ0j − L∗φ0j)dx −−−−→
j→+∞

0,

we arrive to ω = 0.

Remark 7. In Theorem 4.3 and Theorem 4.4, if ~u ≡ 0 (or ~u ∈ C1(Ω)N ) then
we can weaken the conditions on ω reducing it to ω belongs to L1(Ω; δ−r), r > 1.
Then the above conclusions hold true.

Remark 8. In fact, in Corollary 3, we can state that the unique solution of (1)
(without any indication of the boundary condition) must satisfy that ω = 0 on ∂Ω
at least if ω is differentiable. Indeed, a consequence of Lemma 7 we have

L1(Ω, δ−r) ∩W 1Lp,q(Ω) = W 1
0L

p,q(Ω) if r > 1 (1 6 p, q 6 +∞).

Remark 9. There is a large amount of works in the literature in which the unique-
ness of solutions of suitable elliptic problems is established without indicating any
boundary condition but these previous papers deal with degenerate elliptic opera-
tors (see, e.g. [3], [4], [21] and the references therein). We point out that the main
reason to get this type of results in our case (in which the diffusion operator is the
simplest one and is not degenerate) is the presence of a very singular coefficient of
the zero order term (the potential V (x)) which is “pathological” since it is more
singular on the boundary of the domain than what the Hardy inequality may allow.

4.3. Boundedness in LN
′
(Ω) of the v.w.s., regularity and blow-up in ab-

sence of any potential (V = 0). Since the very weak solutions found in Theorem
4.1 needs not be in L1(Ω) our main goal now (assuming V ≡ 0) is to analyze under
which conditions ω is globally integrable. We have

Theorem 4.5. (Integrability in LN
′
(Ω).) Let f be in L1

(
Ω; δ

(
1+|Log δ|

) 1
N′
)
,

1

N

+
1

N ′
= 1, V = 0, ~u ∈ (LN (LogL)

β
N )N , with β > N − 1, div (~u) = 0 in Ω and

~u · ~n = 0 on ∂Ω. Then the unique very weak solution ω of equation (1) belongs to

LN
′
(Ω).

We recall the

Lemma 4.5. (see [37]) Let Ω be a bounded open Lipschitz set and α > 0. Then,
there exists a constant cα(Ω) > 0 such that ∀φ ∈W 1

0L
α
exp(Ω)

|φ(x)| 6 cα(Ω)δ(x)(1 + |Log δ(x)|)α||∇φ||Lαexp(Ω).

Proof of Theorem 4.5 (boundedness in LN
′
(Ω)). Let ω be the very weak solution

found in Theorem 4.1 and assume that

f ∈ L1
(
Ω; δ(1 + |Log δ|) 1

N′
)
.

We know that there exists a sequence ~uj ∈ V such that the corresponding sequence

(ωj)j satisfying relation (58) verifies ωj ⇀ ω weak-* in LN
′,∞ and that ∀φ ∈

H1
0 ∩W 2LN (Ω) ∫

Ω

ωj
[
−∆φ− ~uj∇φ

]
dx =

∫
Ω

fφdx. (81)
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Here ~uj converges in (LN (LogL)
β
N )N = Λ to ~u strongly where β > N − 1. Let

g ∈ LN (Ω)and let φj be the solution of

φj ∈W 2LN (Ω) such that −∆φj − ~uj∇φj = g in Ω, φj = 0 on ∂Ω.

Then according to Theorem 3.1, we have

||φj ||W 2LN (Ω) 6 Kε
1 + ||~uj ||Λ
1− ε||~uj ||Λ

||g||LN (Ω),

with

ε sup
j
||~uj ||Λ 6

1

2
, for some ε > 0.

Thus

||φj ||W 2LN (Ω) 6 K(Ω)||g||LN (Ω). (82)

By the Trudinger’s type inclusion (see Lemma 3.1)

||∇φj ||
L

1
N′
exp

6 K10||φj ||W 2LN (Ω) 6 K11||g||LN (Ω). (83)

Therefore, considering equation (81), we have∫
Ω

ωjgdx =

∫
Ω

fφjdx, (84)

with the help of Lemma 4.5 with α =
1

N ′
and estimate (83), this relation gives:∫

Ω

ωjgdx 6 K12||g||LN
∫

Ω

|f |δ(x)(1 + |Log δ(x)|) 1
N′ dx. (85)

Hence

sup
||g||LN=1

∫
Ω

ωjgdx 6 K12

∫
Ω

|f |δ(x)(1 + |Log δ(x)|) 1
N′ dx, (86)

which shows that :

||ω||LN′ (Ω) 6 K12

∫
Ω

|f |δ(x)(1 + |Log δ(x)|) 1
N′ dx, (87)

proving the result.

