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JESÚS ILDEFONSO DÍAZ, DANIELLE HILHORST, AND PARIS KYRIAZOPOULOS

Abstract. We consider a variant of a nonlinear parabolic system, proposed in 2007 by E. Gilad,

J. von Hardenberg, A. Provenzale, M. Shachak and E. Meron, in desertification studies, in which

there is a strong absorption. The system models the mutual interaction between the biomass
b, the soil-water content w and the surface-water height h which is diffused by means of the

degenerate operator ∆hm with m ≥ 2. The main novelty in this paper is that the absorption is
given in terms of an exponent α ∈ (0, 1), in contrast to the case α = 1 considered in the previous

literature. Thanks to this, some new qualitative behavior of the dynamics of the solutions can be

justified.
After proving the existence of non-negative solutions for the system with Dirichlet and Neu-

mann boundary conditions, we demonstrate the possible extinction in finite time and the finite

speed of propagation for the surface-water height component h(t, x). Finally, we prove, for the
associate stationary problem, that if the precipitation datum p(x) grows near the boundary of

the domain ∂Ω as d(x, ∂Ω)
2α
m−α then hm(x) grows, at most, as d(x, ∂Ω)

2
m−α . This property

also implies the infinite waiting time property when the initial datum h0(x) grows at most as

d(x, ∂S(h0))
2m
m−α near the boundary of its support S(h0).

1. Introduction

We study a parabolic system which captures the interactions between vegetation and water in arid
and semi-arid porous areas such as modeled in [16]. A slight variation in the modeling is introduced
in order to get some new qualitative behavior by its solutions. The system, in non-dimensionalized
form, that it is considered in this paper is the following:

(1.1)


∂tb = db∆b+ wG1(b)(1− b)b− b,
∂tw = dw∆w − (L(b) +G2(b))w + I(b)hα,

∂th = dh∆hm − I(b)hα + p.

Here, b represents the concentration of the above ground biomass, w the soil water content and h
the height of a thin surface water layer per unit area. The equation for the evolution of biomass
involves a water dependent growth rate G1(b), a mortality term with constant loss rate and a linear
diffusion term modeling growth due to seeds dispersal or clonal growth. In the equation for the soil
water, we have a loss term which consists of the water up-take rate by the plant roots denoted by
G2(b) and the biomass dependent evaporation rate L(b). Moreover, the equation contains the source
term I(b)hα representing the infiltrated surface water, which is discussed in more detail below, and
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a linear diffusion term modeling the soil water transport. The main novelty in this paper is that
the exponent α will be assumed such that α ∈ (0, 1), in contrast to the case α = 1 considered in
the previous literature. The third equation models the surface water flow and how this infiltrates
into the ground.

The variable h corresponds to the non-dimensionless quantity H = ρd, where d(t̃, x̃) represents
the depth in meters of the surface water where x̃ ∈ Ω ⊂ R2 and ρ is the constant density of the
fluid. In fact, the third equation in dimensional quantities (and m ≥ 2) can be derived from the
continuity equation

∂H

∂t̃
+ div (H~u) = P − IH

and the shallow water momentum equation

D−→u
∂t̃

= −g∇(ζ + d) +
1

ρ
F,

where ~u is the horizontal velocity of the fluid, F represents ground surface friction, P stands for
the precipitation rate and IH is the infiltration rate of water through the soil surface. Moreover,
ζ denotes the height of the soil surface and g stands for the acceleration of gravity. For non-trivial
land topographies ζ(x̃) is a nonnegative function of the space variable x̃ and it is convenient to set
Z = ρζ. We consider a friction term of the form F = −k~u/dl, for l ≥ 0 and k > 0, a biomass
and surface water dependent infiltration rate term of the form I(B,H) = IB(B)IH(H) and we let
ζ = 0 which corresponds to a region with flat topography. Then

∂H

∂t̃
− c∆Hm = P − I(B,H)H,

where m = l + 2 and c =
g

mkρl
. The biomass dependent infiltration rate IB captures the infil-

tration contrast between vegetated regions and bare soil due to the formation of biogenic crusts in
unvegetated regions which reduce the infiltration of surface water. Therefore, this term is monoton-
ically increasing with B approaching a constant infiltration for high biomass concentrations. The
counterpart IH of the infiltration rate in this paper is chosen to be a decreasing function of H,
taking the explicit form Hα−1 for α ∈ (0, 1). Other models related to desertification studies can be
found, for instance, in [1] and [21].

