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Abstract— In the present paper we consider a boundary homogenization problem for the Poisson’s equation
in a bounded domain and with a part of the boundary conditions of highly oscillating type (alternating
between homogeneous Neumman condition and a nonlinear Robin type condition involving a small param-
eter). Our main goal in this paper is to investigate the asymptotic behavior as € — 0 of the solution to such a
problem in the case when the length of the boundary part, on which the Robin condition is specified, and the
coefficient, contained in this condition, take so-called critical values. We show that in this case the character
of the nonlinearity changes in the limit problem. The boundary homogenization problems were investigate
for example in [1, 2, 4]. For the first time the effect of the nonlinearity character change via homogenization
was noted for the first time in [5]. In that paper an effective model was constructed for the boundary value
problem for the Poisson’s equation in the bounded domain that is perforated by the balls of critical radius,
when the space dimension equals to 3. In the last decade a lot of works appeared, e.g., [6—10], in which this
effect was studied for different geometries of perforated domains and for different differential operators. We
note that in [6—10] only perforations by balls were considered. In papers [11, 12] the case of domains perfo-
rated by an arbitrary shape sets in the critical case was studied.
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Let Q be a bounded domain in R* M {x, > 0}, the G, = U (asi0 + &) = U I,
boundary of which consists of two smooth parts jez' jez'
0Q=T,ul’, where T,=0QnN{x, =0 =[],
[>0, T, =0QnN {x, > 0}. The consideration of the
case concerning higher dimensions will be the object

where 7' = 7 x {0} is a set of vectors j = (j;,0) and j, is
integer. Denoteby Y, ={j € Z'| lgj c{x=(x,0): x €

of a separated work by the authors. [+ 2e, [ —2€] x {0}}. Consider ¥/ = €Y, +¢j and
Denote by ¥ ={01.00-2 <y <2, iy = 10, L=J 1.
JjeYe

0O <y<l}cl,le (O,%). For a small parame-

tere > 0 and 0 < g, < € we introduce the sets

! The article was translated by the authors.
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It is easy to see that // < ¥/. Denote by Ye = FZ\Z.
Note that, for Vj e Z', |I/| = 2a.l,, |I.| = dae™".

In the domain © we consider the following bound-
ary value problem

“Au, = f, xeQ
d. U, =BE)ow,), xel
_ (D
o U, =0, Xx€V,
u, =0, xel,
*(12 (12

where a, = Cyge ¢ , Ple) =e®, o #0,C, > 0, o(u) €
C'(R) and (for simplicity) ¢(0) = 0 and there exist
positive constants k; and k,, k; < k, such that

k < 6'u) < k. )

The consideration of much more general nonlinear
terms ¢ will be the object of a separated work by the
authors.

Remark 1. There are many applied models that lead
to similar formulations as the stated in problem (1).
For instance, the consideration of energy balance cli-
mate models for a deep ocean (see, e.g., [14]) leads to

a quite similar problem where now boundary I', corre-
sponds to a part of the atmospheric surface (in this
case the x; coordinate must be substituted as x; =
L, —x, with x,€(0,L); X =L, representing the
atmosphere surface and x; = 0 the bottom of the deep
ocean). If such domain is taken in a neighborhood of
the ice sheet, it is well-know, that there is a mushy
region on the atmosphere surface in which there is a
highly alternating coexistence of ice pieces and water
(see, e.g., [15]). In a first approach to the modeling of
the phenomenon it can be assumed that the formation
of this set of infinitely many very small pieces of ice is
due to the presence of a nonlinear Robin type condi-
tion which is surrounded by pure homogeneous Neu-
mann boundary conditions in the exterior to the small
pieces.

The weak solution to the problem (1) is defined as

afunctionuy, € H (Q, I'}) such that it satisfies integral
identity

o
IVuSV\pdx tet Ic(us)wdx, = J' fwdx, 3)
Q L. Q

where y € H (Q, I'}) is an arbitrary test function.

It is well known (see [13]) that the problem (1) has
a unique weak solution and for that solution we have
following estimate

0(.2

+ e2€||u€||L2(lE)

<K, (4)

”uE”Hl(Q)
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where K, here and below, is a positive constant that
does not depend on €.

