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1 Introduction
The main goal of this paper is to improve some of the results of a previous paper by the authors
in collaboration with R. Temam [9] as well as the recent researches presented in [19] concerning
the Schrödinger type stationary equations equation with very singular potentials

−∆ω + ~u(x) · ∇ω + V (x)ω = f(x) in Ω, (1)

where Ω will be an open subset of of Rn and f ∈ L1(Ω, δ), with

δ(x) := d(x, ∂Ω).

We assume given a flux transport term ~u ∈ Ln(Ω)n such that{
div ~u = 0 Ω,
~u · ~n = 0 ∂Ω,

(2)

and a potential in the general class of functions satisfying V ∈ L1
loc(Ω), V ≥ 0 a.e. on Ω. Our

main motivation is deal with “very singular potentials” in the sense that they satisfy

V (x) ≥ C

δ(x)r for some r ≥ 2, near ∂Ω. (3)

We send the reader to [9] for considerations and references concerning the case of “moderate
singular” potentials corresponding to r ∈ (0, 2). Notice that our purpose, as already indicated in
the title of the paper, is to prove the existence and uniqueness of a suitable class of solutions of
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(1) without prescribing any boundary condition in an explicit way although we shall demand to
the solutions a certain integrability condition which implicitly assumes some behaviour on them
on ∂Ω: we shall enter into details later.

In our previous paper [9] we offered a set of relevant applications leading to the consideration
of problem (1). In the special case of ~u = ~0 some of those motivations where: linearization of
singular and /or degenerate nonlinear equations, shape optimization in Chemical Engineering
and, very specially, the study of ground solutions ψ(t, x) = e−iEtω(x) of the Schrödinger equationi

∂ψ

∂t
= −∆ψ + V (x)ψ in (0,∞)× Rn

ψ(0, x) = ψ0(x) on Rn
(4)

for singular potentials (satisfying (3)) which tray to confine the wave function of the particle
in the domain Ω of Rn . A very interesting source of concrete singular potentials examples was
described in the long paper [5] where only asymptotic technics were sketched for the treatment of
the problems. We recall that the confinement takes place once that we prove that the solutions
of (1) are, in fact, “flat solutions” (in the sense that ω = ∂ω

∂n = 0 on ∂Ω).
Concerning the case ~u 6= ~0 the main motivation mentioned in [9] was the study of the vorticity

equation in fluid mechanics. Schroedinger equations involving also a flux term motivated by some
questions in Control Theory where already considered also by several authors when proving the
“unique continuation property” (see, e.g. [13] and its references). Notice that the existence of
flat solutions to this equation implies the failure of the “unique continuation property” for such
very singular class of potentials.

So, roughly speaking, the aim of this paper is to study the equation

Aω = f in Ω, (5a)
ω = 0 on ∂Ω, (5b)

where
Aω = −∆ω + ~u · ∇ω + V ω. (6)

2 Notations, definitions and previous results
We shall adopt the same notations as in our previous paper [9].

We set
L0(Ω) =

{
v : Ω→ R Lebesgue measurable

}
and we denote by Lp(Ω) the usual Lebesgue space 1 6 p 6 +∞. Although it is not too standard,
we shall use the notation W 1,p(Ω) = W 1Lp(Ω) for the associate Sobolev space. We need the
following definitions:

Definition 2.1 (of the distribution function and monotone rearrangement). Let u ∈ L0(Ω).
The distribution function of u is the decreasing function

m = mu : R → [0, |Ω|]
t 7→ measure

{
x : u(x) > t

}
= |
{
u > t

}
|.

The generalized inverse u∗ of m is defined by, for s ∈ [0, |Ω|[,

u∗(s) = inf
{
t : |
{
u > t

}
| 6 s

}
,
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and is called the decreasing rearrangement of u. We shall set Ω∗ =]0, |Ω| [.

Definition 2.2. Let 1 6 p 6 +∞, 0 < q 6 +∞ :

• If q < +∞, one defines the following norm for u ∈ L0(Ω)

||u||p,q = ||u||Lp,q :=
[∫

Ω∗

[
t

1
p |u|∗∗(t)

]q dt
t

] 1
q

where |u|∗∗(t) = 1
t

∫ t

0
|u|∗(σ)dσ.

• If q = +∞,
||u||p,∞ = sup

0<t6|Ω|
t

1
p |u|∗∗(t).

The space
Lp,q(Ω) =

{
u ∈ L0(Ω) : ||u||p,q < +∞

}
(7)

is called a Lorentz space.

• If p = q = +∞, L∞,∞(Ω) = L∞(Ω).

• The dual of L1,1(Ω) is called Lexp (Ω)

Remark 1. We recall that Lp,q(Ω) ⊂ Lp,p(Ω) = Lp(Ω) for any p > 1, q > 1.

Definition 2.3. If X is a Banach space in L0(Ω), we shall denote the Sobolev space associated
to X by

W 1X =
{
ϕ ∈ L1(Ω) : ∇ϕ ∈ Xn

}
or more generally for m > 1,

WmX =
{
ϕ ∈W 1X, ∀α = (α1, . . . , αn) ∈ Nn, |α| = α1 + . . .+ αn 6 m, D|α|ϕ ∈ X

}
.

We also set
W 1

0X = W 1X ∩W 1,1
0 (Ω).

We shall often use the principal eigenvalue ϕ1 ∈W2 of the homogeneous Dirichlet problem{
−∆ϕ1 = λ1ϕ1 in Ω,
ϕ1 = 0 on ∂Ω

(8)

where
W2 =

{
ϕ ∈ C2(Ω̄) : ϕ = 0 in ∂Ω

}
. (9)

We also need to recall the Hardy’s inequality in Ln′,∞ (see, e.g. ...) saying that∫
Ω

|ω|
δ
≤ C‖∇ω‖Ln′,∞ ∀ω ∈W 1

0L
n′,∞(Ω). (10)

Definition 2.4. In the weak setting, by (2) we will mean∫
Ω
ϕ∇φ · ~u = −

∫
Ω
φ∇ϕ · ~u ∀φ, ϕ ∈W2. (11)
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In fact we will consider either of this assumptions{
V ∈ L1

loc(Ω), V ≥ 0,
~u ∈ Lp,1(Ω)n, for some p > n, and such that (11).

(H1)

or {
V ∈ L1

loc(Ω), V ≥ 0,
~u ∈ Ln,1(Ω)n, with small norm as in [9], and such that (11).