From the mathematical viewpoint, we mention the study of the corresponding dynamical system
in the case α = 1 made in [18, 17]. Notice that, curiously for the associated stationary system (con-
sidered in [10] and [9]) the assumption α ∈ (0, 1) does not introduce any big change in the problem,

since the change of variables ĥ = hm leads to the stationary equation −dh∆ĥ+Ib
(
ĥ
)α/m

= p which

involves an exponent α/m < 1 even for α = 1. So, the modifications implied by the assumption
α ∈ (0, 1) mainly affect the dynamics of solutions of (1.1).

The article is organized as follows. In Section 2 we complete the mathematical formulation of
the system (1.1). In particular, we consider two cases of boundary conditions: the Dirichlet and
Neumann boundary conditions. For the first case, we define a regularized approximating system
which possesses positive bounded solutions. This allows us to pass to the limit of the approximating
problem proving the existence of solutions for the original problem. For the second case, we use
a different approach, specifically, the existence of solutions is given by a fixed point argument
employing a fixed point theorem for sequentially weakly continuous mappings in Banach spaces.
Section 3 is devoted to the qualitative behavior of solutions. We examine the behavior, in time, of
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the vanishing set of the surface water component h in the absence of precipitation during sufficiently
long time intervals. The spatial location of the vanishing set of h is also analyzed.

2. Existence of solutions

In what follows, we denote by Ω a bounded domain in R2 with regular boundary ∂Ω and for
T > 0 we let QT = Ω × (0, T ) and ST = ∂Ω × (0, T ). Our purpose is to prove the existence of a
solution U = (b, w, h) of the system

(2.1)


∂tb = db∆b+ wG1(b)(1− b)b− b, in QT ,

∂tw = dw∆w − (L(b) +G2(b))w + I(b)hα, in QT ,

∂th = dh∆hm − I(b)hα + p, in QT ,

together with the initial conditions,

(2.2) b(x, 0) = b0(x), w(x, 0) = w0(x), h(x, 0) = h0(x) for x ∈ Ω,

and some boundary conditions which are either of Dirichlet type

(2.3) b = w = h = 0, on ∂Ω× (0, T ),

or of Neumann type

(2.4)
∂b

∂n
=
∂w

∂n
=
∂hm

∂n
= 0, on ∂Ω× (0, T ).

We shall mainly assume

(2.5) b0, w0, h0 ∈ L∞(Ω),

and to get more regularity we will additionally assume that,

(2.6) b0, w0, h0 ∈ C(Ω̄).

In any case, we are specifically interested in the case in which the initial data satisfy

(2.7) 0 ≤ b0 ≤ 1, w0 ≥ 0, h0 ≥ 0, on Ω.

Concerning the precipitation term p, we assume that p ∈ L∞(QT ) is nonnegative. Moreover, we
suppose the structural conditions

(2.8) I(b) = θ
b+ r/c

b+ r
,

(2.9) L(b) =
ν

1 + ρb
,

(2.10) G1(b) = ν(1 + ηb)2,

(2.11) G2(b) = γb(1 + ηb)2,

and that db, dw, dh, η, ρ, r, ν, θ are given positive constants and that c ≥ 1. For later use we also
note that for s ∈ [0, 1], I(s), G1(s), G2(s) are nondecreasing functions and L(s) is nonincreasing
function, so

(2.12) I(0) ≤ I(s) ≤ I(1), for s ∈ [0, 1]

and

(2.13) L(1) ≤ L(s) +G2(s) ≤ L(0) +G2(1), for s ∈ [0, 1].
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In what follows we refer to the Dirichlet problem (2.1), (2.3) and (2.2) as Problem (PD), and to
the Neumann problem (2.1), (2.2) and (2.4) as Problem (PN ). To begin with we define the notions
of weak solutions of both problems.