The estimate (4) implies that there exists a subse-
quence (we preserve for it the notation of the original
sequence) such that as € — 0 we have
H'(Q), (5)

u, — u, weakly in

u, = u, strongly in Lz(Q). (6)

2 2
o

o
Theorem 1. Let a, =Cyee ¢, Pe) =e®, o #0,
C, > 0, and u, be solution to the problem (1).
Then the function u, € H 1(Q, I')) defined in (5) and

(6) is a weak solution to the following boundary value
problem

_AuO = f, X € Q,
Oty — S H(up) =0, xeTy, (7)
o
llO = O, X € F],

where H(u) is the unique Lipschiz continuous and
increasing function satisfying

TH (u) = 20,02Co0(u — H(u)). (8)

Proof. We introduce the auxiliary functions w/ and

qg as weak solution to the following problems

Aw] =0, xeTJ\T],

wi =1 xedT}, )
w/ =0, xedTll,
and
Al =0, xeTI\,
gl =1, xel, (10)
@ =0, xedTy,

Here, 7/ denotes the ball of radius r centered at the
point (g/,0).

Note that, due to symmetry, wg and qgj are also a
solutions of the corresponding boundary value prob-

lems in the domains (7’854)+\];£ and (T7),)" respec-
tively, where 4™ denotes set A N {x, > 0} for A € [RZ,
Awl =0, xe (TI)\TL,
wg.: 0, xe aTS{ft N {x, > 0}, an
w, =1, xe€dT,] Nnfx, >0},
0, =0, xe =0 N (T\T)).
Note that we can find explicit solution to this

problem
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In(4r/€)

") = da o)

Analogously

Agl =0, xe (Ty)'\T.,

| gl =1, xe i, )
¢ =0, xedTy,Nix, >0},
0l =0, xe (TN ix, = 0Y\X,
where je Y,, I/ = aly +¢.
Define
w(x), xe(Ty)'\T],je Y,
Wx) =1l xe (@) (13)
0, xeQ\lJ @),
JeYe
where R = {x, > 0},
@), xe(Ti)', Jje,
CD=10, xea\J @ (%
JETe
We have W,,0, € H'(Q,T,) and
W, —0, weaklyin H'(QT)), €—0. (15)

Lemma 1. Let W, be a function defined by the for-

mula (13), Q, be a function defined by the formula (14).
Then

||W€ - QS”H](Q) < K\/E
Proof. Note that for an arbitrary function y €
H'(T,) such that y = 0 on / we have
Vq!Vydxdx, = 0.
()"

We consider y = w’/ — ¢/ as a test function in the
above equality and get

[ Vaivow! - ghxdx, = 0. (16)

@

In addition, we have

I Vw/V(w! — g))dxdx,

(T4

-]

aTafE N, >0}

J () J (17)
avws (Ws —4; )dS.

By subtracting (16) from (17) we derive
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0T s O x> 0}

ot M {x, > 0}

lj

Fig. 2. Domain 7,;{\T/ and /{.

\V(w! — g} dx,dx,

(T34) o ; (18)
= j avwg (Ws: — 4. )dS
AT x>0}
Note that ng(x) — _In@r/e) and astjL,Tf =
In(4a,/€) %
—é. Hence, (17) implies that
a. In(4a,/¢)
i i 1 J J
IV, = gDl s o) S———— w! - g]|ds
€ NI a€|1n(4as/8)|aTj mj;xpo) € €
1 J J _
R —— w, — ds =J..
[In(4a /¢) M = deld = e

AT N{y,>0)

Given that w/ —¢/ =0 if ye Iy and using the
embedding theorem, we get

1/2
K i 2
JeS /g){(TL IV, ~ ) dy} )
< KelVO¥! = gl 2y
From here we derive an estimate
IV = gDl 2 ) < KE
From this estimate it follows that
W, = Ol < KN (20)

This completes the proof.

We proceed to the proof of theorem. By using

monotonicity of the function c(u) we derive that u,
satisfies the integral inequality
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J. VvV —u,)dx
o)

o? 21)
‘et j S0 (v — u)dx; = j F(v — up)dx
A Q

for an arbitrary test function v e H'(Q, ).
We take v = y — O, H (V) as a test function in (21),

where y € C“(ﬁ), Y(x) = 0 in neighbourhood of T',
and H(u) is solution to the functional equation (8).
We get

[ Vow - 0.HW)V(w - 0.H (W) - u)dx
Q

2

ror lj oty - HW)(W - HW) —u)dx,  (22)
> [ Fow -0t (w) ~ u)ax.
We rewrite in:quality (22) in the following way
l V(y - W HW)V(y — Q.H(Y) - u)dx
(23)