For the case V ≡ 0, we can always obtain the W 1,q(Ω)-regularity, for q > 1,
provided some integrability on f but also on ~u. Here is a first result in that direction :

Theorem 4.6. Let f be in L1(Ω; δ(1+|Log δ|)), V = 0, and ~u in bmor(Ω)N . Then,

the very weak solution found in Theorem 4.1 belongs to W 1,1
0 (Ω).

Proof. As before we consider the approximating problem (57) with ~uj = ~u, say{
−∆ωj + ~u · ∇ωj = fj in Ω,

ωj ∈ H1
0 (Ω) ∩W 2Lp,1(Ω) ∀ p < +∞.

Thus, taking φ ∈W 1
0 bmor(Ω) we have∫

Ω

∇ωj · ∇φdx+

∫
Ω

~u · ∇ωjφdx

=

∫
Ω

fjφdx⇐⇒
∫

Ω

[
∇ωj · ∇φ− ~u · ∇φωj

]
dx =

∫
Ω

fjφdx.
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Let Fj =
∇ωj
|∇ωj |

if ∇ωj 6= 0, and 0 otherwise, Fj ∈ L∞(Ω)N , ||Fj ||∞ 6 1.

According to Proposition 10, there exists a function φj ∈W 1
0 bmor(Ω) such that

−∆φj − ~u∇φj = −div (Fj), and ||φj ||W 1
0L

q 6 c9||Fj ||Lq 6 cq < +∞ ∀ q > 1,

⇐⇒
∫

Ω

∇φj∇ϕdx−
∫

Ω

~u∇φjϕdx =

∫
Ω

Fj∇ϕdx ∀ϕ ∈ H1
0 (Ω).

Choosing ϕ = ωj , we have∫
Ω

|∇ωj |dx =

∫
Ω

∇φj · ∇ωj dx−
∫

Ω

~u · ∇φjωj dx =

∫
Ω

fjφj dx. (88)

From Lemma 4.5, and by the John-Nirenberg inequality (see [47]) we have :

|φj(x)| 6 c(Ω)δ(x)(1 + |Log δ(x)|)||∇φj ||Lexp
6 c(Ω)δ(x)(1 + |Log δ(x)|)||∇φj ||bmor(Ω).

(89)

We recall that

||∇φj ||bmor 6 K(||Fj ||∞ + ||~uφj ||bmor ) 6 c, (90)

since φj → φ strongly in C0,α(Ω) (see Proposition 10).
Combining (88) to (90), we have∫

Ω

|∇ωj |dx 6 c

∫
Ω

|fj |δ(x)(1 + |Log δ|)dx 6 K

∫
Ω

|f |δ(1 + Log δ|)dx; (91)

using also the fact thatωj → ω strongly in Lq(Ω) q < N ′,

ωj ⇀ ω weakly in W 1,q
loc (Ω) 1 < q < 1 +

1

N
,

we deduce that : ∫
Ω

|∇ω|dx 6 c

∫
Ω

|f |δ(1 + |Log δ|)dx.

Let us prove that if we enhance the integrability condition on f to f ∈ L1(Ω, δα)

for some α ∈] 0, 1 [ then we can weaken the condition on ~u to ~u ∈ L
N

1−α (Ω)N and in
that case we have

Theorem 4.7. Let f be in L1(Ω, δα) for some α ∈] 0, 1 [, V = 0, ~u ∈ L
N

1−α (Ω) with
div (~u) = 0, ~u · ~n = 0 on ∂Ω. Then, the very weak solution ω found in Theorem 4.1

belongs to W 1
0L

N
N−1+α (Ω). Moreover, there exists a constant K(α; Ω) > 0 such that

||ω||
W 1

0L
N

N−1+α (Ω)
6 K(α; Ω)

(
1 + ||~u||

L
N

1−α

)
||f ||L1(Ω,δα).

