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Abstract In previous works, the homogenization of the problem with p-Laplace diffusion
and nonlinear reaction in the boundary of periodically distributed particles in n-dimensional
domains has been studied in the cases where p ≤ n. The main trait of the cases p ≤ n is
the existence of a critical size of the particles, for which the nonlinearity arising of the limit
problem does not coincide with the non linear term of the microscopic reaction. The main
result of this paper proves that in the case p > n there exists no critical size.
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1 Introduction

The main goal of this paper is to study the behaviour arising in the homogenization process
applied to chemical reactions taking place on fixed-bed nanoreactors, at the microscopic
level, on the boundary of the particles
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⎧
⎨

⎩

−�puε = f (x) x ∈ �ε,

−∂νp uε ∈ ε−γ σ (uε) x ∈ Sε,

uε = 0 x ∈ ∂�,

(1)

for a very general type of chemical kinetics (here given by the maximal monotone graph σ of
R
2). Here the diffusion is modeled by the quasilinear operator �puε ≡ div(|∇uε|p−2∇uε)

with p > 1. Notice that p = 2 corresponds to the linear diffusion operator, and that p �= 2
appears in turbulent regime flows or non-Newtonian flows (see [2]). The “normal derivative”
must be then understood as ∂νp uε = |∇uε|p−2∇uε ·ν, where ν is outward unit normal vector
on the boundary of the particles Sε ⊂ ∂�ε. In fact we shall consider the structural assumption

n < p < +∞ and n ≥ 3. (2)

In previous works, the cases where p ≤ n have been studied (see [3–6,9,10,12] for the
details). The main trait of this cases is the existence of a critical size of the particles, for
which the non linear term arising of the limit problem does not coincide with the non linear
term of the microscopic reaction. If the size of the particles is larger than this critical size
then the limit problem is of the form

{
−�pu + Aσ(u) = f �

u = 0 ∂�
(3)

where A > 0. If the size of the particles is critical, the limit problem becomes
{

−�pu + B|H(u)|p−2H(u) = f �

u = 0 ∂�
(4)

where B > 0 and H is the solution of functional equation depending only on σ , n and the
shape of the particle.

The main result of this paper proves that for p > n there exists no critical size. That is, the
solution uε converges to the homogenized solution u of problem (3) where A is a constant
that will be specified later.

The plan of the rest of the paper is the following: Sect. 2 will be devoted to the statement
of the main results, whilst Sects. 3 and 4 are devoted to the proofs.

2 Statement of results

Definition 1 (Perforated domain �ε) Let � be a bounded domain in R
n , n ≥ 2, with a

smooth boundary ∂� and let Y = (−1/2, 1/2)n . Denote by G0 a smooth open set such that
G0 ⊂ Y . For δ > 0 and B an open set we define δB = {x | δ−1x ∈ B }. For ε > 0 we define
�̃ε = {x ∈ � | ρ(x, ∂�) > 2ε }. Let aε = C0ε

α , where α > 1 and C0 is positive number.
Define

Gε =
⋃

j∈ϒε

(aεG0 + ε j) =
⋃

j∈ϒε

G j
ε , (5)

where ϒε = { j ∈ Z
n : (aεG0 + ε j) ∩ �̃ε �= ∅}, Zn is the set of vectors z with integer

coordinates. Define Y j
ε = εY + ε j , where j ∈ ϒε . It is clear that Gε

j ⊂ Y ε
j . Define

�ε = �\Gε, Sε = ∂Gε, ∂�ε = ∂� ∪ Sε.

It can be checked that |ϒε| ∼= dε−n , for some constant d > 0, in the sense that |ϒε|/ε−n → d
as ε → 0.
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In this geometry we consider the problem
⎧
⎪⎨

⎪⎩

−�puε = f (x) x ∈ �ε,

∂νp uε + ε−γ σ (uε) = 0 x ∈ Sε,

uε = 0 x ∈ ∂�,

(6)

where �pu ≡ div(|∇u|p−2∇u), ∂νp u ≡ |∇u|p−2(∇u, ν), ν is the outward unit normal

vector to Sε and σ is a nondecreasing function such that σ(0) = 0 and f ∈ L p′
(�). In this

paper we will be interested in the case p > n and α > 1.
We define W 1,p(�ε, ∂�) as the closure in W 1,p of { f ∈ C∞(�ε) : f |∂� = 0}.