~[ V(. ~ WO H W)V (y - 0.H (y) - u)dx
Q

+et [ oty = HOw) (W — Hy) —u)dx,
lE
> [ /v - QH() - u)dx.
Q

From the fact, that O, — 0 as € — 0 weakly in
H'(Q,T),), we have

lim [ £y = Q.H(W) —u)dx = [ Oy —u)dx, (24)
Q Q
tim [ VyV(y - Q.H(y) - u)dx
¢ (25)
= j VyV(y — up)dx.
Q
Lemma 1 implies that
lim [V((Q. = W) HW)V (y—O.H ()~ )dx =0.
Q

Consider the remaining integrals in (23). Denote by

I, =~ VW HW)V(y - O.H(y) - u)dx
Q

= [ VILVIHW) (v - Q.H(W) - ubdx + 0
Q

where o, > 0 ase — 0.
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It is easy to see that

I, = =[ VW {HW) (= W Hp) - u)jdx + G
Q

-3

JeT,

[ Vv Xy - W H O - udx+ i,
ThoNT]

==y j A W/ HW) (W — u)ds

Y AT x>0}

JeTe 3T A >0)

(26)

WL H (W) (W — H(W) — u)ds + @,

where @, = 0,& — 0.

. ; 4
Given that ow!/l|._, = =
ez, eln(4a,/€)
2; and using the results of the paper [3]
- +€ln(4C,)
we derive
~lim > j dyw! H(y)(y — u,)ds
e AT x>0}

. 4
=lim———— HW)(y —u)ds (27)

0 o — eln(4C0),;‘ VIVt

¢ 0T340, >0}
=T [ Hop)(y — up)ds.
o

Let us find the limit of the expression

-2 O W/ H(W)(y — H(Y) — u)ds

J=Ye AT Ay >0)
+ et [ oty — H)(w - H(y) - u)dx,
/E

_ (azco)—leazls
A 1-ea’In(4C,)
x [ H@W - Hy) - u)ds

aTHQ x>0}

+ e[ oty — HOp)(y — HOy) - u)dx

I

= [ oty = HO)W - Hy) - u)dx,

lf.

o’/e
e
- H(y)(y
oC,y 7 ; (28)
0.7€Ye 577 A, >0)
- HW)—u)ds +6, =D, +4,,

where &, > 0,€ — 0.
DOKLADY MATHEMATICS Vol. 97 No.3 2018



HOMOGENIZATION OF BOUNDARY VALUE PROBLEMS 275

We introduce function m(y) e H'((T;")"), withy =

(1, »,), as a weak solution to the following boundary
value problem

Am=0, ye(@')
J,m=1 ye Iy
(29)
om=20, ye@ny
d,,m=0, ye @T)NGUET)).
Consider
A _pJ .
ml (x) = em(x s j xe ()" (30)
€
The function mgj (x) is a solution to the problem
Am! =0, xe(T))
—1
oum! = &% “h 9Ty
vt T x € ( aE) 31)
o ml =ea;', xel
d,m! =0, xe@T)Y NI vET)).

Denote by 4, = H(y)(v — H(y) — u,). Then

2lea, !
T

j hds — ea;' j hdx,
i

@T,)"

=| [ V.amiViax < IVomdllp o VAN sy 32

Ty
Due to the fact that

112
IV el

2 2
2riyy = € IV, m) ) < Ke',

2
2y
we have

Ji2
Z||me£||Lz(@£)+) < Ke. (33)

JeYe

From (32), (33) we derive

eaz/eﬂj hodx, _eaz/gz j hds

2/ 4 v
07, JeTe 9T, N{x,>0)

-1 ) >
<5y IV Wy, + AV Al < KAe,

JjeYe

if § = Ve.
Estimate (34) implies that the limit as € — 0 of the

expression D, in (28) is equal to zero. Indeed, from the
fact that H(u) satisfies the functional equation (8) we
derive

(34)

DOKLADY MATHEMATICS Vol.97 No.3 2018

1D, = | [ oty = Q) = Hp) — )iy
I

eaz/s

-5 HO)(y = HY) = ue)ds
o Co JeYe AT Nix,>0}
< T eoczls H — H - ue dx

e /j W — HW) — up)dx,
0c2/£
e Hy)(y = H(y) —t)ds
0€2C0 JEZY: J-

€ BTHQ N{x,>0)}

+

alle T
e HGW_H(W))_H ” H(W)} (35)

A o0 Co

X (y— H(Y)— u)dx, | < K-e.

Here we used that the second module equals to
zero due to Eq. (8).

Therefore, from (22)—(35) we conclude that
u,e H l(Q, I')) satisfies the following inequality

[ Vwvoy - udx + Z [ H - ),
i “r (36)
> [ fly - upax,

Q

where \y is an arbitrary function from H'(Q,T,), H(u)
satisfies the functional equation (8). This concludes
the proof.
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