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Level Set Regularization Using Geometric Flows∗

Luis Alvarez† , Carmelo Cuenca† , Jesús Ildefonso D́ıaz‡ , and Esther González†

Abstract. In this paper we study a geometric partial differential equation including a forcing term. This equa-
tion defines a hypersurface evolution that we use for level set regularization. We study the shape of
the radial solutions of the equation and some qualitative properties about the level set propagations.
We show that under a suitable choice of the forcing term, the geometric equation has nontrivial
asymptotic states and it represents a model for level set regularization. We show that by using a
forcing term which is merely a bounded Hölder continuous function, we can obtain finite time stabi-
lization of the solutions. We introduce an explicit finite difference scheme to compute numerically the
solution of the equation and we present some applications of the model to nonlinear two-dimensional
image filtering and three-dimensional segmentation in the context of medical imaging.
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1. Introduction. In this paper we consider the Cauchy problem for the parabolic perturbed
mean curvature type equation

(1)

{
∂u
∂t = F (∇u,∇2u) + k(x)|∇u| in (0, T )×Rn,
u(0, x) = u0(x) on Rn,

where ∇u and ∇2u denote respectively the gradient and the Hessian of u in spatial variables,
k : Rn → R is a bounded Hölder continuous function which introduces a forcing term in (1),
and F : Rn − {0} × Sn → R is a given continuous function satisfying

−F (p,X) ≤ −F (p, Y ) ∀X,Y ∈ Sn with X ≥ Y,∀p ∈ Rn,(2)

F (λp, λX + σp⊗ p) = λF (p,X) ∀λ > 0, σ ∈ R,∀p ∈ Rn, ∀X ∈ Sn,(3)

where ⊗ denotes the tensor product in Rn. Here Sn denotes the space of the n× n real and
symmetric matrices with the usual Loewner order. We say (1) generates a geometric flow
if F satisfies (3) (we point out that as k|λp| = λk|p|, the forcing term does not change the
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geometric character of (3)). In this paper, we pay special attention to the mean curvature
operator given by

F (∇u,∇2u) = div

( ∇u
|∇u|

)
|∇u| =

n∑
i=1

uxixi −
n∑

i,j=1

uxiuxj
|∇u|2 uxixj ,(4)

which satisfies (2)–(3). One of the main interests of the geometric flows in the context of
computer vision is that they are closely related to the following level set formulation of front
propagations introduced in [27], [30]: given a hypersurface Γ0 ⊂ Rn, we embed Γ0 in a function
u0 : Rn → R in such a way that Γ0 = ∂{x : u0(x) < 0}, and we make u0 evolve using the
partial differential equation

∂u

∂t
+ Fext|∇u| = 0.(5)

The hypersurface evolution is then defined by the set Γt = ∂{x : u(t, x) < 0}. Fext is a function
representing the front propagation velocity in the hypersurface normal direction. This elegant
formulation has been extensively applied in the literature to address a variety of problems.
For instance, in [10], the authors propose an active contour model where Fext is given by

Fext(x) = −g(x)

(
div

( ∇u
|∇u|

)
(x) + ν

)
,(6)

where ν ∈ R and g(x) ≥ 0. In [13], [14] the authors introduce the “geodesic snake model”
where Fext is given by

Fext(x) = −g(x)

(
div

( ∇u
|∇u|

)
(x) + ν

)
−∇g(x)

∇u
|∇u|(x).(7)

In the context of three-dimensional (3D) medical image segmentation, in [22], the authors
propose a model for 3D vessel segmentation based on the front propagation velocity

Fext(x) = g(x)(1− εκmin(x)),(8)

where ε ∈ R, g(x) ∈ [−1, 1], and κmin(x) represents the minimum value of the curvatures of
the level set surface of u passing by x.

We point out that if we choose the mean curvature operator (4) in (1), then (1) is equivalent
to (5) with

Fext(x) = −
(

div

( ∇u
|∇u|

)
(x) + k(x)

)
.(9)

From the above examples, we can observe that (5) is very flexible and that it can be
adapted to many different problems according to the choice of the velocity term Fext. From a
mathematical point of view there are two main important issues related to the hypersurface
evolution defined by (5). The first one is that the evolution of Γt should be independent of the
choice of the function u0 where Γ0 is embedded. The main interest of the geometric assumption
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(3) is that it ensures, as we will see below, that under the action of (1), Γt is independent
of the choice of u0. The second one is whether (5) defines a well-posed problem, that is, we
would like to show that (5) has a unique solution in some sense and that we have some other
nice properties like the comparison principle, L∞ stability of the solutions, etc. The usual
framework to study these issues is the viscosity solutions theory introduced at the end of the
last century in some seminal papers, for instance, [17], [16], and [18] (see also the presentation
made in the more recent monograph [20]). In the case of second order differential operators,
the well-posedness of the problem is closely related to the ellipticity condition (2) and to the
regularity of functions like g(x) and k(x) in the examples above. For instance, the existence

and uniqueness of the viscosity solutions for (6), (7) with g(x) ≥ 0 and g, g
1
2 ∈W 1,∞(Rn) (for

n = 2, 3) have been shown in [10, 14, 8]. In most of the papers concerning the case in which
a forcing term, k(x), is involved, it is assumed that k ∈W 1,∞(Rn). In section 2 of this paper
we study the case in which k(x) is merely a bounded Hölder continuous function.

Equation (8) is a heuristic model that has not been well studied mathematically yet (notice
that g(x) ∈ [−1, 1] and thus the associated differential operator loses its elliptic character).
In fact, given the generality of (5), the possible absence of a correct mathematical treatment
in terms of PDEs may justify many strange properties of the front propagation.

Comparison principle is a very important topic in PDE theory. In particular, in terms of
front propagation, it means that if the evolution of two level sets Ut = {x : u(t, x) < 0}, Ût =
{x : û(t, x) < 0} (where u(t, x), û(t, x) are solutions of the associated PDE) satisfying that
U0 ⊆ Û0, then Ut ⊆ Ût ∀t ≥ 0. This is a nice and useful behavior of the front propagation. For
instance, in this paper, we make use of this comparison principle to compare the behavior of
radial solutions with the one of the nonradial solutions of the equation. As we shall comment
with more details in section 2, the comparison principle for the viscosity solutions of the more
general equation

∂u

∂t
+G(t, x, u,∇u,∇2u) = 0,(10)

proved in [21] under very general assumptions on G, can be applied to our mentioned frame-
work. A characterization of the profile of the function G using a “principle” approach including
the geometric character of the equation was introduced in [3, 4, 5].

As pointed out in [11] and [12], the topographic map, based on the image level set collection,
is a robust and invariant image description suitable for image analysis. In terms of curve
evolution, the geometric flows were studied in [6, 7, 28, 29] (see also the presentation made in
the monograph [20]).

In this paper we focus our attention on the study of the evolution of the level sets under the
action of the geometric flow (1). Our main motivation is that, as we will show in this paper,
with a suitable choice of the forcing term k(x), (1) can be used as a level set regularization
model. Moreover (see, e.g., Lemma 8), if k(x) is a non-Lipschitz function (k being merely
Hölder continuous), then we can obtain finite time stabilization of the solutions.

The main contributions of the paper are (i) the qualitative study of the solutions of (1) with
a forcing term k(x) and specially the proof of some qualitative properties which are exclusive
to the case in which k(x) is merely a Hölder continuous function (based on the study of the
level set propagation by using a sharp analysis of radial solutions), (ii) the proposal of (1)
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as a level set regularization model using an appropriate choice of the forcing term k(x), and
(iii) the illustration of the results of the proposed model in a variety of situations including
nonlinear filtering of 2D images or 3D image segmentation in the context of medical imaging.