Definition 2 Let (�ε) be a sequence of domains �ε ⊂ � ⊂ R
n and ∂� ⊂ ∂�ε where � is

bounded.We say that the sequence has a uniformly bounded sequence of extension operators
in W 1,p if there exists a sequence (Pε) where:

Pε : W 1,p(�ε) → W 1,p(�) (7)

where Pεu|�ε = uε for every u ∈ W 1,p(�ε) and there exists Kp > 0 independent of ε such
that

‖∇Pεu‖L p(�) ≤ Kp‖∇u‖L p(�ε), for every ε > 0. (8)

Applying the techniques in [8] we can prove that

Lemma 1 The sequence (�ε) has an uniformly bounded sequence of extension operators.

We will use the existence of a Poincaré constant for W 1,p
0 (�), Cp,�, such that

‖v‖L p(�) ≤ Cp,�‖∇v‖L p(�), v ∈ W 1,p
0 (�). (9)

In fact we can also show the following, which is seldom stated

Theorem 2 Let p > 1. If there exists a sequence of uniformly bounded extension operators
in W 1,p

0 then there exists a uniform Poincaré constant for W 1,p(�ε, ∂�). In particular, if (8)

holds and Cp,� is a Poincaré constant for W 1,p
0 (�), then, K pCp,� is a Poincaré constant

for W 1,p(�ε, ∂�).

Proof We simply indicate that

‖v‖L p(�ε) ≤ ‖Pεv‖L p(�) ≤ Cp,�‖∇Pεv‖L p(�) ≤ Cp,�Kp‖∇v‖L p(�ε) (10)

which concludes the proof. ��
Our aim is to prove the following results

Theorem 3 Let n < p < +∞, α > 1, σ be a continuous nondecreasing function such that
σ(0) = 0, uε be the solution of (6) and let

γ ∗ = α(n − 1) − n. (11)

Then, Pεuε ⇀ u in W 1,p
0 (�) where u ∈ W 1,p

0 (�) is the unique weak solution of one of the
following problem
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1. If γ = γ ∗ then {
−�pu + Aσ(u) = f, �,

u = 0 ∂�
(12)

where A = Cn−1
0 |∂G0|.

2. If γ < γ ∗ then {
−�pu = f �,

u = 0 ∂�.
(13)

Lemma 4 Let n < p < +∞, α > 1 and σ ≡ 0. Then Pεuε ⇀ u in W 1,p
0 (�) where u is

the unique solution of (13) (equivalently (12) for σ ≡ 0).

Theorem 5 Let n < p < +∞, α > 1, γ > γ ∗ and σ ∈ C1(R) nondecreasing function such
that σ(0) = 0. Then, there exists u ∈ W 1,p

0 (�) such that, up to a subsequence, Pεuε ⇀ u in

W 1,p
0 (�) and

σ(u(x)) = 0, a.e. x ∈ �. (14)

In other words, u(x) ∈ σ−1(0) for a.e. x ∈ �.

Remark 1 In this setting (p > n) there exists no critical exponent α∗. This is quite natural
since, for p < n the critical exponent results α∗ = n

n−p . The case p = n was done in [9].

We will use the following comparison result, which will be proved later

Lemma 6 Let p > 2 and let uε, ûε be the solutions of (6)with σ and σ̂ continuous functions.
Then,

‖∇(uε − ûε)‖p−1
L p(�ε)

≤ Cε
γ ∗−γ

p ‖σ − σ̂‖C(R). (15)

Remark 2 Since any function v ∈ W 1,p(�), p > n is Hölder with the estimate

|v(x) − v(y)| ≤ C |x − y|1− n
p ‖∇v‖L p(�), if [x, y] ⊂ � (16)

where [x, y] = {λx + (1 − λy) : λ ∈ [0, 1]}, we have that (Pεuε) is uniformly Hölder
continuous, and therefore (uε) is also uniformly Hölder continuous.