(H2)

Most frequently we will assume that

either (H1) or (H2) holds (H)

Definition 2.5. Under assumption (H), the local very weak formulation of (5a) results∫
Ω
ω(−∆φ−−→u · ∇φ+ V φ) =

∫
Ω
fφ ∀ϕ ∈ C2

c (Ω). (12)

For V ∈ L1(Ω, δ), we say that ω is a very weak solution in the sense of Brezis of (5) if
V ωδ ∈ L1(Ω) and∫

Ω
ω(−∆φ− u · ∇φ+ V φ) =

∫
Ω
fφ ∀ϕ ∈W2.

(13a)

When V is only in L1
loc(Ω), we will say that ω is a very weak distributional solution of (5) if
V ωδ ∈ L1(Ω) and∫

Ω
ω(−∆φ− ~u · ∇φ+ V φ) =

∫
Ω
fφ ∀ϕ ∈ C2

c (Ω).
(13b)

When f ∈ L1(Ω, δ) the natural setting for such solutions is

ω ∈ Ln
′,∞(Ω). (14)

In our previous paper [9] we proved that:

Theorem 2.1. Let f ∈ L1(Ω, δ) and (H) hold. Then, there exists ω ∈ Ln′,∞(Ω) such that (13b)
holds. Furthermore if V ∈ L1(Ω, δ) then (13a) is satisfied.

Moreover we also proved the following uniqueness result:

Theorem 2.2. There exists, at most, one solution ω of (13b) such that ω
δr ∈ L

1(Ω), for some
r > 1.

One of the main aims of this paper is to show that this exponent r > 1 is not optimal in
the conclusion ii) because, in fact, r = 1 suffices. That improves a remark (following different
arguments) pointed out by H. Brezis to the second author concerning the case −→u = −→0 (see [12]).
Moreover, we shall present here a numerous of other improvements with respect to our previous
paper [9], as, for instance, the study of the associated eigenvalue problem, the consideration of
flat solutions, the accretiveness in L1(Ω, δα) of the operator when α ∈ [0, 1), the consideration
of the associated evolution problem, the confinement for the solution of complex Schroedinger
problem, etc.
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3 Statement of new existence, uniqueness and regularity
results

First, we show the equivalent of the Brezis and distributional formulations, in the space L1(Ω, δ−1).

Lemma 3.1 (equivalence of (13a) and (13b)). Assume that f ∈ L1(Ω, δ), (H) and let ω ∈
Ln
′,∞(Ω) ∩ L1(Ω, δ−1). Then (13a) if and only if (13b).

First we prove an existence result in Ln′,∞ with additional bounds

Theorem 3.1 (general existence result). Assume that f ∈ L1(Ω, δ) and (H). Then there exists
ω ∈ Ln′,∞(Ω) such that (13a). Furthermore, if f ≥ 0, then ω ≥ 0. Besides∫

Ω
V |ω|δ ≤ Cu

∫
Ω
|f |δ. (15)

where Cu does not depend on V and f .

Then we will extend our uniqueness result

Theorem 3.2 (uniqueness in L1(Ω, δ−1)). Assume that f ∈ L1(Ω, δ) and (H). Then, there
exists at most one ω ∈ Ln′,∞(Ω) ∩ L1(Ω, δ−1) such that (13a).

From this, several existence and uniqueness results follow:

Theorem 3.3. Assume that f ∈ L1(Ω, δ), (H) and V ≥ Cδ−2 for some C > 0. Then there
exists a unique ω ∈ Ln′,∞(Ω) ∩ L1(Ω, δ−1) such that (13a).

Theorem 3.4. Assume that f ∈ L1(Ω) and (H). Then, there exists exactly one ω ∈ Ln′,∞(Ω)∩
L1(Ω, δ−1) such that (13a). Furthermore, ω ∈W 1

0L
n′,∞(Ω) and∫

Ω
V |ω| ≤ C

∫
Ω
|f |, (16)∫

Ω
V |ω|δ ≤ cΩ(1 + ‖~u‖Ln,1)

∫
Ω
|f |δ, (17)

‖∇ω‖Ln′,∞ ≤ C
∫

Ω
|f | (18)

Theorem 3.5. Assume that f ∈ L1(Ω; δ(1 + | log δ|)) and (H1). Then there exists a unique
ω ∈ Ln′,∞(Ω) ∩ L1(Ω; δ−1) such that (13a).

Theorem 3.6. Let 0 < α < 1. Assume that (H1), f ∈ L1(Ω, δα) and ~u ∈ L
n

1−α (Ω). Then, there
exists a unique solution ω ∈ Ln′,∞(Ω) ∩ L1(Ω; δ−1) of (13a). Furthermore, ω ∈W 1

0L
n

n+1+α and∫
Ω
V |ω|δα ≤

∫
Ω
|f |δα (19)

4 Proof of the equivalence of (13a) and (13b)
The proof is based on the following lemma, which improves [9].

Lemma 4.1 (approximation of test functions inW2). Let φ ∈W2. Then, there exists a sequence
φj ∈ C∞c (Ω) such that
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1. There exists C > 0 such that ‖∇φj‖L∞ ≤ C for all j ≥ 1.

2. ‖φj − φ‖L∞ + ‖∇φj −∇φ‖L1 → 0.

3. δ∆φj ⇀ δ∆φ in L∞-weak-?.

4. φj
δ ⇀ φ

δ in L∞-weak-?.

Proof. Following [9], we shall consider h ∈ C∞(R) such that

h(t) =
{

1 if t > 2,
0 if t 6 1,

for j ∈ N∗ set ε = 1
j and let hj(x) = h

(
δ(x)−ε
ε

)
, x ∈ Ω. Setting

Ej =
{
x ∈ Ω : 2

j
6 δ(x) 6 3

j

}
, Ecj = Ω\Ej .

One has the following properties of hj :

1. ∆hj(x) = |∇hj(x)| = 0 for x ∈ Ecj ,

2. hj(x) −−−−→
j→+∞

1 for any x ∈ Ω since hj(x) = 1 if δ(x) > 3
j
,

3. ||δhj − δ||∞ = Max
x∈Ω

|δ(x)hj(x)− δ(x)| 6 3(1 + ||h||∞)ε,

4. on Ω, δ(x)|∇hj(x)| 6 3||h′||∞ and δ2(x)|∆hj(x)| 6 cih is constant depending on h and Ω.

Let φ ∈W2, the sequence ϕj = hjφ is in C2
c (Ω) and enjoy the following property,

there is a constant c > 0 such ||∇ϕj ||∞ 6 c||∇φ||∞. (20)

Indeed
|∇ϕj(x)| 6 3||h′||∞||∇φ||∞ + ||h||∞||∇φ||∞.