The rest of the paper is organized as follows. In section 2, we apply some previous results
in the literature to get the existence and comparison of solutions of (1) in the context of the
viscosity solution framework. In section 3, we study the hypersurface evolution obtained from
the solutions of (1). Section 4 is devoted to the study of (1) in radial coordinates. In section
5, we present some qualitative properties of the hypersurface evolution. An explicit finite
difference discretization scheme for (1)–(4) is presented in section 6, and some applications of
(1)–(4) to image level set regularization including some experimental results are presented in
section 7. Finally, in section 8 we summarize the main conclusions of the paper.

2. On the existence and comparison of solutions. As we shall see in the next sections,
one of the main qualitative properties of solutions of (1), i.e., the finite time stabilization
of radial solutions, holds only when k(x) is merely a Hölder continuous function (i.e., the
property is not satisfied when k(x) is assumed to be Lipschitz continuous). In most of the
presentations on the existence and comparison of solutions of general formulations of the
equation given in terms of (10) it is assumed that G(t, x, u,∇u,∇2u) is independent of x, or
at least G(t, x, u, p,O) is Lipschitz continuous on x. The motivation of this section is simply
to recall the general results obtained in [21] and to check that they apply without any special
difficulty to our framework: (1) with (9) and when k(x) is a bounded Hölder continuous
function. Notice that this corresponds to the choice

G(t, x, u, p,X) = −trace((I − p⊗ p)X)− k(x) |p| , p := p/ |p|(11)

(see (4)). So we can write

G(t, x, u, p,X) = −F (p,X)− k(x) |p| with F (p,X) := trace((I − p⊗ p)X).

We start by recalling the notion of viscosity solution.

Definition 1. (i) A function u : [0, T ] ×Rn → R is a (viscosity) subsolution of (1) if u is
upper semicontinuous, u(0, x) ≤ u0(x) ∀ x ∈ Rn, and ∀ ϕ ∈ C2, if (t̂, x̂) ∈ [0, T ] ×Rn is a
maximum of u− ϕ, then

ϕt(t̂, x̂) + F (Dϕ(t̂, x̂), D2ϕ(t̂, x̂))− k(x̂)|Dϕ(t̂, x̂)| ≤ 0,(12)

where F is the lower semicontinuous envelope of −F.
(ii) A function u : [0, T ] × Rn → R is a (viscosity) supersolution of (1) if u is lower

semicontinuous, u(0, x) ≥ u0(x) ∀ x ∈ Rn, and ∀ ϕ ∈ C2, if (t̂, x̂) ∈ [0, T ]×Rn is a minimum
of u− ϕ, then

ϕt(t̂, x̂) + F (Dϕ(t̂, x̂), D2ϕ(t̂, x̂))− k(x̂)|Dϕ(t̂, x̂)| ≥ 0,(13)

where F is the upper semicontinuous envelope of −F.
(iii) A function u : [0, T ]×Rn → R is a (viscosity) solution of (1) if u is both a (viscosity)

subsolution and a (viscosity) supersolution of (1).
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We recall that there are some other equivalent definitions expressed in terms of the so-
called parabolic super 2-jets (see, e.g., [17] and [20]) but they will not be used in this paper.

The following existence and uniqueness of solutions result is a special case of Theorems
4.1 and 4.9 of [21]. We recall some previous notation: given a constant β ∈ R and a metric
space K, Cβ(K) denotes the space of continuous functions v such that v(.)− β is compactly
supported in K.

Proposition 2. Let k(x) be a bounded Hölder continuous function and let G be given by
(11). Assume that u0 ∈ Cβ(Rn) for some constant β ∈ R. Then problem (1) has a unique
viscosity solution u ∈ Cβ([0, T ] × Rn). Moreover the comparison principle holds under the
above conditions, i.e., if u(t, x) and ū(t, x) are, respectively, a subsolution and a supersolution
of (1) satisfying that u

¯
(0, x) ≤ ū(0, x) ∀x ∈ Rn, then

u
¯

(t, x) ≤ ū(t, x) ∀(t, x) ∈ [0, T ]×Rn.

Proof. It reduces to check the assumptions made in Theorems 4.1 and of [21]. Keeping
the same notation as in Theorem 4.1 of [21] applied to the operator G(t, x, u, p,X) given by
(11), it is obvious that

(i) G(t, x, u, p,X) is a continuous function over J0 := [0, T ]×Rn ×R× (Rn \ {0})× Sn;
(ii) G(t, x, u, p,X) is degenerate elliptic (thanks to (2));
(iii) −∞ <F (0, O) = F (0, O) < +∞, where F is the lower semicontinuous envelope of −F

and F is the upper semicontinuous envelope of −F ;
(iv) for every R > 0 cR := sup{|G(t, x, u, p,X)| :|p| , |X| ≤ R, (t, x, u, p,X) ∈ J0} < ∞

(since k is bounded);
(v) G(t, x, u, p,X) is independent on u;
(vi) for every R > ρ there is a modulus σ (i.e., σ : [0,∞) → [0,∞), σ(0) = 0, and α is

nondecreasing), σ = σRρ, such that

|G(t, x, u, p,X)−G(t, x, u, q, Y )| ≤ σRρ (|p− q|+ |X − Y |)

∀ (t, x, u) ∈ [0, T ] ×Rn ×R, ρ ≤ |p| , |q| ≤ R, |X| , |Y | ≤ R (again due to the bound-
edness of k);

(vii) there are ρ0 > 0 and a modulus σ1 such that

F (p,X)− F (0, O)− k(x) |p| ≤ σ1 (|p|+ |X|),
F (p,X)− F (0, O)− k(x) |p| ≥ −σ1 (|p|+ |X|),

provided x ∈ Rn and |p| , |X| ≤ ρ0 (once again by the boundedness of k); and
(viii) there is a modulus σ2 such that

|G(t, x, u, p,X)−G(t, y, u, q, Y )| ≤ σ2 (|x− y|)(|p|+ 1)

for (t, x, u, p,X), (t, y, u, p,X) ∈ J0 (take σ2 (s) = Msα with α ∈ (0, 1) the Hölder
exponent of k(x)).

The assumptions of Theorem 4.9 of [21] require additionally the condition G geometric, but
this holds obviously since

G(x, λp, λX + σp⊗ p) = λG(x, p,X) ∀λ > 0, σ ∈ R,∀p ∈ Rn and ∀x ∈ Rn.
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Remark 1. As a matter of fact, since the conclusion in the above result shows that u ∈
Cβ([0, T ]×Rn), we could consider also data k(x) which are Hölder continuous but unbounded
in Rn. Indeed, in that case we can truncate function k(x) outside a ball BR(0), with radius
R > 0 large enough, and apply Theorem 1 to this truncation kR(x) which now is bounded
and Hölder continuous in Rn. Obviously, the speed of propagation would increase with the
“size” of the (compact) support of the initial data, but in any case the speed would be finite
for any given u0 ∈ Cβ(Rn).

An important property (direct consequence of the results of [18] and [16]), unique to the
geometric flows, is that the composition of any solution with a nondecreasing function remains
a solution of the equation. So we have the following useful corollary.

Corollary 3. If u(t, x), is a bounded uniformly continuous viscosity solution of (1), then for
any nondecreasing function φ : R→ R the function v(t, x) = φ(u(t, x)) is a viscosity solution
of (1).