Definition 1. We call (b, w, h) a weak solution of Problem (PD) on [0, T ], if it satisfies

(1) (b, w, h) ∈ C([0, T ] : L1(Ω)3) ∩ L∞(QT )3 and b, w, hm ∈ L∞(0, T ;H1
0 (Ω))

(2) for all ψ ∈ C1(QT ) ∩ L2(0, T ;H1
0 (Ω))

(2.14)

∫
Ω

b(t)ψ(t) + db

∫ t

0

∫
Ω

{∇b · ∇ψ − bψt} dxdτ =

∫
Ω

b0ψ(0)+

+

∫ t

0

∫
Ω

{G1(b)w(1− b)b− b}ψ,

(2.15)

∫
Ω

w(t)ψ(t) + dw

∫ t

0

∫
Ω

{∇w · ∇ψ − wψt}dxdτ =

∫
Ω

w0ψ(0)+

+

∫ t

0

∫
Ω

{− (L(b) +G2(b))w + I(b)hα}ψ,

(2.16)

∫
Ω

h(t)ψ(t) + dh

∫ t

0

∫
Ω

{∇hm · ∇ψ − hψt}dxdτ =

∫
Ω

h0ψ(0)+

+

∫ t

0

∫
Ω

{p− I(b)hα}ψ dxdτ.

Definition 2. We call (b, w, h) a weak solution of Problem (PN ) on [0, T ], if it satisfies

(1) U ∈ C([0, T ] : L1(Ω)3) ∩ L∞(QT )3 and b, w, hm ∈ L∞(0, T ;H1(Ω)),
(2) for all ψ ∈ C1(QT ) ∩ L2(0, T ;H1(Ω)) b, w, h satisfy (2.14)–(2.16).

As a matter of fact, in the case of Dirichlet boundary conditions we shall be able to prove,
additionally, that the weak solutions are in fact continuous functions if (2.6) holds true. Other
regularity properties could be obtained by different techniques (see, e.g. [23]).

2.1. The regularized system to (PD). The main difficulty for the study of Problem (PD) is the
fact that the equation for h is degenerate. Here, we overcome this difficulty by defining a sequence
of approximating uniformly parabolic problems for which classical solutions exist. Finally, we prove
existence of Problem (PD) by passing to the limit thanks to some a priori estimates.

For ε ∈ (0, 1), κ ≥ 1 and 0 < α < 1, we let

φε(s) := (s+ ε)m − εm,

and

fε(s) := (s+ ε)α − εα.
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We consider the regularized system

(2.17)



∂tbε − db∆bε + bε = G1(bε)wε(1− bε)bε, in QT ,

∂twε − dw∆wε + (L(bε) +G2(bε))wε = I(bε)fε(hε), in QT ,

∂thε − dh∆(φε(hε)) + I(bε)fε(hε) = pε, in QT ,

b = w = h = 0, on ST ,

bε(x, 0) = b0,ε(x), wε(x, 0) = w0,ε(x),

hε(x, 0) = h0,ε(x), for x ∈ Ω,

where pε ∈ C∞ such that

(2.18) 0 ≤ pε ≤ ‖p‖L∞(QT ),

(2.19) ‖pε − p‖L1(QT ) → 0 as ε→ 0,

for T > 0 arbitrary and the initial conditions b0,ε, w0,ε, h0,ε, with

bε(0) = b0,ε, wε(0) = w0,ε, hε(0) = h0,ε ∈ C∞c (Ω),

such that

(2.20) 0 ≤ b0,ε(x) ≤ ‖b0‖L∞(Ω), 0 ≤ w0,ε(x) ≤ ‖w0‖L∞(Ω), 0 ≤ h0,ε(x) ≤ ‖h0‖L∞(Ω)

for a.e x ∈ Ω and

(2.21) (b0,ε, w0,ε, h0,ε)→ (b0, w0, h0) in L1(Ω)3 as ε→ 0.