Moreover, one has
||hjφ− φ||∞ 6 cε||∇φ||∞ (21)

and ∫
Ω
|∇ϕj −∇φ|(x)dx 6 cmeas

{
x ∈ Ω : δ(x) 6 3

j

}
−−−−→
j→+∞

0. (22)

More,
|δ(x)∆ϕj(x)− δ(x)∆φ(x)| 6 ||δhj − δ||∞|∆φ(x)| for x ∈ Ecj . (23)

For x ∈ Ej , we have

|δ(x)∆ϕj(x)− δ∆φ(x)| 6 ||δhj − δ||∞|∆φ(x)|+ δ2(x)||∇φ||∞|∆hj(x)|
+ 2δ(x)|∇hj(x)|||∇φ||∞ (24)

The statements (23) and (24) are obtained with a straightforward computation. From those
statements, we deduce that there is a constant cφ > 0 such that

||δ∆ϕj − δ∆φ||∞ 6 cφ. (25)
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Since
meas (Ej) −−−−→

j→+∞
0 and ||δhj − δ||∞ −−−−→

j→+∞
0.

We then have ∫
Ω
|δ∆ϕj − δ∆φ|(x)dx −−−−→

j→+∞
0. (26)

Indeed, we have∫
Ω
|δ∆ϕj − δ∆φ|(x)dx 6

∫
Ec
j

|δ∆ϕj − δ∆φ|(x)dx+ cφmeas (Ej)

6 ||δhj − δ||∞||∆φ||∞ + cφmeas (Ej) −−−−→
j→+∞

0. (27)

One deduces from relations (25) and (26) that

δ∆ϕj converges to δ∆φ in weakly-? in L∞(Ω)

Since C∞c (Ω) is dense in C2
c (Ω), we obtain the desired result.

With this technique we can now move the proof of the equivalence.

Proof of Lemma 3.1. Let φ be in W2. Then we have a sequence φj ∈ C∞c (Ω) such that∫
Ω
ω
[
−∆φj + ~u · ∇φj + V φj

]
dx =

∫
Ω
f φjdx. (28)

and with the convergence stated in Lemma 4.1. Therefore, we have

lim
j→+∞

∫
Ω
ω∆φjdx = lim

j

∫
Ω

ω

δ
(δ∆φj)dx =

∫
Ω
ω∆φdx, (29)

since ω
δ
∈ L1(Ω) and δ∆φj⇀

j
δ∆φ in L∞(Ω)-weak-?.

For the same reason, one has:

lim
j

∫
Ω
ω ~u · ∇φjdx =

∫
Ω
ω ~u · ∇φdx

since ~u · ω ∈ L1 and ∇φj ⇀ ∇φ in L∞-weak-?.

lim
∫

Ω
ω V φjdx =

∫
Ω
ω V φdx since V ωδ ∈ L1(Ω) and φj

δ
⇀

φ

δ
in L∞(Ω)-weak-?.

We easily pass to the limit in equation (28).

5 Proof of the existence and regularity results
We will consider the approximating sequence{

−∆ωj + ~uj · ∇ωj + Vjωj = fj

ωj ∈W 1,1
0 (Ω) ∩W 2Lp,1(Ω)

(30)
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i.e. ∫
Ω
ωj(−∆ϕ− ~uj · ∇ϕ+ Vjϕ) =

∫
Ω
fj ∀ϕ ∈W2. (31)

where

Vj(x) = min(V (x), j), (32)
fj(x) = sign(f(x)) min(|f(x)|, j) (33)

and ~uj ∈ C∞c (Ω)n, such that (2) and

~uj → ~u in Lp,1(Ω)n. (34)

First we recall our result in [9] about the approximation of solutions

Theorem 5.1 (existence and approximation of solutions when f ∈ L1(Ω; δ)). Assume f ∈
L1(Ω, δ) and (H). Then, there is a unique solution ωj ∈W 1,1

0 (Ω)∩W 2Lp,1(Ω) of (31) and there
exists ω such that:

1. ω is a solution of (13b)

2. ωj → ω a.e. in Ω,

3. ωj ⇀ ω in Ln′,∞-weak-? and W 1,q(Ω, δ)-weak, for q <???.

4. ωj → ω in Lr(Ω) for r < n′.

5. ωj~uj → ω~u in L1(Ω)n

6.
∫

Ω
Vj |ωj |δdx 6 c

(
1 + ||~uj ||Ln,1

)∫
Ω
|fj |δdx.

7. Vjωjδ ⇀ V ωδ weakly in L1
loc(Ω)

We can make some additional estimations if we restriction the set of datum f :

Proposition 5.2 (existence of solutions when f ∈ L1(Ω)). Assume that f ∈ L1(Ω) and (H).
Then, the sequence ωj satisfies

‖∇ωj‖Ln′,∞ ≤ C
∫

Ω
|fj |, (35)∫

Ω
Vj |ωj | ≤ C

∫
Ω
|fj |. (36)

Hence
ωj ⇀ ω in W 1

0L
n′,∞(Ω). (37)

and the (35) and (36) hold for ω, V and f .

Proof. Let k > 0. Then the sequence given in Theorem 5.1 satisfies∫
Ω
~uj · ∇ωjTk(ωj)dx = 0 and

∫
Ω
VjωjTk(ωj)dx > 0. (38)

Therefore, we can use Tk(ωj) as a test function in equation (30) and derive∫
Ω
|∇Tk(ωj)|2dx 6 k

∫
Ω
|fj |dx 6 k

∫
Ω
|f |(x)dx. (39)
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From relation (39), we deduce (see [1] or [15]) that

||∇ωj ||Ln′,∞ 6 c|f |L1(Ω). (40)

While to obtain relation (36), we choose as a test function for t > 0,

Φ(t;ωj) = (|ωj | − t)+ sign(ωj).

Knowing as before that ∫
Ω
~uj · ∇ωjΦ(t;ωj)dx = 0. (41)

One obtains from equation (30)∫
|ωj |>t

|∇ωj |2dx+
∫

Ω
VjωjΦ(t;ωj)dx =

∫
Ω
fjΦ(t, ωj)dx. (42)

We derive with respect with respect to t this equation

− d

dt

∫
|ωj |>t

|∇ωj |2dx+
∫
|ωj |>t

Vj |ωj |dx =
∫
|ωj |>t

f(x) sign(ωj)dx (43)

Since the first term is non negative, we derive from relation (43) that for all t > 0∫
|ωj |>t

Vj |ωj |dx 6
∫
|ωj |>t

|f(x)|dx (44)

letting t → 0, we get the desired relation (36). Since Vjωj → V ω e.e in Ω, The Fatou’s lemma
yields ∫

Ω
V |ω|dx 6

∫
Ω
|f(x)|dx. (45)

Since ∇ωj ⇀ ∇ω in Ln′,∞-weak-?, we derive

||∇ω||Ln′,∞ 6 c|f |L1(Ω) (46)

and the pointwise convergence (Vjωj)(x)→ (V ω)(x) a.e with Fatou’s lemma implies∫
Ω
V |ω|dx 6

∫
Ω
|f |(x)dx (47)

That (13a) is satisfied is a consequence of Lemma 3.1, since by the Hardy’s inequality we have∣∣∣ω
δ

∣∣∣
L1(Ω)

6 c||∇ω||Ln′,∞ < +∞. (48)

This concludes the proof.