Remark 2. In [25], [23], [24] the authors study the problem (1) with obstacles for a forcing
term k(x) assumed to be bounded and Lipschitz continuous. We conjecture that it seems
possible to extend the existence and uniqueness of solutions also to this context and under
the mere assumption of k(x) being bounded Hölder continuous. We also mention that weaker
assumptions on k(x) (as k ∈ L∞(Rn)) were assumed in [15] for the study of (1)–(4) in terms
of the curve evolution context.

Remark 3. The assumption u0(.)− β is compactly supported in Rn is not restrictive at all
when we consider bounded hypersurface evolution. Indeed, if Γ0 is a bounded hypersurface,
using the signed distance function we can embed Γ0 in a function u0 ∈ Cβ(Rn). Moreover, as
we shall see in the next section, the hypersurface evolution is independent of the particular
choice of function u0 where Γ0 is embedded and therefore the size of the support of u0(.)− β
is not relevant in terms of the hypersurface evolution.

3. Hypersurface evolution using the parabolic perturbed mean curvature equation.
We will consider an initial hypersurface Γ0 of Rn as the boundary of a bounded open set U0.
We choose any u0 : Rn → R such that u0 ∈ Cβ(Rn) for some constant β ∈ R satisfying

u0(x) =


u0(x) < 0 if x ∈ U0,

u0(x) > 0 if x ∈
(
Rn − U0

)
,

u(x) = 0 if x ∈ Γ0 = ∂U0.
(14)

It is not difficult to see [20] that, in fact, we can choose as u0 any bounded uniformly continuous
function if the datum k(x) is Lipschitz continuous. Then, we define {Ut}t≥0 and {Γt}t>0 as

Ut = {x ∈ Rn : u(t, x) < 0},(15)

Γt = ∂Ut,(16)

where u(t, x) is the (unique) viscosity solution of (1) for the initial datum u0(x). One important
remark is that, in contrast to the case where no forcing term is included (k ≡ 0), the sign
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of u0(x) in U0 matters in the evolution of U0. Indeed if u(t, x) is a solution of (1)–(4), then
v(t, x) = −u(t, x) is the solution of (1)–(4) but changing k(x) by −k(x) and therefore Ut,Γt
will be different using u0(x) or −u0(x) as initial surface to embed Γ0.

Let us prove first that Ut and Γt are well defined in the sense that they are independent
of the choice of u0.

Theorem 4. Let U0 be an open bounded set, Γ0 = ∂U0, F satisfying (2)–(3), and u0 ∈
Cβ(Rn), û0 ∈ Cβ̂(Rn), for some constants β, β̂ ∈ R, satisfying (14). Then, for any t > 0

{x ∈ Rn : u(t, x) < 0} = {x ∈ Rn : û(t, x) < 0},
where u(t, x), û(t, x) are the viscosity solutions of (1) associated to the initial data u0(x), û0(x).

Proof. This proof is based on the techniques presented in [18], [23]. First, we are going to
show that if u0(x), û0(x) satisfy (14), then we can build a nondecreasing function φ : R→ R
satisfying that {φ ≡ 0} = {0} and û0(x) ≤ φ(u0(x)). We define E0 = Rn and Em = {x ∈ Rn :
u0(x) ≤ 1

m}, for m ∈ Z− {0}, then we have for m > 0

E−1 ⊆ · · · ⊆ E−m ⊆ · · · ⊂ U0 ⊂ · · · ⊆ Em ⊆ · · · ⊆ E0;(17)

next we define a0 = supx∈Rn û0 and

am =

{
supx∈Em−1

û0 if Em−1 6= ∅,
infx∈Rn û0 if Em−1 = ∅

for m ∈ Z− {0}. Using (14)–(17) we obtain for m > 0

a−1 ≤ · · · ≤ a−m ≤ · · · < 0 < · · · ≤ am ≤ · · · ≤ a1.

Finally, we define φ(s) to be a continuous nondecreasing function satisfying

φ(0) = 0,
φ( 1

m) = am ∀m ∈ Z− {0},
φ linear on [ 1

m+1 ,
1
m ], m = 1, 2, . . . ,

φ linear on [ 1
m ,

1
m−1 ], m = −1,−2, . . . ,

φ constant outside [−1, 1],

and by construction, we can easily show that û0(x) ≤ φ(u0(x)) and by the comparison principle
shown in Proposition 2 we obtain

û(t, x) ≤ φ(u(t, x)),

and then

{x ∈ Rn : û(t, x) < 0} ⊆ {x ∈ Rn : φ(u(t, x)) < 0} = {x ∈ Rn : u(t, x) < 0}.
The opposite inclusion is proven in a similar way switching u(t, x) and û(t, x).

Let U0 be a bounded open set, Γ0 = ∂U0. A typical choice of function u0(x) satisfying
(14) is the following truncated signed distance function:

dU0,β(x) =


−dist(x,Γ0) if x ∈ U0,

dist(x,Γ0) if x ∈
(
Rn − U0

)
∧ dist(x,Γ0) ≤ β,

β otherwise

(18)
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for some β > 0. We point out that if U0 is bounded, then dU0,β ∈ Cβ(Rn). Moreover, following
the results of the above theorem, the evolution of Γ0 is independent of the choice of β > 0
used to define the truncated signed distance. Next we show that the comparison principle
holds for Ut.

Corollary 5. Let U0, Û0 be bounded open sets satisfying U0 ⊆ Û0; then for t ≥ 0 Ut ⊆ Ût.
Proof. Using Theorem 4, without loss of generality, we can assume that u0(x) and û0(x)

are given by the distance function (18). If U0 ⊆ Û0, then

û0(x) ≤ u0(x),

and by the comparison of the viscosity solutions given in Proposition 2, we obtain that

Ut = {x ∈ Rn : u(t, x) < 0} ⊆ {x ∈ Rn : û(t, x) < 0} = Ût,

which completes the proof.

4. Radial solutions of the parabolic perturbed mean curvature equation. In the case
U0 is a ball, Br0(x0), of radius r0, then the truncated signed distance function (18) becomes

dBr0 (x0),β(x) =

{
|x− x0| − r0 if |x− x0| < r0 + β,

β otherwise.
(19)

Let u(t, r) be a radial solution of (1) with F given by (4). In radial coordinates this equation
becomes

ut(t, r) =

(
n− 1

r
sgn(ur(t, r)) + k(r)

)
|ur(t, r)|,(20)

where sgn(.) is the sign function. In this case Ut is given by the ball Br(t)(x0), where r(t)
satisfies

u(t, r(t)) = 0,(21)

and by computing the derivatives of this expression we obtain

ut(t, r(t)) +
dr

dt
(t)ur(t, r(t)) = 0.(22)

Using (20)–(22) and assuming that ur(t, r(t)) > 0 (the case ur(t, r(t)) < 0 is similar) we obtain
that r(t) satisfies the equation

dr

dt
(t) = −n− 1

r(t)
− k(r(t)).(23)

Notice, once again, that the mere assumption of k Hölder continuous is enough for the correct
treatment of this ODE. Therefore by a straightforward integration we obtain that if

−n− 1

r(t)
− k(r(t)) 6= 0 for r(t) ∈ (a, b),(24)
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then there exists a strictly monotone function ψ : (a, b)→ R such that

ψ′(r) =
1

−n−1
r − k(r)

∀r ∈ (a, b),

and for any r0 ∈ (a, b),

r(t) = η(t+ ψ(r0)) for t ∈ [0, t∗],(25)

where η ≡ ψ−1 and t∗ = sup{t : η(t+ ψ(r0)) ∈ (a, b)}.
Remark 4. We point out that if we know the evolution of the radius of the ball, r(t), for

any r0 > 0, then we can construct an explicit formula for the solution of (1) with F given by
(4). Indeed, for −r0 < c < r0 + 1 we define U c0 = {x : dBr0 (x0),β(x) < c} = Br0+c(x0) and
U ct = Brc(t)(x0), where rc(t) is the solution of (23) for the radius r0 + c. Then we can recover
the solution of (1)–(4) using the expression

u(t, x) = inf{c : x ∈ Brc(t)(x0)}.