The proof of Theorem 4.7 relies on the following result, dual of Proposition 8.

Proposition 15. Let ~u ∈ Lp,q(Ω), p > N, q ∈ [ 1,+∞], V = 0, and F ∈
Lp
′,q′(Ω)N ,

1

p
+

1

p′
= 1 =

1

q
+

1

q′
. Then there exists ω ∈W 1

0L
p′,q′(Ω) such that

−∆ω + ~u · ∇ω = −div (F ), (92)

which is equivalent to

a(ω;φ) =

∫
Ω

∇ω · ∇φdx+

∫
Ω

~u · ∇ωφdx =

∫
Ω

F · ∇φdx (93)
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∀φ ∈W 1
0L

p,q(Ω). Moreover

||∇ω||Lp′,q′ 6 Kpq(1 + ||~u||Lp,q )||F ||Lp′,q′

Proof. Let G be in Lp,q(Ω)N , p > N . Following Proposition 8, there exists a
function φ0 ∈W 1

0L
p,q(Ω) such that∫

Ω

∇φ0 · ∇ϕfx−
∫

Ω

~u · ∇φ0ϕdx =

∫
Ω

G · ∇ϕdx ∀ϕ ∈ C∞c (Ω).

Since

−
∫

Ω

~u · ∇φ0ϕdx =

∫
Ω

~u · ∇ϕφ0 dx,

by using a density argument over the set of test functions there exists

a(ϕ, φ0) =

∫
Ω

∇φ0 · ∇ϕ+

∫
Ω

~u · ∇ϕφ0 =

∫
Ω

G · ∇ϕdx ∀ϕ ∈W 1
0L

p′,q′(Ω). (94)

Let Fk ∈ L∞(Ω)N , with |Fk(x)| 6 |F (x)| in Ω. Then we have that ωk ∈W 1
0L

p′,q′(Ω)
∩H1(Ω) such that

a(ωk, φ) =

∫
Ω

Fk · ∇φdx ∀φ ∈W 1
0L

p,q(Ω). (95)

Choosing φ = φ0 in this last equation, we find that∫
Ω

G · ∇ωk dx = a(ωk, φ0) =

∫
Ω

Fk · ∇φ0 dx. (96)

Following Proposition 8, we have

||∇φ0||Lp,q 6 Kpq(1 + ||~u||Lp,q )||G||Lp,q . (97)

From relation (96) and (97), we have∫
Ω

G · ∇ωk dx 6 Kpq(1 + ||~u||Lp,q )||Fk||Lp′,q′ ||G||Lp,q . (98)

So that we have

sup
||G||Lp,q=1

∫
Ω

G · ∇ωkdx 6 Kpq(1 + ||~u||Lp,q )||F ||Lp′,q′ (99)

||∇ωk||Lp′,q′ 6 Kpq(1 + ||~u||Lp,q )||F ||Lp′,q′ . (100)

By standard argument, we derive the existence of ω satisfying (92) as a weak limit

of ωk in W 1Lp
′,q′(Ω).

Proof of Theorem 4.7. Since f ∈ L1(Ω; δα), according to [18], there exists F =

∇v ∈ L
N

N−1+α (Ω)N , f = −div (F ). Moreover, the function Fk = ∇vk satis-

fying −∆vk = Tk(f) converge to F strongly in L
N

N−1+α (Ω)N (vk and v are in

W 1
0L

N
N−1+α (Ω)).

Since the very weak solution ω found in Theorem 4.1 is the weak-* limit of the
solutions of the regularized problem−∆ωk + ~u · ∇ωk = fk = Tk(f) = −div (Fk),

ωk ∈W 2Lq(Ω) ∩H1
0 (Ω) with q =

N

1− α
> N,

and

||∇ωk||Lq′ (Ω) 6 Kq(1 + ||~u||Lq )||Fk||Lq′ (Ω), q′ =
N

N − 1 + α
,
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letting k → +∞, we derive the result once we know that ||F ||Lq′ 6 c||f ||L1(Ω,δα).

When α = 0, that is f ∈ L1(Ω), we can weaken the integrability assumption on
~u as we state in the following result :

Theorem 4.8. Let f be in L1(Ω), V = 0, ~u ∈ LN (Ω)N with div (~u) = 0 on ∂Ω,
~u · ~n = 0 on ∂Ω. Then, the very weak solution ω found in Theorem 4.1 belongs to
W 1

0L
N ′,∞(Ω).