With this we proceed

Proof of Theorem 3.4. According to Proposition 5.2, the sequence ωj is in a bounded set of
W 1

0L
n′,∞(Ω) and since the sequence converges to a solution ω of the equation (13b) given in

Theorem 2.1, we deduce that this solution ω is in W 1
0L

n′,∞(Ω) and satisfies the same kind
of estimates as ωj . Moreover, ω

δ ∈ L1(Ω) according to relation (48). Now we may appeal
Theorem 3.2 to conclude that ω is unique.
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Finally we can prove

Proof of Theorem 3.1. Let f be in L1(Ω; δ) and consider fj = sign
(
f(·)

)
min

(
|f |; j

)
, j > 0.

Then according to the above result Theorem 3.4, there exists a unique ω̃j ∈ W 1
0L

n′,∞(Ω) satis-
fying ∫

Ω
ω̃j
[
−∆φ− ~u · ∇φ+ V φ

]
dx =

∫
Ω
fjφdx, ∀φ ∈W2. ((2)j)

Since fj−fk ∈ L1(Ω) for k and j in N, by the same corollary 1 of Theorem 3.2 and Theorem 5.2,
we deduce that ω̃j − ω̃k is the unique solution of (2)j − (2)k, then it satisfies∫

Ω
V |ω̃j − ω̃k|δ dx 6 cu

∫
Ω
|fj − fk|δ dx

and

||ω̃j − ω̃k||Ln′,∞ 6 cu

∫
Ω
|fj − fk|δ dx. (49)

Thus (ω̃j)j is a Cauchy sequence in Ln
′,∞(Ω) and (V ω̃j)j is also a Cauchy one in L1(Ω; δ).

Therefore one has easily ω̃ ∈ Ln′,∞(Ω) with V ω̃ ∈ L1(Ω; δ) such that ω̃ satisfies equation (13a).
Moreover,

∫
Ω V |ω̃|δ dx 6 c

∫
Ω fδ dx and if f > 0 then fj > 0 therefore ω̃j > 0 which yields that

ω̃ > 0.

6 Proof of the uniqueness results
To complete the proof of the results we only need to proof the uniqueness of equations. Once
we complete the proof of Theorem 3.2 the rest of the proofs will follow as a corollary. The main
tool in this proof will a Kato inequality up to the boundary.

6.1 Kato’s inequality

Theorem 6.1 (Variant of Kato’s inequality). Let ω be in W 1,1
loc (Ω) ∩ Ln′,∞(Ω) with ω

δ
∈ L1(Ω)

and ~u ∈ Ln,1(Ω)n with div (~u) = 0 in D′(Ω), ~u · ~ν = 0 on ∂Ω.
Assume that Lω = −∆ω + div (~uω) ∈ L1(Ω; δ).
Then for all φ ∈W2, φ > 0 one has

1.
∫

Ω
ω+L

∗ φdx 6
∫

Ω
φ sign+(ω)Lω dx

2.
∫

Ω
|ω|L∗ φdx 6

∫
Ω
φ sign(ω)Lω dx,

where L∗φ = −∆φ− ~u · ∇φ = −∆φ− div (~uφ),

sign+(σ) =
{

1 if σ > 0,
0 otherwise,

and sign(σ) =


1 if σ > 0,
0 if σ = 0,
−1 if σ < 0.

The proof of both theorem (Theorem 6.1 and Theorem 3.2 below) follow the same argument
as we did in [9] (Corollary 4 Theorem 10, Theorem 8). The only difference is the use of the
approximation Lemma 4.1. For convenience we sketch those proofs :
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Sketch of the proof of Theorem 6.1. Let φ > 0, φ ∈ W2. Then according Lemma 4.1 one has
a sequence φj ∈ C∞c (Ω) such that 1. δ∆φj ⇀ δ∆φ in L∞(Ω)-weak-?, this implies with the
hypothesis that ω+

δ
∈ L1(Ω) that

lim
j→+∞

∫
Ω
ω+∆φjdx =

∫
Ω
ω+∆φdx. (50)

For the same reason
lim

j→+∞

∫
Ω
~u · ∇φjω+dx =

∫
Ω
~u · ∇φω+dx. (51)

We conclude as in [9], knowing that the local Kato’s inequality (Theorem 10 in [9]) holds true.

One of the consequence of the Kato’s inequality is the following maximum principle.

Corollary 6.2 (of Theorem 6.1). Under the same hypothesis as for Theorem 6.1, assume that
Lω = f(x) − G(x;ω) ∈ L1(Ω; δ), with G : Ω × R → R a Caratheodory function (i.e for a.e x,
σ → G(x;σ) is continuous, and x → G(x;σ) is measurable ∀x), satisfying the sign-function
condition

sign(σ)G(x;σ) > 0 ∀σ ∈ R a.e x ∈ Ω.

Then, if f 6 0 one has ω 6 0.

Proof. One has ∀φ > 0, φ ∈W2∫
Ω
ω+L

∗φdx 6
∫

Ω
φ sign+(ω)f(x)dx−

∫
Ω
φG(x;ω+)dx. (52)

(Since G(x; 0) = 0 and sign+(σ)G(x;σ) = G(x;σ+) > 0).
Therefore, from this last inequality (52), knowing that

−φG(x;ω+) 6 0, f(x) sign+(ω) 6 0,

we deduce that
∀φ > 0, φ ∈W2 :

∫
Ω
ω+L

∗φdx 6 0 (53)

Since ω ∈ Ln′,∞(Ω) and L∗φ = −∆φ− ~u · ∇φ is in Ln,1(Ω) for φ ∈W 2Ln,1(Ω) ∩H1
0 (Ω), thus, a

density argument leads from equation (53),∫
Ω
ω+L

∗φdx 6 0 ∀φ ∈W 2Ln,1(Ω) ∩H1
0 (Ω), φ > 0. (54)

Thus, we get:
ω+ = 0.

This completes the proof.