We also note for later use that (2.18), (2.19) and (2.20), (2.21) imply

(2.22) pε → p in Lq(QT ) as ε→ 0,

and

(2.23) (b0,ε, w0,ε, h0,ε)→ (b0, w0, h0) in Lq(Ω)3 as ε→ 0,

for all q > 1.
Under the above considerations the following result holds

Theorem 1. For every ε ∈ (0, 1), problem (2.17) possesses a unique classical solution (bε, wε, hε)
such that

(2.24) 0 ≤ bε ≤ 1, in QT

and there exists a positive constant C̄ such that

(2.25) 0 ≤ wε, hε ≤ C̄, in QT ,

where C̄ does not depend on ε.

Proof. The existence of classical solution of (2.17) for the non-negative initial data (b0,ε, w0,ε, h0,ε)
follows from [20]. Moreover, from the classical maximum principle we have that for bε,0 ∈ [0, 1],
0 ≤ bε ≤ 1. Similarly, we can show that wε, hε ≥ 0. Next we prove that hε is bounded from
above. We first recall the definition of the negative and positive parts of a function f , namely

(f)+ = max{f, 0}, (f)− = max{−f, 0}. We set, ĥ = hε − h̄, with h̄ an arbitrary positive constant

to be determined later. We multiply the equation for hε in (2.17), by ĥ+ and integrate over Ω to
obtain

(2.26)

∫
Ω

∂hε
∂t

ĥ+ dx− dh
∫

Ω

∆φε(hε)ĥ+ dx+

∫
Ω

I(bε)fε(hε)ĥ+ dx =

∫
Ω

pεĥ+ dx,
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which implies that

(2.27)
1

2

d

dt

∫
Ω

|ĥ+|2 dx+ dh

∫
Ω

φ′ε(hε)|∇ĥ+|2 dx+

∫
Ω

I(bε)fε(hε)ĥ+ dx =

∫
Ω

pεĥ+ dx.

From (2.12), (2.27) and the fact that, φ′ε(hε) > 0, 0 ≤ pε(t, x) ≤ ‖p‖L∞(QT ), we have that

(2.28)
1

2

d

dt

∫
Ω

|ĥ+|2 + I(0)

∫
Ω

fε(hε)ĥ+ ≤ ‖p‖L∞(QT )

∫
Ω

ĥ+ dx,

from which we infer that

(2.29)

1

2

d

dt

∫
Ω

|ĥ+|2 + I(0)

∫
Ω

(
fε(hε)− fε(h̄)

)
(hε − h̄)+

≤ ‖p‖L∞(QT )

∫
Ω

ĥ+ dx,

which we may write as

(2.30)

1

2

d

dt

∫
Ω

|ĥ+|2 + I(0)

∫
Ω

(
fε(hε)− fε(h̄)

)
(hε − h̄)+

≤
(
‖p‖L∞(QT ) − I(0)fε(h̄)

) ∫
Ω

ĥ+ dx,

Thanks to the monotonicity of φε(·), the second term on the left hand side of the above inequality
is nonnegative. Next, we look for h̄ > ‖h0‖L∞(Ω) such that

(2.31) ‖p‖L∞(QT ) − I(0)fε(h̄) ≤ 0.