We need some information on the traces on Sε . We can compute the following lemma,
analogous to results in [8] which, for the proof, points to [7].

Lemma 7 Let p > n and u ∈ W 1,p(Yε) where Yε = εY\aεG0. Then,
∫

aεS0
|u|pdS ≤ K

(

an−1
ε ε−n

∫

Yε

|u|pdx + an−1
ε ε p−n

∫

Yε

|∇u|pdx
)

(17)

where K is independent of ε.

Remark 3 In particular, if aε = C0ε
α we have

∫

aεS0
|u|pdS ≤ K

(

εγ ∗
∫

Yε

|u|pdx + an−1
ε ε p−n

∫

Yε

|∇u|pdx
)

(18)

This explains the choice of γ ∗. If p < n then an−1
ε ε p−n is replaced by a p−1

ε . In that case

a p−1
ε

εγ ∗ = C p−1
0 εα(p−n)+n . (19)
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For the cases p < n this exponent is the one that produces the appearance of a critical case,
which corresponds to α = n

n−p . In the case p = n a similar expression exists, but is more
self-involved (see [9]).

The following result will be instrumental in the proof. Nonetheless it has a great intrinsic
mathematical value.

Proposition 1 Let p > n, α > 1, γ ∗ = α(n − 1) − n and vε ⇀ v in W 1,p
0 (�). Then

ε−γ ∗
∫

Sε

vεdS → A
∫

�

vdS (20)

where
A = Cn−1

0 |∂G0|. (21)

This result does not hold if p < n, and this causes the appearance of a term known as
strange term, first noticed by Cioranescu and Murat for the linear problem [1], and which
has been well documented also in the nonlinear case (see, e.g., [6,12]).

The technique for the proof of this result uses the following auxiliary result.Define function
Mε(x) as Yε—periodic solution of the boundary value problem

⎧
⎨

⎩

�pmε = με, x ∈ Yε = εY\aεG0;
∂νpmε = 1, x ∈ ∂(aεG0) = S0ε ;
∂νpmε = 0, x ∈ ∂Yε\S0ε ;

, με = Cn−1
0 εα(n−1)−n |∂G0|
1 − (aεε−1)n |G0| ,

and
∫

Yε

mε(x)dx = 0. (22)

This has the nice property of allowing us to write, for any test function ϕ ∈ W 1,p(Yε)

−
∫

Yε

|∇mε|p−2∇mε∇ϕdx +
∫

S0ε

ϕdS = με

∫

Yε

ϕdx . (23)

Denote by P j
ε the center of the ball G j

ε = P j
ε + aεG0. Let T

j
ε denote the ball of radius

ε/4 centered at the point P j
ε . Let M

j
ε = mε(x − Pε

j ) be the solution of the boundary value
problem. We will use the following fact, which we will prove later

Lemma 8 The following estimate holds

‖∇Mε‖L p(∪ j Y
j

ε )
≤ C(aεε

−1)
n−1
p−1 (24)

3 Proof of Proposition 1

Proof of Lemma 8 Setting in (23) ϕ = mε and applying Theorem 2, Lemma 7 and the
definition of mε(x), we obtain
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‖∇mε‖p2

L p(Yε)
≤

⎛

⎜
⎝

∣
∣
∣
∣
∣
∣
∣

∫

S0ε

mεdS

∣
∣
∣
∣
∣
∣
∣

+ με

∣
∣
∣
∣
∣
∣
∣

∫

Yε

mεdx

∣
∣
∣
∣
∣
∣
∣

⎞

⎟
⎠

p

≤
⎛

⎜
⎝

∫

S0ε

1dS

⎞

⎟
⎠

p−1

‖mε‖p
L p(S0ε )

≤ C1a
(n−1)(p−1)
ε ‖mε‖p

L p(S0ε )

≤ C2a
(n−1)(p−1)
ε

(
an−1
ε ε−n‖mε‖p

L p(Yε)
+ an−1

ε ε p−n‖∇mε‖p
L p(Yε)

)