6.2 Proof of the uniqueness results
Proof of Theorem 3.2. Let ω = ω1 − ω2 where ωi are in Ln

′,∞(Ω) ∩ L1(Ω; δ−1)and are two
solutions of equation (??) (with test function φ ∈ W2 or φ ∈ C2

c (Ω)), these formulations are
equivalent if ωi ∈ L1(Ω; δ−1) (see Lemma ??). Then

Lω = −V ω ∈ L1(Ω; δ).
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From Theorem 6.1 one has ∀φ ∈W2, φ > 0∫
Ω
|ω|L∗φdx 6 −

∫
Ω
φ sign(ω)V ω = −

∫
Ω
φV |ω|dx 6 0. (55)

As before one has : ∫
Ω
|ω|L∗φdx 6 0 ∀φ ∈W 2Ln,1(Ω) ∩H1

0 (Ω), φ > 0. (56)

Considering φ0 ∈ W 2Ln,1(Ω) ∩ H1
0 (Ω), φ0 > 0 solution of L?φ0 = 1, we deduce

∫
Ω
|ω|dx 6 0

thus ω = 0.

Proof of Theorem 3.5. First let us assume that f ≥ 0. Since f is nonnegative function in
L1(Ω; δ), the existence of a solution ω > 0 is a consequence of Theorem 3.1. To prove the
uniqueness result, let us show that exists a c > 0 independent of ω, f and V such that∫

Ω

ω

δ
dx+

∫
Ω
V ωδ(1 + |log δ|)dx 6 c

∫
Ω
f(x)(1 + |log δ|)δdx (57)

For this, we use the argument introduced in [17] by choosing as a test function

φ = ϕ1log (ϕ1 + ε), ε > 0,

ϕ1 the first eigenfunction of −∆ with homogeneous Dirichlet boundary condition.
One obtains

−
∫

Ω
ω∆(ϕ1log (ϕ1+ε))dx−

∫
Ω
~uω·∇(ϕ1log (ϕ1+ε))dx+

∫
Ω
V ωϕ1log (ϕ1+ε)dx =

∫
Ω
fϕ1log (ϕ1+ε)dx.

(58)
We develop each term in relation (58) as we did in [17] knowing that ϕ1 is equivalent to the
distance function (say ∃c0 > 0, c1 > 0, c0δ 6 ϕ1 6 c1δ). We derive∫

Ω
|∇ϕ1|2

ω

ϕ1 + ε
dx−

∫
Ω
V ωϕ1log (ϕ1 + ε)dx (59)

6 c

[∫
Ω
ω(x)dx+

∫
Ω
f(x)(1 + |log δ|)δdx

]
+ c

∫
Ω
||~u|| |log δ|ωdx+ c

∫
Ω
||~u||(x)ω(x)dx.

Since ~u ∈ Lp,1(Ω), p > 1 then ||~u||log δ ∈ Ln,1(Ω) and there exists a constant c > 0.∥∥∥ |~u|log δ
∥∥∥
Ln,1

6 c||~u||Lp,1(Ω).

Therefore, we have

c

∫
Ω
||~u|| |log δ|ω dx+ c

∫
Ω
||~u||(x)ω(x)dx 6 cu||ω||Ln′,∞ 6 c

∫
Ω
f(x)δ(x)dx (60)

From relations (59) and (60), we deduce∫
Ω
|∇ϕ1|2

ω

ϕ1 + ε
dx−

∫
Ω
V ωϕ1log (ϕ1 + ε)dx 6 c

∫
Ω
f(x)(1 + |log δ|)δdx (61)

12



As in [17] we write∫
Ω
V ωϕ1|log (ϕ1 + ε)|dx = −

∫
Ω
V ωϕ1log (ϕ1 + ε)dx+ 2

∫
ϕ1+ε>1

V ωϕ1log (ϕ1 + ε)dx. (62)

Combining these two last relations, we get∫
Ω
|∇ϕ1|2

ω

ϕ1 + ε
dx+

∫
Ω
V ωϕ1|log (ϕ1 + ε)|dx 6 c

∫
Ω
f(x)(1 + |log δ|)δdx+ c

∫
Ω
V ωδdx. (63)

Noticing that in a neighborhood of the boundary ∂Ω ⊂ U ⊂ Ω one has inf
x∈U
|∇ϕ1|2(x) > 0, we

derive from relation (63) the inequality (57).

Let f be in L1(Ω; δ(1 + log δ|)
)
, we decompose f = f+ − f− where f+, f− ≥ 0. Due to the

first part of the proof, we have ω1 (resp. ω2) a nonnegative solution of (13a) associated to f+
(resp. f−). One has according to relation (57) for i = 1, 2∫

Ω

ωi
δ
dx+

∫
Ω
V ωiδ(1 + |log δ|)dx 6 c

∫
Ω
|f |(1 + |log δ|)δdx. (64)

By linearity we deduce that ω̃ = ω1−ω2 is a solution of equation (13b) and satisfies ω̃
δ ∈ L

1(Ω).
We conclude with Theorem 3.2 to obtain the result.

7 Estimates when the datum f is L1(Ω; δα), 0 6 α 6 1
Lemma 7.1. Under the same assumptions as for Theorem 3.5, if furthermore f ∈ L1(Ω; δα),
0 6 α < 1 then the function ω̃ solution of equation (13a) verifies∫

Ω
(V |ω̃|δα)(x)dx 6 cα

∫
Ω
|f(x)|δα(x)dx.

Proof. For k > 0, let us consider Vk = min(V ; k) and define the linear operator Tk on L1(Ω; δ)
by setting Tkf = Vkω̃kf , where ω̃kf is the unique solution of∫

Ω
ω̃kf [−∆φ+ ~u · ∇φ+ Vkφ] dx =

∫
Ω
fφdx ∀φ ∈Wk. (65)

The existence and uniqueness follows from ([9] Theorem 7).
According to Corollary 3.4 of Theorem 3.2 and Proposition 5.2. Tk maps L1(Ω) into itself

with
|Tkf |L1(Ω) =

∫
Ω
Vk|ω̃kf |dx 6 |f |L1(Ω), (66)

and Tk maps L1(Ω; δ) into itself with

|Tkf |L1(Ω;δ) 6 c(1 + ||~u||Ln,1)|f |L1(Ω;δ). (67)

Since L1(Ω; δα) is the interpolation space in the sense of Peetre between L1(Ω; δ) and L1(Ω),
that is

L1(Ω, δα) =
(
L1(Ω; δ), L1(Ω)

)
α,1
,
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we derive from Marcinkewicz’s interpolation theorem (see[?] or [15]) that Tk maps L1(Ω; δα) into
itself and

|Tkf |L1(Ω;δα) 6 cα(1 + ||~u||Ln,1)α|f |L1(Ω,δα), ∀f ∈ L1(Ω; δα).