Since, −fε(h̄) ≤ (1− h̄α), we may choose

(2.32) h̄ := max

{(‖p‖L∞(QT )

I(0)
+ 1

)1/α

, ‖h0‖L∞(Ω)

}
,

so that

(2.33)
d

dt

∫
Ω

|ĥ+|2(t) dx ≤ 0,

which in turn implies that

(2.34) |ĥ+(t)|2L2(Ω) ≤ |ĥ+(0)|2L2(Ω) = |(h0 − h̄)+|2L2(Ω) = 0 ,

for h̄ given by (2.32), and so,

(2.35) hε ≤ h̄ in QT .

To obtain an upper bound for wε we work similarly. We set ŵ = wε − w̄, where w̄ is a positive
constant to be determined later, we multiply the equation for wε in (2.17) by ŵ+ and integrate over
Ω to obtain that

(2.36)

1

2

d

dt

∫
Ω

|ŵ+|2 dx+ δw

∫
Ω

|∇ŵ+|2 dx+

+

∫
Ω

(L(bε) +G2(bε))(|ŵ+|2 + w̄ŵ+) dx =

∫
Ω

I(bε)fε(hε)ŵ+ dx.
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where we have used the equality wε = (wε − w̄)+ − (wε − w̄)− + w̄. Then, from (2.12), (2.35) and
the fact that fε(s) ≤ sα for s ≥ 0, we have that

(2.37)

∫
Ω

I(bε)fε(hε)ŵ+ dx ≤ I(1)h̄α
∫

Ω

ŵ+ dx.

So, using (2.13) and dropping the appropriate non-negative terms on the left hand side of (2.36),
we end up with

(2.38)
1

2

d

dt

∫
Ω

|ŵ+|2 dx+
(
w̄L(1)− I(1)h̄α

) ∫
Ω

ŵ+ dx ≤ 0.

Therefore, arguing as before we may choose

w̄ := max

{
I(1)h̄α

L(1)
, ‖w0‖L∞(Ω)

}
,

so that

(2.39) wε ≤ w̄, in QT .

�

Next we remark that bε satisfies a problem of the form

(2.40)


bεt = db∆bε + Fε in QT

bε = 0 on ST

bε(x, 0) = b0,ε(x) in Ω

where

0 ≤ b0,ε ≤ ‖b0‖L∞(Ω) ≤ 1

and

(2.41) Fε ∈ L∞(QT ).

Multiplying the equation by bε and integrating by parts, we deduce that

(2.42) ‖bε‖L2(0,T ;H1
0 (Ω)) ≤ C,

Further taking the duality product < ·, · >(H−1,H1
0 ) of bεt with an arbitrary test function from

L2(0, T ;H1
0 (Ω)), we deduce that

(2.43) ‖bεt‖L2(0,T ;H−1(Ω)) ≤ C.

Then, the inequalities (2.42) and (2.43) imply that

(2.44) {bε} is relatively compact in L2(QT ).

(cf. [22, Theorem 2.1 p. 27]. We deduce that there exist a function b ∈ L2(0, T ;H1
0 (Ω)) with

bt ∈ L2(0, T ;H−1(Ω)) and a subsequence {bεj} of {bε} such that

bεj → b strongly in L2(QT )(2.45)

bεj t → bt weakly in L2(0, T ;H1
0 (Ω)).(2.46)

Moreover, it follows from [22, Lemma 1.2 p.260] that

(2.47) b ∈ C([0, T ];L2(Ω)).
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Finally, it is clear that 0 ≤ b ≤ 1 for all t ∈ [0, T ] and a.e. x ∈ Ω. Since, wε satisfies the equation
it follows in a similar way that wε converges along a subsequence to a limit w strongly in L2(QT )
and weakly in L2(0, T ;H1

0 (Ω)) as ε→ 0 where w ∈ C([0, T ];L2(Ω)) and 0 ≤ w ≤ w̄ for all t ∈ [0, T ]
and a.e. x ∈ Ω.