Moreover, there exists a constant c(Ω) > 0, independent of ~u, such that

||∇ω||LN′,∞(Ω) 6 c(Ω)||f ||L1(Ω).

Proof. Let ~uj ∈ V be such that ~uj → ~u in LN (Ω)N , and let fj ∈ L∞(Ω) be such
that |fj(x) 6 |f(x)| and fj(x)→ f(x) a.e, x ∈ Ω.

Let us consider the functions ωj ∈W 2Lm(Ω) ∩H1
0 (Ω) ∀m < +∞ satisfying

−∆ωj + ~uj · ∇ωj = fj .

Then ∫
Ω

|∇Tk(ωj)|2dx+

∫
Ω

~uj · ∇
∫ ωj

0

Tk(σ)dσ =

∫
Ω

Tk(ωj)fj(x)dx,

and since by integration by parts we have

∫
Ω

~uj · ∇
∫ ωj

0

Tk(σ)dσ = 0 we get∫
Ω

|∇Tk(ωj)|2dx 6 k

∫
Ω

|f(x)|dx. (101)

By the Poincaré-Sobolev inequality∫
Ω

|Tk(ωj)|2dx 6 cΩk

∫
Ω

|f(x)|dx.

By Proposition 13, we deduce that

‖∇ωj ||LN′,∞(Ω) 6 cΩ

∫
Ω

|f(x)|dx.

Since ~uj → ~u in LN (Ω)N and by compactness ωj → ω in LN
′
(Ω)(

note that W 1LN
′,∞(Ω) ↪→ L

N
N−2 ,∞(Ω) for N > 3 ( see [35])

)
, we then have for all

φ ∈ C2(Ω) with φ = 0 on ∂Ω,∫
Ω

ωj~uj∇φdx −−−−→
j→+∞

∫
Ω

ω~u · ∇φdx,

so that ω solves (16) for V ≡ 0.

As for the case ~u = 0, the additional regularity questions are numerous; for
instance, does there exists a datum f ∈ L1(Ω; δ) for which we have∫

Ω

|∇ω|dx = +∞ or

∫
Ω

|ω|N
′
dx = +∞?

For the explosion of the norm of ω in LN
′
, we can adopt the same proof as for

the explosion of the gradient in L1(Ω). We have

Theorem 4.9. (blow-up in LN
′
(Ω)) Assume that N > 3, ~u ∈ C0,α(Ω)N , α > 0,

V = 0. Then there exists a function f in L1
+(Ω; δ)\L1(Ω, δ(1+ |Log δ|) 1

N′ ) such that
the very weak solution ω found in Theorem 4.1 satisfies that ω does not belong to
LN

′
(Ω)).
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First we recall the following result that can be proved as in [39] (see also [40]).

Lemma 4.6. Let N > 3. There exists a function g ∈ LN+ (Ω) such that the unique

solution ψ ∈W 2LN (Ω) ∩H1
0 (Ω) of −∆ψ − ~u · ∇ψ = g satisfies :

1. ψ(x) > c1δ(x), ∀x,

2. sup

{
ψ(x)

δ(x)
, x ∈ Ω

}
= +∞,

3. L1
+(Ω; δ)\L1(Ω, ψ) is non empty.

Arguing as in [39], [1], we consider gk = Tk(g), g given by Lemma 4.6 such that

ψk ∈W 2Lq(Ω) ∩H1
0 (Ω) for all q < +∞, −∆ψk − ~u∇φk = Tk(g).

Now assume that for all f ∈ L1(Ω; δ), we have for the v.w.s. ||ω||LN′ < +∞.
Then by the Banach-Steinhauss uniform boundedness theorem as in [1, 39], we
derive the existence of a constant c0 > 0 such that

||ω||LN′ 6 c0

∫
Ω

|f |δdx ∀ f ∈ L1(Ω; δ),

and ∫
Ω

ω
[
−∆φ− ~u · ∇φ

]
dx =

∫
Ω

fφ dx ∀φ ∈W 2LN,1(Ω) ∩H1
0 (Ω).