Considering the unique solution ω̃kj for j fixed in N, of the equation∫
Ω
ω̃kj

[
−∆φ− ~u · ∇φ+ Vkφ

]
dx =

∫
Ω
fjφdx (2)kj

where fj = sign(f) min |f |; j). Applying Theorem 5.1 with the sequence (ω̃kj)k, and due to the
uniqueness result we deduce that, when k → +∞, ω̃kj → ω̃j in Ln

′,∞(Ω) and ω̃j is the solution
of (2)j . Therefore, one has∫

Ω
V |ω̃j |δαdx 6 lim

k→+∞
|Tkfj |L1(Ω;δα) 6 cα|fj |L1(Ω;δα). (68)

As we have shown in the proof of Theorem 3.1, ω̃j converges to ω̃ as j → +∞; we deduce the
desired inequality.

The proof needs the following Lemma is given in ([9], Theorem 13)

Lemma 7.2. Let 0 < α < 1, g ∈ L1(Ω; δα), ~u in L
n

1+α (Ω)n, (2). Then, there exists a unique
solution ω ∈ Ln′,∞(Ω) satisfying∫

Ω
ω
[
−∆φ− ~u · ∇φ

]
dx =

∫
Ω
gφdx ∀φ ∈W2. (69)

Moreover, there exists a constant K(α; Ω) > 0 such that

||ω||
W 1

0L
n

n−1+α (Ω)
6 K(α; Ω)

(
1 + ||u||

L
n

1−α

)
|g|L1(Ω;δα). (70)

Proof of Theorem 3.6. Let ω be the unique solution (2) given by Theorem 3.5 when f ∈ L1(Ω; δα), 0 <
α < 1. We set g = V ω − f . Then following Lemma 7.1, one has g ∈ L1(Ω; δa) and ω satisfies
the same type equation (69). Therefore, we can apply Lemma 7.2 to conclude.

8 Some consequences: principal eigenvalue and eigenfunc-
tion of −∆+~u·∇ and of the operator A, the m -accretivity
of A and the complex Schroedinger problem in the whole
space

8.1 Principal eigenvalue and eigenfunction for −∆ + ~u · V and the m-
accretivity of −∆ + ~u∇+ V

Theorem 8.1 (Krein-Rutman’s theorem). Let X be a Banach space, K a cone whose interior
K̊ is non void, T : X → X a compact linear operator which is strongly positive, i.e Tf > 0 if
f > 0. Then, the spectral radius of T, r(T ) > 0 and is a simple eigenvalue with an eigenvector
ψ1 ∈ K̊.

We recall the following definition of an m-accretive operator.
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Definition 8.1 (m-accretive operator). Let X be a Banach space. A linear unbounded operator

A : D(A) ⊂ X → X

is called m-accretive if

(a) The domain D(A) is dense in X : D(A) = X.

(b) ∀ ω̃ ∈ D(A), ∀λ > 0 ||ω̃||X 6 ||ω̃ + λA ω̃||X .

(c) ∀λ > 0, ∀ f ∈ X, ∃ω̃ ∈ D(A) : ω̃ + λA ω̃ = f : R(I + λA) = X.

Let us consider ~u ∈ Lp,1(Ω)n, p > n (or in Ln,1(Ω)n but with a small norm as in [9]), we
define a compact operator

T : C(Ω)→W 1
0L

p,1(Ω) ↪→ C(Ω)

by setting

Tf = ω if and only if
{
−∆ω − ~u · ∇ω = f

ω ∈W 1
0L

p,1(Ω), p > n

(The existence, uniqueness and regularity of ω in given in [9]).
Using the Bony’s maximum principle or Stapamcchia’s argument, we have for f > 0 the solution
ω > 0.
Since the positive cone K = C+(Ω) =

{
ϕ ∈ C(Ω) : ϕ > 0

}
has its interior K̊ non void, we may

apply the Krein-Rutman’s theorem (see Theorem 8.3) to derive the

Theorem 8.2. There exist a real λ1 > 0 and a positive function ψ1 ∈W 2Lp,1(Ω)∩H0
1 (Ω) such

that
−∆ψ1 − ~u · ∇ψ1 = λ1ψ1.

Moreover, L1(Ω; δ) ↪→ L1(Ω;ψ1) and if ~u ∈ L∞(Ω)n then ψ1 > cδ so that

L1(Ω; δ) = L1(Ω;ψ1).

Remark 2.
The fact that L1(Ω; δ) ↪→ L1(Ω;ψ1) comes from the fact

0 < ψ1(x) 6 δ(x)||∇ψ1||∞ 6 c||ψ1||W 2Lp,1δ(x) < +∞, x ∈ Ω.

Next, we want to prove Theorem 8.3 concerning the m-accretivity of A = −∆ + ~u · V + V in
the Banach space L1(Ω; δα), 0 6 α 6 1. The argument is similar to the one given in [16].
First, we endow the space L1(Ω; δα) with the following equivalent norm

||f ||α =
∫

Ω
|f |(x)ψα1 (x)dx,

ψ1 is given by Theorem 8.2.
We shall introduce the following definition

Definition 8.2. Let ω be in L1(Ω, ; δα) with V ω ∈ L1(Ω; δα). We will say that Aω ∈ L1(Ω; δα)
if there exists a function f ∈ L1(Ω; δα) such that Aω = f and∫

Ω
φfdx =

∫
Ω
ω
[
−∆φ− ~u∇φ+ V φ

]
dx, ∀φ ∈ C2

c (Ω). (71)
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Here, V > 0 locally integrable and ~u is as in Theorem 2.1.

So we can define the operator A : D(A) ⊂ L1(Ω; δα)→ L1(Ω; δα), where the domain of A is

D(A) =
{
ω ∈ Ln

′,∞(Ω) ∩ L1(Ω; δ−1) ∩ L1(Ω;V δ) : Aω ∈ L1(Ω; δα)
}
.

Therefore, we always have C2
c (Ω) ⊂ D(A) ⊂ L1(Ω; δα) this implies that D(A) is dense in

L1(Ω; δα), 0 6 α 6 1.
Moreover, one has the :

Lemma 8.1.
If V > 0, locally integrable, ~u bounded with div (~u) = 0 and ~u · ~ν = 0 on ∂Ω, 0 6 α < 1, then
∀λ > 0, ∀ f ∈ L1(Ω; δα), there exists a unique function ω ∈ D(A) such that

ω + λAω = f.

Proof. Indeed, since L1(Ω; δα) ⊂ L1(Ω; δ(1 + |log δ|)
)
, we may apply Theorem 3.5 to derive that

for all λ > 0 all f ∈ L1(Ω; δα) we have a unique function ω ∈ Ln
′,∞(Ω) with ω

δ
∈ L1(Ω),

V ω ∈ L1(Ω; δα) and for all φ ∈W 2Ln,1(Ω) ∈ H1
0 (Ω),∫

Ω
fφdx =

∫
Ω
ω
[
φ+ λ(−∆φ− ~u · ∇φ+ V φ)

]
dx. (72)

This is equivalent to say that ω + λAω = f and ω ∈ D(A).