Next we consider the problem for hε, namely

(2.48)


∂thε = ∆φε(hε)− I(bε)fε(hε) + pε in QT ,

hε = 0 on ST ,

hε(x, 0) = h0,ε(x) for x ∈ Ω,

We first prove the following estimate

Lemma 1. We have that

(2.49)
1

2

∫
Ω

(hε)
2(t) dx+

∫ T

0

∫
Ω

|∇ψε(hε)|2 dx dt ≤ C(T )

where ψε(s) =
∫ s

0

√
φ′ε(s) ds, which in turn implies that

(2.50)

∫ T

0

∫
Ω

|∇φε(hε(t))|2 ≤ C(T ).

Proof. The function hε satisfies the initial value problem

(2.51) hεt = dh∆φε(hε) +Gε

together with zero Dirichlet boundary conditions where we have set Gε = −I(bε)fε(hε) + pε, and
so ‖Gε‖L∞(QT ) ≤ C. We multiply the equation (2.51) by hε and integrate by parts to deduce that

(2.52)
1

2

d

dt

∫
Ω

(hε)
2(t) dx+ dh

∫
Ω

∇φε(hε) · ∇hε dxdt =

∫
Ω

Gεhε dx

which implies that

(2.53)

∫
Ω

(hε)
2(t) dx+ 2dh

∫ T

0

∫
Ω

φ′ε(hε)|∇hε|2 dxdt

≤
∫

Ω

G2
ε dxdt+

∫ T

0

∫
Ω

h2
ε dxdt+

∫
Ω

h2
0ε dx.

Since

(2.54)

∫ T

0

∫
Ω

φ′ε(hε)|∇hε|2 dxdt =

∫ T

0

∫
Ω

(
√
φ′ε(hε)∇hε)2 =

∫ T

0

∫
Ω

|∇ψε(hε)|2 dxdt,

we deduce that

(2.55)

∫
Ω

(hε(T ))2 dx+ 2dh

∫ T

0

∫
Ω

|∇ψε(hε)|2 ≤
∫ T

0

∫
Ω

G2
ε dxdt+

+

∫ T

0

∫
Ω

h2
ε dxdt+

∫
Ω

h2
0ε dx,
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which in turn yields inequality (2.49). To prove (2.50), we observe that

(2.56)

∫ T

0

∫
Ω

|(∇φε(hε(t))|2 =

∫ T

0

∫
Ω

φ′ε(hε(t))
2|∇hε(t)|2 dxdt

≤ sup |φ′ε(hε(x, t))|
∫ T

0

∫
Ω

φ′ε(hε(t))|∇hε(t)|2 dxdt

≤M
∫ T

0

∫
Ω

(√
φ′ε(hε(t))∇hε(t)

)2

,

where M is independent of ε and so (2.50) follows from (2.54) and (2.49). �

Next we set Uε = φε(hε) and βε(·) = φ−1
ε (·), to apply the result of [15, Theorem 6.2].

Lemma 2. (i) For all τ > 0, the function Uε is equicontinuous in Q̄τT . Precisely, there exists
a continuous nondecreasing function ωτ (·) with ωτ (0) = 0, such that

(2.57) |Uε(x1, t1)− Uε(x2, t2)| ≤ ωτ (|x1 − x2|+ |t1 − t2|1/2)

for all (xi, ti) ∈ Q̄τT , i = 1, 2. The function ωτ does not depend on ε.
(ii) If in addition U(0, x) = U0(x) ∈ C(Ω̄), then {Uε} is equicontinuous on Q̄T .