Let us study the shape of r(t), the solution of (23), for some particular choices of the forcing
term k(r). The proofs of the following lemmas are straighforward using basic integration
techniques.

Lemma 6 (case k(x) constant). Let k ≡ k0 ∈ R−{0} and let r(t) be the solution of (23).
(i) If k0 > 0, then

r(t) =

{
η(t+ ψ(r0)) if t ∈ [0, ψ(0)− ψ(r0)),
0 if t ≥ ψ(0)− ψ(r0),

(26)

where η ≡ ψ−1 with ψ : [0,∞)→ (−∞, ψ(0)] the decreasing function defined by

ψ(r) =
n− 1

k2
0

ln
(n− 1) + rk0

|k0|
− r

k0
.

(ii) If k0 < 0, then

r(t) = η1(t+ ψ1(r0)) if r0 <
1−n
k0

and t ∈ [0, ψ1(0)− ψ1(r0)),

r(t) = 0 if r0 <
1−n
k0

and t ≥ ψ1(0)− ψ1(r0),

r(t) ≡ r0 if r0 = 1−n
k0

and t ≥ 0,

r(t) = η2(t+ ψ2(r0)) if r0 >
1−n
k0

and t ≥ 0,

(27)

where ψ1 : [0, 1−n
k0

) → (−∞, ψ1(0)] is a decreasing function, ψ2 : (1−n
k0
,∞) → (−∞,∞) is an

increasing function, η1 = ψ−1
1 , η2 = ψ−1

2 , and

ψ1(r) = n−1
k20

ln 1−n−rk0
k0

− r
k0

if r0 <
1−n
k0
,

ψ2(r) = n−1
k20

ln n−1+rk0
k0

− r
k0

if r0 >
1−n
k0
.

(28)

In Figure 1, we show the profile of η1(s) and η2(s) for k(r) ≡ −1 and n = 2.
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Figure 1. Plot of η1(s) and η2(s) for k(r) ≡ −1 and n = 2.

Remark 5. We point out that according to Lemma 6, if k0 is positive, or k0 is negative
and r0 <

1−n
k0

, then r(t) is a decreasing function which vanishes in finite time. This is the
typical behavior of radial solutions in the case of the equation without forcing term (k ≡ 0):
see, e.g., [2]. That is, the ball Br(t)(x0) tends to shrink across the time. However, in the case

k0 is negative and r0 >
1−n
k0

, then r(t) is an increasing function such that limt→∞r(t) = ∞.
That is, the ball Br(t)(x0) tends to expand across the time.

Lemma 7 (case k(r) linear). Assume k(r) ≡ mr+ c for r ∈ [0, r∗] with m > 0, c < 0, and
r∗ > max{r0,−m/c}. (i) If −4m(n − 1) + c2 > 0, then the function v(r) = −n−1

r −mr − c
has the roots R1 > R0 > 0 given by

R0 = R0(n,m, c) =
1

2

(
−c
m
−
√

4(n− 1)

−m +
( c
m

)2
)
,

R1 = R1(n,m, c) =
1

2

(
−c
m

+

√
4(n− 1)

−m +
( c
m

)2
)
.

In consequence, the solution r(t) of (23) is given by r(t) = η(t+ ψ(r0)), where η ≡ ψ−1 with

ψ(r) = ln

(
|r −R0|

1
2m
−c−
√
−4m(n−1)+c2√

−4m(n−1)+c2 |r −R1|
− 1

2m
−c+
√
−4m(n−1)+c2√

−4m(n−1)+c2

)
.

(ii) Assume −4m(n− 1) + c2 = 0. Then r(t) = η(t+ ψ(r0)), where η ≡ ψ−1 with

ψ(r) =
(−c− 2mr) ln

(∣∣ c+2mr
2m

∣∣)− c
m (c+ 2mr)

.
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Figure 2. (Case (i) of Lemma 7). Plot of η1(s), η2(s), and η3(s) for k(r) = r − 3 and n = 2.

(iii) Assume −4m(n− 1) + c2 < 0. Then r(t) = η(t+ ψ(r0)), where η ≡ ψ−1 with

ψ(r) = − 1

2(m)
3
2

b√
−4m(n−1)+c2

−4m

arctan
(√

−4m
−4m(n−1)+c2

√
mr +

√
−4m

−4m(n−1)+c2
c

2
√
m

)
− 1

2m ln
∣∣n− 1 +mr2 + cr

∣∣ .
Remark. We notice that as in Lemma 6, functions ψ(r) and η(r) should be distinguished

on intervals where ψ(r) changes its monotonicity. Therefore, in practice, we have to deal with
ψi(r) and ηi(r) = ψ−1

i (r) in different intervals. In Figures 2, 3, and 4, we show the profile of
functions ηi(r) for the different cases of the previous lemma.

Remark. We point out that the solution r(t) of (23) is given by r(t) = ηi(t+ ψi(r0)) and
satisfies the following qualitative properties:

In case (i) of Lemma 7,

limt→∞ r(t) = R1 if r0 ∈ (R1, r
∗),

r(t) ≡ R1 if r0 = R1,
limt→∞ r(t) = R1 if r0 ∈ (R0, R1),

r(t) ≡ R0 if r0 = R0,
limt→t∞ r(t) = 0 if r0 < R0 with t∞ = ψ(0)− ψ(r0),

r(t) = 0 if r0 < R0 and t ≥ t∞.
In case (ii) of Lemma 7,

limt→∞ r(t) = R1 if r0 ∈ (R0, r
∗),

r(t) ≡ R0 if r0 = R0,
limt→t∞ r(t) = 0 if r0 < R0 with t∞ = ψ(0)− ψ(r0),

r(t) = 0 if r0 < R0 and t ≥ t∞.
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Figure 3. (Case (ii) of Lemma 7.) Plot of η1(s) and η2(s) for k(r) = r − 2 and n = 2.
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Figure 4. (Case (iii) of Lemma 7.) Plot of η(s) for k(r) = r − 1 and n = 2.

In case (iii) of Lemma 7,{
limt→t∞ r(t) = 0 if r0 ∈ (0, r∗) with t∞ = ψ(0)− ψ(r0),

r(t) = 0 if t ≥ t∞.

As mentioned before, in case (ii) of Lemma 7 we observe that if r0 < R0, then r(t)
converges in finite time to 0 and limt→∞ r(t) = R0 when r0 > R0. One interesting point is to
know how to choose the forcing term k(r) in order to have r(t) converging to R0 in finite time
(assumed r0 > R0). In the next lemma we study this issue.
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Lemma 8 (stabilization in finite time of radial solutions). Let r∗, R0 be such that r∗ > R0 > 0
and k(r) satisfying

−n− 1

r
− k(r) < 0 for r ∈ (R0, r

∗),(29)

−n− 1

R0
− k(R0) = 0,(30)

0 < −
∫ r∗

R0

dr

−n−1
r − k(r)

<∞.(31)

Then, for any r0 ∈ (R0, r
∗), the solution of (23) is given by

r(t) =

{
η(t+ ψ(r0)) if t ∈ [0, ψ(R0)− ψ(r0)],

R0 if t > ψ(R0)− ψ(r0),

where η ≡ ψ−1 with ψ(r) given by decreasing function

ψ(r) =

∫ r

R0

ds

− (n−1)
s − k(s)

.