So for 0 6 α < 1, it remains to show that for all ω ∈ D(A), for all λ > 0

||ω||α 6 ||ω + λAω||α. (73)

That is to say, setting f = ω + λAω,∫
Ω
|ω|ψα1 dx 6

∫
Ω
|f |ψα1 dx. (74)

To prove such inequality, we introduce as in [16] the

Lemma 8.2. Let ε > 0, ψ1ε = (ψ + ε)α − εα ∈ W 2Ln,1(Ω) ∩ H1
0 (Ω). Then for all ω ∈

Ln
′,∞(Ω), ω > 0, one has

Jε =
∫

Ω
ω
[
−∆1ε − ~u · ψ1ε

]
dx > 0. (75)

Proof. We develop the term −∆ψ1ε − ~u · ψ1ε to derive the

Jε = α

∫
Ω
ω
[
−∆ψ1 − ~u · ∇ψ1

]
(ψ1 + ε)α−1dx+ α(1− α)

∫
Ω
|∇ψ1|2(ψ1 + ε)α−2ωdx

= αλ1

∫
Ω
ωψ1(ψ1 + ε)α−1dx+ α(1− α)

∫
Ω
|∇ψ1|2(ψ1 + ε)α−2ωdx > 0.
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Let us decompose f = f+ − f−, f+ ∈ L1(Ω; δα), f− ∈ L1(Ω; δα). By Theorem 3.5, we know
that we have ω1 ∈ D(A) (resp. ω2 ∈ D(A) such that

ω1 + λAω1 = f+ ω2 + λAω2 = f−. (76)

So by linearity and uniqueness, one has

ω = ω1 − ω2. (77)

Therefore, it suffices to show that the inequality (74) holds for ω1 (resp. ω1). That is to say
that is sufficient to prove the inequality for f > 0. But in that case, the unique solution of (72)
is non negative : ω > 0 and we can choose as a test function φ = ψ1ε given in Lemma 8.2. We
then have ∫

Ω
fψ1εdx =

∫
Ω
ωψ1εdx+ λ

∫
Ω
ω
[
−∆ψ1ε − ~u · ψ1ε]dx+ λ

∫
Ω
V ψ1εωdx. (78)

According to Lemma 8.2 and the fact that V ω ψ1ε > 0 the two last integrals in relation (78) are
non negative. Therefore, ∫

Ω
fψ1εdx >

∫
Ω
ω ψ1εdx, ε > 0. (79)

Letting ε→ 0 in (79), we obtain ∫
Ω
ω ψα1 dx 6

∫
Ω
fψα1 dx (80)

whenever f ∈ ω + λAω, ω ∈ D(A).

We have shown that the Schoedinger operator A = −∆+~u ·V +V is m-accretive in L1(Ω, δα),
whenever 0 6 α < 1, as in the first statement of Theorem 8.3.

We have a similar result in L1(Ω; δ) provided that V (x) > cδ(x)−2 in a neighborhood U
of the boundary. The argument is similar to the preceding one but we need to replace the
use of Theorem 3.5 by Theorem 3.3. Indeed, if f = f+ − f− ∈ L1(Ω; δ) and ω ∈ D(A) satisfies
ω+λAω = f then, Theorem 3.3 allows us to spleet ω = ω2−ω1 with ωi ∈ D(A) and ω1+λAω1 =
f+ (idem ω2 + λAω2 = f−). therefore, it suffices to show the inequality∫

Ω
ω ψ1dx 6

∫
Ω
fψ1dx for f > 0, ω > 0.

To do so, we choose φ = ψ1 in equation (72) and derive∫
Ω
fψ1dx = (1 + λλ1)

∫
Ω
ωψ1dx+

∫
Ω
V ω ψ1dx. (81)

We drop the nonnegative term with V to derive∫
Ω
ωψ1dx 6

1
1 + λλ1

∫
Ω
fψ1dx 6

∫
Ω
fψ1dx. (82)

This show the desired inequality and implies that
∀λ > 0, ∀ω ∈ D(A), ω + λAω = f ∈ L1(Ω; d)∫

Ω
|ω|ψ1dx 6

∫
Ω
|ω + λAω|ψ1dx. (83)

♦
Therefore, we have shown the following theorem :
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Theorem 8.3. Let ~u ∈ L∞(Ω)n with div (~u) = 0 in D′(Ω), ~u · ~ν = 0 on ∂Ω, V > 0 locally
integrable.
Then the Schroedinger operator A = −∆+~u·∇+V is m-accretive in L1(Ω; δα) for any 0 6 α < 1.
If α = 1 and V (x) > cδ(x)−2 in a neighborhood U of the boundary then the operator A is still
m-accretive in L1(Ω; δ).

Remark 3. (Parabolic equation)
Them-accretivity property implies many results on parabolic equations (see [14, 3, ?]) associated
to the same operator.

For instance, we may have

Theorem 8.4. Let T > 0, ω0 ∈ D(A), f ∈ W 1,1(0, T ;L1; δα)), a ∈ [0, 1]. Then, there exists a
function satisfying :ω ∈ C

(
[0, T ];D(A)

)
∩ C1

(
[0, T ];L1(Ω; δα)

)
dω

dt
(t) +Aω(t) = f(t) = f(t), ∀ t ∈ [0, T ], ω(0) = ω0.

8.2 Complex Schrödinger problem
Let us apply our previous results to the mathematical treatment of problem 4. In some sense,
our main aim now is to show that the solution of this Schrödinger equation is localized for any
t > 0, in the sense that if we start with a localized initial wave packet ψ0 ∈ H1(Rn : C) (here C
denotes the complex numbers), i.e. such that

support ψ0 ⊂ Ω,

then the particle still remains permanently confined in Ω in the sense that

supportψ(t, ·) ⊂ Ω for any t > 0.

As in [8] we start by considering the auxiliary eigenvalue problem

DP (V, λ,Ω)
{
−∆ω + ~u · ∇ω + V (x)ω = λω in Ω,
ω = 0 on ∂Ω.

Proposition 8.5. Assume (3), then there exists a sequence of eigenvalues λm → +∞, λ1 >
λ1,Ω (the first eigenvalue for the Dirichlet problem associated to the operator −∆ + ~u · ∇ on Ω),
λ1 is isolated and ω1 > 0 on Ω.

Proof. We start by arguing as in the proof of Proposition 3 of [9]. We introduce the space

W =
{
ϕ ∈ H1

0 (Ω) : V ϕ2 ∈ L1(Ω)
}
.