We deduce from Lemma 2(i) that for all τ > 0, Uεj is precompact in C(Q̄τT ) and thus there

exists a subsequence that we denote again by Uεj and a function ζ ∈ C(Q̄τT ) such that

Uεj → ζ,

uniformly in Q̄τT as εj → 0. Then,

(2.58)
|hεj − ζ1/m| = |βε(Uεj )− ζ1/m|

≤ |βεj (Uεj )− (Uεj )
1/m|+ |(Uεj )1/m − ζ1/m|,

Therefore, since for all ε > 0, |βε(Uε)− (Uε)
1/m| < 2ε, setting h = ζ1/m we have that

(2.59)
hεj → h, uniformly in Q̄τT ,

φε(hεj )→ hm uniformly in Q̄τT ,

as εj → 0, for all τ > 0. Moreover, from Lemma 1 there exists a subsequence of {hεj} which we

denote again by hεj and a function χ ∈ L2((0, T );H1
0 (Ω)) such that

(2.60) φεj (hεj ) ⇀ χ weakly in L2(0, T ;H1
0 (Ω)),

as εj → 0. Since, L2(Ω) ⊂ H−1(Ω) we further deduce that φεj (hεj ) ⇀ χ weakly in L2(QT ). On

the other hand, φεj (hεj ) ≤ (hεj )
m ≤ h̄m and from (2.59) we have that φεj (hεj ) → hm a.e in QT .

Then, by the dominated convergence theorem we deduce that φεj (hεj )→ φ(h) strongly in L2(QT ).

Therefore, φ(hεj ) ⇀ hm weakly in L2(QT ) and uniqueness of the weak limits implies that χ = hm.
Hence, we conclude that

(2.61) φεj (hεj ) ⇀ hm weakly in L2(0, T ;H1
0 (Ω)),

as εj → 0.
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Next we prove that (b, w, h) is a weak solution of Problem (P ). We multiply the three partial
differential equations in (2.17) by ψ ∈ C1(QT ) ∩ L2(0, T ;H1

0 (Ω)) and integrate by parts to obtain
(here for simplicity ε = εj)

(2.62)

∫
Ω

bε(t)ψ(t) + db

∫ t

0

∫
Ω

{∇bε · ∇ψ − bεψt} dxdτ =

∫
Ω

b0,εψ(0)+∫ t

0

∫
Ω

{G1(bε)wε(1− bε)bε − bε}ψ,

(2.63)

∫
Ω

wε(t)ψ(t) + dw

∫ t

0

∫
Ω

{∇wε · ∇ψ − wεψt}dxdτ =

∫
Ω

w0,εψ(0)+∫ t

0

∫
Ω

{− (L(bε) +G2(bε))wε + I(bε)fε(hε)}ψ,

(2.64)

∫
Ω

hε(t)ψ(t) + dh

∫ t

0

∫
Ω

{∇φε(hε) · ∇ψ − hεψt}dxdτ =

∫
Ω

h0,εψ(0)+∫ t

0

∫
Ω

{pε − I(bε)fε(hε)}ψ dxdτ.

To summarize we have that bε,wε, hε are positive and bounded. Moreover, there exists a subsequence
of (bε, wε, hε), which converges strongly to (b, w, h) in L2(QT )3, and a.e in QT , and (bε, wε, φε(hε))
converges weakly to (b, w, φ(h)) in L2(0, T ;H1

0 )3. To pass to the limit in the terms involving fε(hε)
we notice that

(2.65) |fε(s)− sα| ≤ 2εα,

and thus,

(2.66)

|I(bε)fε(hε)− I(bε)fε(hε)| ≤|I(bε)||(fε(hε)− f(hε)|+ |I(bε)− I(b)||f(hε)|
+ |I(b)||f(hε)− f(h)|

≤2I(1)εα + |I(bε)− I(b)||f(h̄)|
+ |I(1)||f(hε)− f(h)| .

Moreover, recalling (2.22) and (2.23), we can let ε → 0 in (2.62)-(2.64), to obtain the integral
identities (2.14)-(2.16). Finally, if h0 ∈ C(Ω̄) from Lemma 2(ii) h ∈ C(Q̄T ).