≤ C3

(
a p(n−1)
ε ε p−n + a p(n−1)

ε ε p−n
)

‖∇mε‖p
L p(Yε)

(25)

≤ C4a
p(n−1)
ε ε p−n‖∇mε‖p

L p(Yε)
, (26)

Finally, we have the following inequality

‖∇mε‖L p(Yε) ≤ Ka
n−1
p−1
ε ε

p−n
p(p−1) . (27)

Hence, since #ϒε ≤ Cε−n we get the estimate

‖∇Mε‖L p(∪ j Y
j

ε )
≤ C(aεε

−1)
n−1
p−1 , (28)

which concludes the proof. ��

Remark 4 Notice that from (25) to (26) we apply that p > n. In the case p < n the other

term is dominant, and hence the comparison is ‖∇Mε‖L p ≤ C(aεε
−1)

n
p (see [8]).

Let M j
ε (x) be a restriction of function Mε(x) on Y j

ε . Using the definition of M j
ε (x), we

can make the following transformations

ε−γ

∫

Sε

vεdS = ε−γ
∑

j∈ϒε

∫

Y j
ε

div(|∇M j
ε |p−2∇M j

ε vε)dx

= ε−γ
∑

j∈ϒε

∫

Y j
ε

|∇M j
ε |p−2∇M j

ε ∇vεdx

+ ε−γ
∑

j∈ϒε

∫

Y j
ε

(�pM
j
ε )vεdx

= ε−γ
∑

j∈ϒε

∫

Y j
ε

|∇M j
ε |p−2∇M j

ε ∇vεdx

+ ε−γ
∑

j∈ϒε

με

∫

Y j
ε

vεdx (29)
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Using (28), we get

ε−γ

∫

�ε

|∇Mε|p−1|∇vε|dx ≤ Cε−γ

⎛

⎜
⎝

∫

�ε

|∇Mε|pdx
⎞

⎟
⎠

p−1
p

≤ Cε−α(n−1)+nan−1
ε ε1−n = Cε. (30)

Therefore, we have

lim
ε→0

ε−γ
∑

j∈ϒε

∫

Y j
ε

|∇M j
ε |p−2∇M j

ε · ∇vεdx = 0 (31)

and, finally, we use the fact (see [13]) that, since vε ⇀ v in W 1,2(�) we have

ε−γ
∑

j∈ϒε

με

∫

Y j
ε

vεdx → Cn−1
0 |∂G0|

∫

�

vdx . (32)

Remark 5 Notice that, for p < n estimate (30) transform into Cε
1
p (n−α(n−p)) producing the

appearance of a critical α (see [8]).

4 Proof of Theorem 3

First, let us prove the auxiliary lemma

Proof of Lemma 6 By considering the difference of weak formulations we can write, for the
test function u1 − u2

∫

�

(|∇u2|p−2∇u2 − |∇u1|p−2∇u1) · ∇(u2 − u1)dx

+ ε−γ

∫

Sε

(σ2(u2) − σ2(u1))(u2 − u1)dS

= ε−γ

∫

Sε

(σ1(u1) − σ2(u1))(u2 − u1)dS. (33)

For p ≥ 2 it is true that (see [11] or [2, Lemma 4.10])

‖∇(u1 − u2)‖p
L p(�ε)

≤

∣
∣
∣
∣
∣
∣
∣

ε−γ

∫

Sε

(σ2(u1) − σ1(u1))(u2 − u1)dS

∣
∣
∣
∣
∣
∣
∣

(34)

≤ ε−γ |Sε|
1
p′ ‖σ2 − σ1‖∞‖u1 − u2‖L p(Sε) (35)

≤ Cε
− γ

p ‖σ2 − σ1‖∞‖u1 − u2‖L p(Sε), (36)

since |Sε| ≤ Cε−γ . By applying Lemma 7 we deduce that

‖∇(u1 − u2)‖p
L p(�ε)

≤ K ε
− γ

p ‖σ1 − σ2‖∞ε
γ ∗
p

× (‖u1 − u2‖L p(�ε) + ‖∇(u1 − u2)‖L p(�ε)