For any h ∈ L2(Ω) we define the operator Th = z ∈W solution of the linear problem{
Az = h in Ω,
z = 0 on ∂Ω.

(84)

We recall that the existence and uniqueness of a solution was obtained in Proposition 3 when
h ∈ W ′ (the dual space of W ) and that, trivially, L2(Ω) ⊂ W ′.Then the composition with
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the (compact) embedding H1
0 (Ω) ⊂ L2(Ω) is a selfadjoint compact linear operator T̃ = i ◦ T :

L2(Ω)→ L2(Ω) for which we obtain in the usual way a sequence of eigenvalues λm → +∞. By
well-known results (see e.g. [18] or [2]) we know that λ1 > 0 (notice that λ1 = 0 would imply
that z = 0). In fact, since V (x) ≥ 0, by the comparison principle we know that λ1 > λ1,Ω. The
positivity of the first eigenfunction ω1 is an easy modification of Proposition 3.2 of [8]. Moreover
a variant of the Krein-Rutman can be applied (see [6]) and so we know that λ1 is isolated.

Remark 4. When r = 2 in (3) then, by the Hardy inequality, W = H1
0 (Ω).

A different, and useful, consequence of Proposition 3 of [9] is the following:

Proposition 8.6. Assume (3), then the operator operator A : D(A)(⊂ L2(Ω)) → L2(Ω) given
by D(A) = W =

{
ϕ ∈ H1

0 (Ω) : V ϕ2 ∈ L1(Ω)
}
and Aω = −∆ω + ~u · ∇ω + V ω if ω ∈ D(A) is a

maximal monotone operator in L2(Ω).

Proof. Given h ∈ L2(Ω), the existence and uniqueness of solution of the equation Aω+ω = h
was obtained in Proposition 3 of [9]. Moreover, thanks to the assumptions on ~u, by Lemmas 2.6
and 2.7 of [9] we get that

‖ω‖L2(Ω) ≤ ‖h‖L2(Ω)

which proves the monotonicity in L2(Ω) (i.e. the operator is m-accretive in L2(Ω)).

Let us prove now that the singularity of the potential implies that all the eigenfunctions ωm
of operator A are flat solutions (in the sense that ω = ∂ω

∂n
= 0 on ∂Ω). As usual in Quantum

Mechanics we shall pay attention to the associate eigenfunctions with normalized L2-norm, i.e.
such that

‖ωm‖L2(Ω) = 1. (85)

Theorem 8.7. Let ωm be an eigenfunction associated to the eigenvalue λm. Then ωm ∈ L∞(Ω)
and ωm is a flat solution of DP (V, λm,Ω). In fact, there exists Km > 0 such that

|ωm(x)| ≤ Kmd(x, ∂Ω)2 a.e. x ∈ Ω. (86)

Proof. It suffices to repeat all the arguments of Theorem 2.1 of [8] (concerning the case r = 2
and ~u = −→0 ) since the the main idea of the proof consists in the use of a Moser-type iterative
argument (as in [10]) and take as test functions

ϕ(x) = v2κ+1
m,M (x), with vm,M (x) := min{|ωm(x)| ,M} sign(ωm(x)), (87)

for any arbitrary M,κ > 0. Then, by using (3) and Lemmas 2.6 and 2.7 of [9] we conclude that
ϕ ∈ H1

0 (Ω) is an appropriate test function and

(2κ+ 1)
∫

Ω

∣∣v2κ
M (x)

∣∣ |∇ωm|2 dx+
∫

Ω

C

δ(x)2

∣∣v2κ+1
M (x)

∣∣ |ωm| dx
≤ (2κ+ 1)

∫
Ω

∣∣v2κ
M (x)

∣∣ |∇ωm|2 dx+
∫

Ω
V (x)

∣∣v2κ+1
M (x)

∣∣ |ωm| dx
= λn

∫
Ω

∣∣v2κ+1
M (x)

∣∣ |ωm| dx (88)
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where we used the simplified notation vM = vm,M . This is exactly the same starting energy
estimate than the one used in the proof of Theorem 2.1 of [8] and thus the rest of the proof
(passing to the limit when M ↗ +∞) applies without any other modification.
Remark 5. The flatness of the eigenfunctions ωm of operator A can be also proved by using
Proposition 2.7 of [19] nevertheless the statement given here supplies some decay estimates on
ωm near ∂Ω which are not given in the mentioned reference.
Remark 6. The decay estimates (86) is not optimal if r > 2 in (3). It seems possible to adapt
the formal exposition made in [5] developing asymptotically some Bessel functions to prove that
in that case

|ωm(x)| ≤ Km

√
d(x, ∂Ω)

r/4
exp

(
− K̂m

(r − 2)d(x, ∂Ω)−(r−2)/2

)
a.e. x ∈ Ω, (89)

for some positive constants Km and K̂m, but we shall not enter into the details here.
Remark 7. Arguing as in [8] it is easy to get several qualitative properties of solutions of the
complex evolution Schroedinger problemi∂ψ

∂t
= −∆ψ + ~u · ∇ψ + V (x)ψ in (0,∞)× Rn

ψ(0, x) = ψ0(x) on Rn
(90)

for very singular potentials over Ω which are extended (for instance) in a finite way to the whole
space. So, we assume now that there exists q ∈ [0,+∞) such that

Vq,Ω(x) =
{
V (x) if x ∈ Ω,
q if x ∈ Rn \ Ω

(91)

and that (3) holds. We can study the time evolution of a localized initial wave packet ψ0 ∈
H1(Rn : C) such that support ψ0 ⊂ Ω.

Then we can prove that there exists a unique solution ψ ∈ C([0,+∞) : L2(Rn : C)) with
ψ ∈ C([0,+∞) : H1(Rn : C)) and Vq,Ω(x)ψ ∈L2(0, T : L2(Rn : C))} for any T > 0, and that the
Galerkin decomposition

ψΩ(t, x) =
∞∑
m=1

ame−iλmtωm(x), (92)

holds with convergence at least in L2(Rn : C)where where λm and ωm are the eigenvalues and
eigenfunctions given in Proposition 8.5 and

am =
∫

Ω
ψ0(x)ωm(x)dx.

For localizing purposes we assume that
∞∑
m=1
|am|Km < +∞, (93)

where Km > 0 was given in Theorem 8.7. Thus, we conclude that
|ψ(t, x)| ≤ Kd(x, ∂Ω)2 for any t > 0 and a.e. x ∈ Ω, (94)

for some K > 0, and in consequence the unique solution of (90) satisfies that support ψ(t, .) ⊂ Ω
for any t > 0.

Concerning the existence of solutions, it is enough to apply the Hille-Yosida theorem (see,
e.g. [18], [2]). For the Galerkin decomposition we can adapt the arguments given in [4].
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