In particular, the above conditions are fulfilled for the following Hölder continuous function:

k(r) = −n− 1

R0
+ C(r −R0)γ ∀r ∈ [R0, r

∗],

with γ ∈ (0, 1) and C > 0 big enough. In fact, for any R0 > 0 and γ ∈ (0, 1) there exists
C∗ > 0 such that, if C ≥ C∗, function

kR0,γ,C(r) =

{
n−1
R2

0
(r −R0)− n−1

R0
if r < R0,

−n−1
R0

+ C(r −R0)γ if r ∈ [R0, r
∗]

(32)

satisfies conditions (29)–(30)–(31) for r ∈ [R0, r
∗], k(r) = mr + c, with c2 = 4m(n − 1)

and R0 = −c
2m , for r < R0. Therefore the corresponding solution of (23) is given by r(t) =

η(t+ ψ(r0)) as before and verifies
limt→t+∞ r(t) = R0 if r0 ∈ (R0, r

∗) with t+∞ = ψ(R0)− ψ(r0),

r(t) ≡ R0 if r0 ∈ [R0, r
∗) and t ≥ t+∞,

limt→t−∞ r(t) = 0 if r0 < R0 with t−∞ = ψ(0)− ψ(r0),

r(t) = 0 if r0 < R0 and t ≥ t−∞.

Remark. We point out that the function k(r) given by (32) is Hölder but not Lipschitz
continuous since limr↓R0 k

′(r) = ∞. In fact, it is easy to show (as in [2]) that if, for R0 > 0,
conditions (30)–(31) are satisfied, then k(r) cannot be Lipschitz in [R0, r

∗).
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Figure 5. Plot of η1(s) and η2(s) for k(r) given by (32) with R0 = 1, m = 1, c = −2, γ = 1/2, C = 1, and
n = 2.

5. Some qualitative properties of the evolution of Ut,Γt.

Theorem 9. Let {Ut}t≥0 be the set evolution given by (15) under the action of the geometric
flow (1)–(4) and k0 = minx∈Rn k. Then if for some x0 ∈ Rn and r0 > 0, U0 ⊆ Br0(x0), then
Ut ⊆ Br(t)(x0) ∀ t ≥ 0, where r(t) is given by (26) or (27) according to the sign of k0.

Proof. Let v(t, x) be the corresponding solution of the equation

∂v

∂t
= div

( ∇v
|∇v|

)
|∇v|+ k0|∇v|,

with the same initial datum as indicated before. Then v is a subsolution of the original problem
and, by the comparison principle given in Theorem 1, we conclude that Ut ⊆ Br(t)(x0).

Remark 6. From the above theorem we obtain that Ut is bounded ∀t ≥ 0 and thatBr(t)(x0)
provides an upper estimate of the set evolution. In particular, according to the expressions
(26)–(27), Ut vanishes in finite time if k0 is positive or if k0 is negative and r0 <

1−n
k0

. Therefore,
in any case, if U0 is small enough, Ut vanishes in a finite time.

Theorem 10. Let {U1
t }t≥0, {U2

t }t≥0 be two set evolutions given by (15) under the action of

the geometric flow (1)–(4). If U1
t ∩ U2

t = ∅ for t ∈ [0, T ], then the evolution level set Ut for
U0 = U1

0 ∪ U2
0 is given by Ut = U1

t ∪ U2
t for t ∈ [0, T ].

Proof. Let u1(t, x) and u2(t, x) be the solutions of (1)–(4) taking as initial data the distance
function (18) for U0 and U1, respectively. By the definition of the distance function (18) and

Theorem 9 we obtain that for ε < 1, U1,ε
t = {x ∈ Rn : u1(t, x) ≤ ε} and U1,ε

2 = {x ∈ Rn :
u2(t, x) ≤ ε} are compact sets in Rn. We are going to show that if ε is small enough, then

U1,ε
t ∩ U2,ε

t = ∅ for t ∈ [0, T ]. Indeed, if we assume the opposite, that is, that for any ε < 1

there exists (tε, xε) ∈ U1,ε
t ∩ U2,ε

t , then as {(tε, xε)}ε<1 is a bounded sequence, there exists a
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subsequence εn ↓ 0 such that (tεn , xεn) → (t∗, x∗) with t∗ ∈ [0, T ]. Then u1(t∗, x∗) ≤ 0 and

u2(t∗, x∗) ≤ 0 and therefore (t∗, x∗) ∈ U1
t ∩ U2

t , which is in contradiction with the assumption

U1
t ∩ U2

t = ∅. Let us take ε > 0 such that U1,ε
t ∩ U2,ε

t = ∅. We define the nondecreasing
function

φε(s) =

{
s if s < ε,
ε if s ≥ ε.

Then, for any ε > 0, functions φε(u
1(t, x)) and φε(u

2(t, x)) are solutions of (1)–(4). We point

out that as U1,ε
t , U2,ε

t are compact sets, then the distance between them is positive and then
the function defined by

u(t, x) =


φε(u

1(t, x)) if φε(u
1(t, x)) < ε,

φε(u
2(t, x)) if φε(u

2(t, x)) < ε,
ε otherwise

is well defined for t ∈ [0, T ], it is a solution of (1)–(4), and it satisfies that

{(t, x) ∈ [0, T ]×Rn : u(t, x) < 0} =U1
t ∪ U2

t .

This concludes the proof of the theorem.

Remark 7. From the above theorem we obtain that, for small times, the evolution of the
set Ut is local in the sense that if U0 = ∪kUk0 , where {Uk0 } are connected sets such that

distance(Uk0 , U
k′
0 ) > δ > 0 for k 6= k′, then Ukt ∩ Uk

′
t = ∅ for t > 0 small enough. In

consequence, each connected set Uk0 evolves in an independent way during the interval [0, t∗]

with t∗ such that distance( Ukt , U
k′
t ) > 0 ∀ t ∈ [0, t∗].

6. Numerical discretization of (1)–(4). The discretization scheme we propose is based
on the general approach introduced in [26]. More sophisticated implicit numerical schemes for
mean curvature motion have been proposed in [31]. We use an explicit finite difference method
where the mean curvature term is discretized using central differencing and the forcing term is
discretized using the upwind scheme proposed in [26] (sections 6.2 and 6.3). A more detailed
study about this kind of upwind scheme for first order geometric flows has been presented
in [9].

Let tn = n · ∆t and {xk} be the time and spatial discretization lattice. The ways the
forcing term and the mean curvature term are discretized is different. For the forcing term
we use the following upwind scheme:

km,k|∇u|(tm, xk) ≈

 km,k

√∑n
i=1

(
max

{
max{u+

xi , 0},min{u−xi , 0}
})2

if km,k ≥ 0,

km,k

√∑n
i=1

(
max

{
min{u+

xi , 0},max{u−xi , 0}
})2

if km,k < 0,

where km,k = k(tm, x
k) and

u−xi =
u(tm, x

k)− u(tm, x
k −∆xiei)

∆xi
,

u+
xi =

u(tm, x
k + ∆xiei)− u(tm, x

k)

∆xi
,
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∆xi is the discretization step in the spatial variable xi, and {ei = (0, . . . , 1︸︷︷︸
i

, . . . , 0)}i=1,...,n

are the vectors of the standard basis. For the mean curvature operator we use the following
discretization:

div

( ∇u
|∇u|

)
(tm, x

k) ≈
{ ∑n

i=1 uxixi −
∑n

i,j=1

uxiuxj∑n
i=1(uxi)

2uxixj if
∑n

i=1 (uxi)
2 > 0,

0 otherwise,

where

uxi =
u(tm, x

k + ∆xiei)− u(tm, x
k −∆xiei)

2∆xi
,

uxixj =


u(tm,xk+∆xiei)−2u(tm,xk)+u(tm,xk−∆xiei)

(∆xi)
2 if i = j,∑

h1,h2∈{−1,1} h1h2u(tm,xk+h1∆xiei+h2∆xjej)

4∆xi∆xj
otherwise.