Taking φ = ψk, and f ∈ L1
+(Ω; δ)\L1

+(Ω, ψ) we see that

0 6
∫

Ω

fψk =

∫
Ω

ωgk dx 6 ||ω||LN′ ||g||LN < +∞. (102)

Letting k → +∞, we have a contradiction since

limk→+∞

∫
Ω

fψk >
∫

Ω

fψ dx = +∞,

which concludes the proof Theorem 4.9.

Remark 10. We can give the more precise information that the function f in

Theorem 4.9 is not in L1(Ω; δ(1 + |Log δ|) 1
N′ ) (due to Theorem 4.5).

4.4. Some final conclusion. In the opinion of the authors, the results of this
paper open many different further applications in different directions. Besides the
consideration of the list of concrete problems mentioned in the Introduction other
studies can be carried out. For instance, following the arguments of [19], it is not
complicated to extend many of the results of this paper to the study of semilinear
problems for which equation (1) is replaced by the equation

−∆ω + ~u · ∇ω + V ω + β(x, u,∇u) = f(x) on Ω,

when β is nondecreasing in u. Moreover the consideration of parabolic problems of
the type

ωt −∆ω + ~u · ∇ω + V ω + β(x, u,∇u) = f(t, x) on Ω× (0, T ),

can be carried out with the help of the results of this paper (mainly the L1(Ω; δ)-
accretiveness property of the associates operator). The details will be given in some
separate work by the authors.

After this article was completed, we learned, during a presentation at a conference
(March 29-30, 2017) in Poitiers, France, that L. Orsina and A. Ponce have obtained
related results in the references [33, 34]. Their results deal essentially with the

existence and the use of the normal derivative for any function in W 1,1
0 (Ω). In the
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improved version [34] that they sent to us by the authors after the conference, they
add a new proposition (Proposition 2.7) which provides a complement to our results
since it gives a qualitative property for ω solution of our problem (16) if the velocity
~u is zero when the solution is integrable on the whole domain (for a right hand side
f in L1(Ω, δ(1 + |Logδ|)). We note also that J.I.Dı́az has already derived results
similar to their Proposition 2.7 in [15, 16].
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[30] M. Marcus and L. Véron, Nonlinear Second Order Elliptic Equations Involving Measures, de

Gruyter, Berlin, 2013.

[31] J. Mossino and R. Temam, Directional derivative of the increasing rearrangement mapping

and application to a queer differential equation in plasma physics, Duke Math. J., 48 (1981),

475–495.

[32] F. Murat and J. Simon, Sur le contrôle par un domaine géométrique N◦76015 Prépublications
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546 J. I. DÍAZ, D. GÓMEZ-CASTRO, J. M. RAKOTOSON AND R. TEMAM

[46] R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, Second edition.
CBMS-NSF Regional Conference Series in Applied Mathematics, 66, Society for Industrial

and Applied Mathematics (SIAM), Philadelphia, PA, 1995.

[47] A. Torchinsky, Real-variable Methods in Harmonic Analysis, Academic Press, 1986.

Received for publication April 2017.

E-mail address: jidiaz@ucm.es

E-mail address: dgcastro@ucm.es

E-mail address: Jean-Michel.Rakotoson@math.univ-poitiers.fr

E-mail address: temam@indiana.edu

http://www.ams.org/mathscinet-getitem?mr=MR1318914&return=pdf
http://dx.doi.org/10.1137/1.9781611970050
http://www.ams.org/mathscinet-getitem?mr=MR869816&return=pdf
mailto:jidiaz@ucm.es
mailto:dgcastro@ucm.es
mailto:Jean-Michel.Rakotoson@math.univ-poitiers.fr
mailto:temam@indiana.edu

	1. Introduction
	2. Notations, preliminary definitions and results
	3. Existence,uniqueness,regularity and resultsforthedualproblem
	3.1. Case where the potential V is only measurable and bounded from below
	3.2. Some regularity results with an integrable potential V and bounded from below

	4. Very weak solutions of problem (1) with and without the Dirichlet boundary condition.
	4.1. Existence and regularity of the very weak solution for a locally integrable potential V0
	4.2. A result of uniqueness of solution when the potential is bounded from below by  c-r,r>2
	4.3. Boundedness in LN'() of the v.w.s., regularity and blow-up in absence of any potential (V=0)
	4.4. Some final conclusion

	REFERENCES