)
. (37)
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Applying the uniform Poincaré inequality we deduce

‖∇(u1 − u2)‖p
L p(�ε)

≤ K ε
γ ∗−γ

p ‖σ1 − σ2‖∞‖∇(u1 − u2)‖L p(�ε). (38)

which concludes the proof.
We consider the weak formulation

∫

�ε

|∇uε|p−2∇uε · ∇vdx + ε−γ

∫

Sε

σ (uε)vdS =
∫

�ε

f vdx, ∀v ∈ W 1,p
0 (�). (39)

Since uε is a weak solution and p > n we have that

‖∇uε‖p−1
L p(�ε)

≤ ‖ f ‖L p(�ε) (40)

Therefore (uε) is a bounded sequence in W 1,p(�ε). Hence (Pεuε) is a uniformly Hölder
sequence in �, and therefore uniformly bounded

‖uε‖C(�) ≤ ‖Pεuε‖C(�) ≤ C, for some C > 0. (41)

Hence we have that
∫

�ε

|∇uε|p−2∇uε · ∇vdx →
∫

�

|∇u|p−2∇u · ∇vdx, (42)

∫

�ε

f vdx →
∫

�

f vdx . (43)

Proof of Theorem 3 First let us assume that γ < γ ∗. Let uε,0 be the solution corresponding
to σ ≡ 0. Then

‖uε − uε,0‖W 1,p(�ε)
≤ ε

γ−γ ∗
p(p−1) ‖σ‖

1
p−1
C(K ) (44)

where K is a compact such that ‖Pεuε‖L∞ , ‖Pεuε,0‖L∞ ∈ K ⊂ R. Then Pεuε ⇀ u0 the
solution of (13) by applying Lemma 4.

Assume thatγ = γ ∗.We start by consideringσ ∈ C1(R). Since the solutions are uniformly
bounded and continuous, we have that

‖σ ′(uε)‖C(Sε) ≤ ‖σ ′(uε)‖C(�) ≤ C (45)

since σ ′ is continuous. Notice that σ(Pεuε) = Pε(σ (uε)) on �ε . Hence

‖∇(σ (uε))‖L p(�ε) ≤ ‖σ ′(uε)‖C(�)‖∇uε‖L p(�ε) ≤ C. (46)

Therefore there exists σ̂ ∈ W 1,p(�) such that Pεσ (uε) ⇀ σ̂ . Since p > n the convergence
is also in the sense of C(�), and therefore σ̂ = σ(u). Hence, we conclude that for v ∈ W 1,p

we have

ε−γ ∗
∫

Sε

σ (uε)vdS → A
∫

�

σ(u)vdx . (47)

Then, limit becomes
∫

�

|∇u|p−2∇u · ∇vdx + A
∫

�

σ(u)vdx =
∫

�

f vdx, ∀v ∈ W 1,p
0 (�). (48)
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Let σ ∈ C(�). Let us consider an approximating sequence σ ∈ C1, σ−1(0) = 0 and
σδ → σ in C([−M, M]) as δ → 0 where ‖Pεuε‖C(�) < M for all ε > 0. We have that

‖uε − uε,δ‖p−1
W 1,p ≤ C‖σδ − σ‖C([−M,M]). (49)

Passing to the limit we have that

‖u − uδ‖p−1
W 1,p ≤ C‖σδ − σ‖C([−M,M]), (50)

where uδ satisfies (12), with σδ instead of σ . As δ → 0 the sequence uδ → w where w is the
solution of (12). Therefore, due to (50) we have that u = w, which concludes the proof. ��
Proof of Theorem 5 If γ > γ ∗ we write

εγ−γ ∗
∫

�ε

|∇uε|p−2∇uε∇vdx + ε−γ ∗
∫

Sε

σ (uε)vdS = εγ−γ ∗
∫

�ε

f vdx, (51)

for all v ∈ W 1,p
0 (�). Hence, in the limit

A
∫

�

σ(u)v dx = 0, ∀v ∈ W 1,p
0 (�). (52)

That is σ(u(x)) = 0 for a.e. x ∈ �. ��
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