By combining the discretization of the forcing term and the mean curvature term we
obtain the following explicit discretization scheme for the full PDE:

u(tm+1, x
k)− u(tm, x

k)

∆t
= div

( ∇u
|∇u|

)
(tm, x

k) + km,k|∇u|(tm, xk).(33)

In the image boundary we assume the usual homogeneous Neumann boundary condition.
From the above numerical scheme, we observe that u(tm+1, x

k) is computed as a nonlinear
combination of {u(tm, x

k′)}k′∈N ′ , where {xk′}k′∈N ′ represents a neighborhood of xk. We are
going to fix a CFL condition so that the diffusion coefficient associated to the term u(tm, x

k)
is positive. First, in the case of the forcing term, we take into account that if we denote by

umax = {u(tm, x
k′′) : k′′ ∈ N ′ : |u(tm, x

k′)− u(tm, x
k)| ≤ |u(tm, x

k′′)− u(tm, x
k)| ∀k′ ∈ N ′},

then √√√√ n∑
i=1

(
max

{
max{u+

xi , 0},min{u−xi , 0}
})2 ≤ |u(tm, x

k)− umax|

√√√√ n∑
i=1

1

(∆xi)
2 ;

on the other hand, in the case of the mean curvature operator the absolute value of the
diffusion coefficient associated to u(tm, x

k) is given by

n∑
i=1

2

(∆xi)
2 −

n∑
i=1

(uxi)
2∑n

i=1 (uxi)
2

2

(∆xi)
2 ≥

n∑
i=1

−2

(∆xi)
2 +

2

mini (∆xi)
2 > 0.

Therefore, based on these expressions we propose the following CFL type condition for the
choice of the time step ∆t:

∆t

 n∑
i=1

2

(∆xi)
2 −

2

mini (∆xi)
2 + ‖k‖∞

√√√√ n∑
i=1

1

(∆xi)
2

 < 1;



LEVEL SET REGULARIZATION USING GEOMETRIC FLOWS 1509

we point out that this CFL type condition does not guarantee the L∞ stability of the scheme.
It is well known that in contrast with the solution of the continuous problem, in the discrete
case, the explicit finite difference scheme for the mean curvature operator does not preserve
the L∞ norm. So, as proposed in [1], we force a local L∞ norm preservation condition by
introducing the following modification in the scheme:

u(tn+1, xk) = T
M(u,n,k)
m(u,n,k)

(
u(tn, xk) + ∆t

(
div

( ∇u
|∇u|

)
|∇u|+ k|∇u|

)
(tn, xk)

)
,

where m(u, n, k) = minB1(xk) u(tn, x), M(u, n, k) = maxB1(xk) u(tn, x), B1(xk) is the ball

centered in xk with radius 1, and Tb
a(s) is the truncation function

Tb
a(s) =


a if s < a,
s if a ≤ s ≤ b,
b if s > b.

For simplicity in the exposition we choose the radius equal to 1 but, of course, we can use a
radius bigger than 1.

We choose as initial datum u0(x) an approximation of the signed distance function dU0,β(.).
To compute such approximation we use the following fast scheme based on the morphological
operators erosion, Et(U0), and dilation, Dt(U0), using a ball of radius t as structuring element:

dU0,β(x) ≈
{

− sup{t : x ∈ Et(U0)} if x ∈ U0,
inf{β, inf{t : x ∈ Dt(U0)}} if x /∈ U0.

We use t ∈ N and Et(U0), Dt(U0) are estimated by iterations of erosion and dilations computed
with t = 1, that is, we use that

Et(U0) = E1 ◦ · · · ◦ E1︸ ︷︷ ︸
t

(U0), Dt(U0) = D1 ◦ · · · ◦D1︸ ︷︷ ︸
t

(U0).

In general, as explained in [26], the distance function is usually computed only in a neighbor-
hood of ∂U0 and recomputed after a number of iterations. However, in this paper we do not
recompute the distance function because we are interested in the long time behavior of the
solution u(t, x) of (1).

7. Application of (1) to level set regularization. Let U0 ⊂ Rn be an open bounded set
and let h(x) be a Lipschitz bounded function satisfying

U0 = {x ∈ Rn : h(x) < 0}.

We are going to choose k(x) in the following way:

kα,γ (x) = φα,γ(h(x)),

where φα,γ : R→ R is the increasing function given by

φα,γ(s) =

{
α · s if s ∈ [−1, 1],

α · sgn(s)(|s− 1|γ + 1) otherwise.
(34)
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The parameter α > 0 is introduced to balance the mean curvature term and the forcing term.
Here sgn(.) denotes the sign function. Parameter γ > 0 represents the Hölder continuity
coefficient of the forcing term when |h(x)| > 1. Taking into account Remark 5 we observe
that in the points where k(x) is nonnegative (that is, in Rn −U0), Ut tends to shrink, and in
the case k(x) is negative (that is, in U0), Ut tends to expand if the mean curvature in such
point is small enough, and otherwise it tends to shrink. In this way Ut tends to regularize
the boundary of U0 and it also removes the connected components of U0 with a small size.
Following the type of problem we deal with, there are different ways to choose function h(x).
A basic choice is to take h(x) = dU0,β(x) and then kα,γ (x) given by

k1
α,γ

(x) = φα,γ(dU0,β(x)).(35)

We point out that, in radial coordinates, if U0 = Br0(x0) and if we choose as forcing term
k1
α,γ

(x), with γ = 1, then Ut = Br(t)(x0), where r(t) satisfies

{
dr
dt (t) = −n−1

r(t) − α(r(t)− r0) for r ∈ [0, r0 + S),

r(0) = r0,
(36)

for some S > 0. We observe that this is a particular case of the forcing term considered in
Lemma 7 with m = α and c = −αr0. Then, using the result quoted in Lemma 7 we obtain
the following.

Theorem 11. Let Ut be the evolution of the set U0 = Br0(x0) under the action of the geomet-
ric flow (1)–(4) with k(r) = φα,1(dU0,β(x)). Then Ut = Br(t)(x0), where r(t) is a nonincreasing
function satisfying that

lim
t→∞

r(t) =
1

2
r0 +

1

2

√
r2

0 − 4
n− 1

α
,

if r0 ≥ 2
√

n−1
α , or

Ut vanishes in a finite time,

if r0 < 2
√

n−1
α .

Proof. It is a straightforward application of Lemma 7.

Remark 8. We point out that from the above theorem and Theorems 5 and 10 we obtain
that if we use as forcing term k(r) = φα,1(dU0,β(x)) and if U0 = ∪kUk0 , where {Uk0 } are con-

nected sets such that there existBrk0
(xk0) ⊆ Uk0 ⊆ Brk1 (xk1) with distance

(
Brk1

(xk1), Brk′1
(xk

′
1 )
)
>

δ > 0 for k 6= k′, then each Uk0 evolves in an independent way ∀ t > 0 and satisfies that
Brk0 (t)(x

k
0) ⊆ Ukt ⊆ Brk1 (t)(x

k
1), where rk0(t) and rk1(t) are the solutions of (36) for r0 = rk0 and

r0 = rk1 , respectively. In particular, if rk1 < 2
√

n−1
α , then Ukt vanishes in a finite time, and if

rk0 ≥ 2
√

n−1
α , then Ukt 6= ∅ and B

1
2
rk0+ 1

2

√
(rk0)

2−4n−1
α

(xk0) ⊆ Ukt ∀ t > 0.

In the case in which U0 is an image level set, that is, if U0 = U c0 = {x ∈ Rn : I(x) < c},
where I : Rn → R is an image, then we can choose h(x) depending of the image intensity
value. That is, we can choose h(x) = I(x)− c and take as forcing term
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k2
α,γ

(x) = φα,γ(I(x)− c).(37)

We notice that in this case, the forcing term depends on the image contrast: the higher the
level set contrast in the image, the closer it will be Ut to U0. As we will see later, in some
applications we are interested in the regularization of the image level set U0 = U c1,c20 = {x ∈
Rn : c1 < I(x) < c2}. In such case we can choose

k3
α,γ

(x) = φα,γ ((I(x)− c1)(I(x)− c2)) .(38)

In Figure 6 we show a 2D example of set U0, and the associated distance function dU0,β(x),
which we use to illustrate the shape of the set evolution Ut under the action of the geometric
flow (1)–(4). In Figures 7–15 we show the shape of Ut for different choices of the forcing term
k(x). In each figure, we include a link to a video to show the evolution of Ut. We point out
that in the case we choose as forcing term k1

α,γ(x), the solution, u(t, x), of (1)–(4) tends to a
nontrivial asymptotic state. We have included in U0 circles of different sizes and we observe,
as predicted by the theoretical results, that according to the values of α and γ and the circles
size, the circles vanish in finite time or they remain in the set Ut.

Figure 6. From left to right we show a silhouette (in black) used as initial set U0 and the signed distance
function dU0,β(x) scaled between 0 and 255 for visualization purposes.

Figure 7. Evolution of Ut for (1)–(4) without forcing term (k ≡ 0). From left to right we show (i) the
original set U0 where we illustrate with blue arrows the initial motion direction of Γ0, (ii) the set Ut for t = 50,
and (iii) the solution u(t, x) of (1)–(4) for t = 50 (video with the evolution of Ut and u(t, x)).

http://www.ctim.es/ami/videos/levels_a0_b1.gif
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Figure 8. Evolution of Ut for equation ∂u
∂t

= 0.1|Du|. From left to write we show (i) the original set U0

where we illustrate with red arrows the initial motion direction of Γ0, (ii) the set Ut for t = 50, and (iii) the
solution u(t, x) of (1)–(4) for t = 50 (video with the evolution of Ut and u(t, x)).

Figure 9. Evolution of Ut for equation ∂u
∂t

= −0.1|Du|. From left to write we show (i) the original set U0

where we illustrate with red arrows the initial motion direction of Γ0, (ii) the set Ut for t = 50, and (iii) the
solution u(t, x) of (1)–(4) for t = 50 (video with the evolution of Ut and u(t, x)).

Figure 10. Evolution of Ut for (1)–(4) using as forcing term k(x) ≡ 0.1. From left to right we show (i)
the original set U0 where we illustrate with blue arrows the initial motion direction with respect to the mean
curvature term and with red arrows with respect to the forcing term, (ii) the set Ut for t = 50, and (iii) the
solution u(t, x) of (1)–(4) for t = 50 (video with the evolution of Ut and u(t, x)).

http://www.ctim.es/ami/videos/levels_a01_b0.gif
http://www.ctim.es/ami/videos/levels_a-01_b0.gif
http://www.ctim.es/ami/videos/levels_a01_b1.gif
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Figure 11. Evolution of Ut for (1)–(4) using as forcing term k(x) ≡ −0.1. From left to right we show (i)
the original set U0 where we illustrate with blue arrows the initial motion direction with respect to the mean
curvature term and with red arrows with respect to the forcing term, (ii) the set Ut for t = 50, and (iii) the
solution u(t, x) of (1)–(4) for t = 50 (video with the evolution of Ut and u(t, x)).

Figure 12. Evolution of Ut for (1)–(4) using as forcing term k1α,γ(x) with α = 0.1 and γ = 0.5. From left
to right we show (i) the original set U0 where we illustrate with blue arrows the initial motion direction with
respect to the mean curvature term and with red arrows with respect to the forcing term, (ii) the set Ut for
t = 50, and (iii) the solution u(t, x) of (1)–(4) for t = 50 (video with the evolution of Ut and u(t, x)).

Figure 13. Evolution of Ut for (1)–(4) using as forcing term k1α,γ(x) with α = 0.1 and γ = 1. From left
to right we show (i) the original set U0 where we illustrate with blue arrows the initial motion direction with
respect to the mean curvature term and with red arrows with respect to the forcing term, (ii) the set Ut for
t = 50, and (iii) the solution u(t, x) of (1)–(4) for t = 50 (video with the evolution of Ut and u(t, x)).

http://www.ctim.es/ami/videos/levels_a-01_b1.gif
http://www.ctim.es/ami/videos/levels_a01_b1_p05.gif
http://www.ctim.es/ami/videos/levels_a01_b1_p1.gif
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Figure 14. Evolution of Ut for (1)–(4) using as forcing term k1α,γ(x) with α = 0.5 and γ = 1. From left
to right we show (i) the original set U0 where we illustrate with blue arrows the initial motion direction with
respect to the mean curvature term and with red arrows with respect to the forcing term, (ii) the set Ut for
t = 50, and (iii) the solution u(t, x) of (1)–(4) for t = 50 (video with the evolution of Ut and u(t, x)).

Figure 15. Evolution of Ut for (1)–(4) using as forcing term k(x) = kR0,γ,C(dU0,β(x)+R0), where kR0,γ,C(.)
is given by (32) and R0 = 3, γ = 0.5, and C = 1. From left to right we show (i) the original set U0 where
we illustrate with blue arrows the initial motion direction with respect to the mean curvature term and with red
arrows with respect to the forcing term, (ii) the set Ut for t = 50, and (iii) the solution u(t, x) of (1)–(4) for
t = 50 (video with the evolution of Ut and u(t, x)).

Next we present an experiment using the real 2D image, I : Ω ⊂ R2 → {0, 1, 2, .., 255},
shown in Figure 16(a). In this figure, we also show some level sets U c0 = {x : I(x) ≤ c}
for different values of levels c. Using the approach presented in [12], we consider the image
topographic map, that is, the collection of all its level sets {U c0}c=0,1,..,255. Then, for each level
c, we compute the level set evolution U ct = {x : u(t, x) ≤ c}, where u(t, x) is the solution of
(1)–(4). Then, for each time t we can recover a gray-level image It using the expression

It(x) = inf{c : x ∈ U ct }.(39)

In Figure 17, we show, for the level set U144
0 = {x : I(x) ≤ 144}, the distance function

dU144
0 ,β(x) and the solution u(t, x) of (1)–(4) for t = 10 and different choices of the forcing

term k(x). In Figure 18 we present the evolution of U144
t for t = 10 and in Figure 19 the

reconstruction of the image from the level sets using (39).

http://www.ctim.es/ami/videos/levels_a05_b1_p1.gif
http://www.ctim.es/ami/videos/levels_r0_3.gif
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(a) Original image (b) level set U58
0 = {x : I(x) ≤ 58}

(d) level set U94
0 = {x : I(x) ≤ 94} (e) level set U121

0 = {x : I(x) ≤ 121}

(e) level set U144
0 = {x : I(x) ≤ 144} (f) level set U175

0 = {x : I(x) ≤ 175}
Figure 16. We show a real image used in the experiments and some of its level sets Uc0 = {x : I(x) ≤ c}

for different values of levels.

Next, we present an experiment on a real 3D image in the context of medical image
segmentation. We use a CT (computed tomography) 3D scan, I(x) (shown in Figure 21),
of a patient suffering from severe aortic elongations. For medical diagnosis purposes, a seg-
mentation of the aortic lumen is required. Usually, an initial segmentation is obtained by
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(a) distance function for the level set U144
0 (b) regularization with ∂u

∂t = div( ∇u|∇u|)|∇u|

(c) ∂u
∂t = div

(
∇u
|∇u|

)
|∇u|+ k1

1,0.2(x)|∇u| (d) ∂u
∂t = div

(
∇u
|∇u|

)
|∇u|+ k2

1,0.2(x)|∇u|

(e) ∂u
∂t = div

(
∇u
|∇u|

)
|∇u|+ k1

1,0.5(x)|∇u| (f) ∂u
∂t = div

(
∇u
|∇u|

)
|∇u|+ k2

1,0.2(x)|∇u|

Figure 17. (a) Distance function of the real image shown in Figure 16 for the level set U144
0 . (b)–(f)

Evolution of the distance function dU144
0 ,β(x) under the action of (1)–(4) for t = 10 and different choices of the

forcing term k(x).

thresholding the intensity value of the CT image between two values c1 and c2, that is, the
set U0 = {x : c1 < I(x) < c2} is an initial segmentation of the aortic lumen. However (as
shown in Figure 21), this initial segmentation is inaccurate because other human organs in
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(a) level set U144
0 (b) regularization with ∂u

∂t = div
(
∇u
|∇u|

)
|∇u|

(c) ∂u
∂t = div

(
∇u
|∇u|

)
|∇u|+ k1

1,0.2(x)|∇u| (d) ∂u
∂t = div

(
∇u
|∇u|

)
|∇u|+ k2

1,0.2(x)|∇u|

(e) ∂u
∂t = div

(
∇u
|∇u|

)
|∇u|+ k1

1,0.5(x)|∇u| (f) ∂u
∂t = div

(
∇u
|∇u|

)
|∇u|+ k2

1,0.2(x)|∇u|

Figure 18. (a) level set U144
0 of the real image shown in Figure 16. (b)–(f) Regularization of the level set

U144
0 under the action of (1)–(4) for t = 10 and different choices of the forcing term k(x).

the CT image have similar intensity values and we cannot fix thresholds c1 and c2 such that
U0 contains properly just the aorta lumen. Therefore some kind of processing is required to
improve the quality of the initial estimation of U0. We are going to use (1)–(4) to regularize
the set U0 and provide a better segmentation of the aortic lumen. In Figure 20 we show a 3D
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(a) Original image (b) regularization with ∂u
∂t = div

(
∇u
|∇u|

)
|∇u|

(c) ∂u
∂t = div

(
∇u
|∇u|

)
|∇u|+ k1

1,0.2(x)|∇u| (d) ∂u
∂t = div

(
∇u
|∇u|

)
|∇u|+ k2

1,0.2(x)|∇u|

(e) ∂u
∂t = div

(
∇u
|∇u|

)
|∇u|+ k1

1,0.5(x)|∇u| (f) ∂u
∂t = div

(
∇u
|∇u|

)
|∇u|+ k2

1,0.2(x)|∇u|

Figure 19. (a) Real image shown in Figure 16. (b)–(f) Reconstruction of the image from the level sets
(using (39)) after regularization of the level sets using (1)–(4) for t = 10 and different choices of the forcing
term k(x).
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Figure 20. From left to right we show the level set U0 and Ut for t = 10 using (1)–(4) with the forcing
terms, k31.,0.2(x), k30.1,0.2(x), and k ≡ 0, respectively.

(a) original image and Γ0 (in black) (video) (b) Γ10 for k(x) = k3
1.,0.2(x) (video)

(c) Γ10 for k(x) = k3
0.1,0.2(x) (video) (d) Γ10 for k(x) ≡ 0 (video)

Figure 21. We show one slice of the original image and Γt = ∂Ut (in black) using (1)–(4) with different
forcing terms. For each image we also include a link to a video with the full 3D image.

http://www.ctim.es/ami/videos/ContoursPac101.gif
http://www.ctim.es/ami/videos/b02_a1_dt001_T10_Contours.gif
http://www.ctim.es/ami/videos/b02_a01_dt006_T10_Contours.gif
http://www.ctim.es/ami/videos/b02_a0_dt01_T10_Contours.gif
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(c) U10 using (1)–(4) for k30.1,0.2(x) (video) (d) U10 using (1)–(4) for k(x) ≡ 0 (video)

(a) U0 = {x : c1 < I(x) < c2} (video) (b) U10 using (1)–(4) for k31.,0.2(x) (video)

Figure 22. We show one slice of the level set U0 = {x : c1 < I(x) < c2} as well as Ut = {x : u(10, x) ≤ 0}
where u(t, x) is the solution of (1)–(4) for t = 10 with different forcing terms. For each image we also include
a link to a video with the full 3D sequence.

representation of the sets Ut for different forcing terms. We use as the forcing term k(x), the
one given in (38). In Figure 21 we show Γ0 = ∂U0 the initial contours as well as Γt = ∂Ut
for different choices of the forcing terms. We observe that by adjusting the parameters α and
γ in the forcing term (38) we obtain different degrees of regularization; we point out that in
the case of no forcing term (k ≡ 0) we regularize too much and the contour Γt tends to move
away from the aorta lumen contour actual location. In Figures 22 and 23 we show the level
set and distances associated to the different forcing terms.

8. Conclusions. The main limitation of the usual geometric flows without forcing term
is that they tend to regularize too much the level sets and the asymptotic states are trivial.
By including an appropriate forcing term in the equation we obtain more suitable models for
level set regularization which can be useful for nonlinear filtering and image segmentation.
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(a) signed distance dU0,β(x) (video) (b) u(10, x) sol. of (1)–(4) for k3
1.,0.2(x) (video)

(c) u(10, x) sol. (1)–(4) for k3
0.1,0.2(x) (video) (d) u(10, x) sol. (1)–(4) for k(x) ≡ 0 (video)

Figure 23. We show one slice of the signed distance function dU0,β(x) as well as the solution of (1)–(4) for
t = 0 with different forcing terms. For each image we also include a link to a video with the full 3D sequence.

In this paper we show some mathematical results on the solutions of these equations for a
forcing term k(x) being merely a bounded Hölder continuous function. We also studied in
detail the shape of some radial solutions with nontrivial asymptotic states and we also present
some results on the evolution of the level sets. We perform some experiments, using a basic
explicit finite difference numerical scheme, to illustrate the level set regularization obtained
with the proposed equations and the results are very promising. The level set is regularized by

http://www.ctim.es/ami/videos/DistancePac101.gif
http://www.ctim.es/ami/videos/b02_a1_dt001_T10_Distance.gif
http://www.ctim.es/ami/videos/b02_a01_dt006_T10_Distance.gif
http://www.ctim.es/ami/videos/b02_a0_dt01_T10_Distance.gif
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removing high curvature areas but at the same time it remains close to the original level set
shape. As showed in the experiments, this behavior is quite useful in the context of nonlinear
filtering or image segmentation. In particular, we show some interesting results on medical
image segmentation.
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