In fact, a weak solution of Problem (PD) exists even if h0 is just essentially bounded, since
working as above we know that there exists h ∈ C((0, T ] : L1(Ω)). We would also like to know
if ‖h(t)‖L1(Ω) is continuous at 0. To this end let h0,n be a sequence of smooth bounded functions

which converges to h0 in L1(Ω). Working as above and using Lemma 2(ii) there exists a solution of
the system, denoted by hn, obtained as a limit of the approximating system such that hn ∈ C(Q̄T ).
Next note that

(2.67) ‖h(t)− h0‖L1(Ω) ≤ ‖h(t)− hn(t)‖L1(Ω) + ‖hn(t)− h0,n‖L1(Ω) + ‖h0,n − h0‖L1(Ω),

where the second term on the right hand side goes to zero as t tends to 0, while the last term
becomes arbitrarily small for n large enough. On the other hand, for any ε > 0 and h1(0) and h2(0)
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smooth initial data, the solutions h1,ε and h2,ε of the corresponding approximating problems satisfy

‖h1,ε(t)− h2,ε(t)‖L1(Ω) ≤ ‖h1,ε(0)− h2,ε(0)‖L1(Ω) +

∫ t

0

‖b1,ε(s)− b2,ε(s)‖L1(Ω) ds

≤ ‖h1,ε(0)− h2,ε(0)‖L1(Ω) + tD.

where D is a positive constant. Letting ε→ 0, this in turn implies that

(2.68) ‖h1(t)− h2(t)‖L1(Ω) ≤ ‖h1(0)− h2(0)‖L1(Ω) + tD.

Finally, by (2.67) and (2.68)

(2.69)
‖h(t)− h0‖L1(Ω) ≤‖h(0)− hn(0)‖L1(Ω)

+ tD + ‖hn(t)− h0,n‖L1(Ω) + ‖h0,n − h0‖L1(Ω)

Then t 7→ ‖h(t)‖L1(Ω) is continuous at zero and so h ∈ C([0, T ];L1(Ω)). We thus have the following
result

Theorem 2. If the initial condition (h0, b0, w0) satisfies (2.5) and (2.7), then there exists a weak
solution (b, w, h) of Problem (PD) such that 0 ≤ b ≤ 1, 0 ≤ w ≤ w̄ and 0 ≤ h ≤ h̄. If in addition
h0, b0, w0 ∈ C(Ω̄), then h ∈ C(Q̄T ) and b, w ∈ C(Ω̄× [δ, T ]) for all δ > 0.

Proof. To complete the proof we note that from (2.41) and [20, Theorem 9.1 p. 341] it follows that

(2.70) ‖bε‖W 2,1
q (QδT ) ≤ C(δ, T, q,Ω)

for all δ ∈ (0, T ) and all q ∈ (1,∞), where QTδ = (δ, T ) × Ω and W 2, 1
q (QTδ ) = W 1, q(δ, T ;Lq(Ω)) ∩

Lq(δ, T ;W 2, q(Ω) ∩W 1, q
0 (Ω)). This in turn implies that

(2.71) ‖bε‖Cα, α2 (Ω̄×[δ,T ])
≤ C,

for α = 2− N+2
q and q 6= N + 2 [6, Lemma 3.5]. Therefore, we can conclude (passing if necessary to

another subsequence) that bεj → b uniformly in Q̄δT for all δ > 0 and so b ∈ C(Ω̄× [δ, T ]). Similarly,

w ∈ C(Ω̄× [δ, T ]) . �

2.2. The case of Neumann boundary conditions (PN). Although the above strategy can also
be adapted to obtain the existence of weak solutions in the case of the Neumann problem (PN ), in
this section, we exploit a different approach which is based on a fixed point argument.

Theorem 3. There exists a weak solution of Problem (PN ).

Before, giving the proof of Theorem 3 it is useful to state a lemma related to the problem

(2.72)


∂tu−∆ϕ(u) = v in QT ,
∂ϕ(u)
∂n = 0 on ST ,

u(x, 0) = u0(x) for x ∈ Ω.

where ϕ : R → R is nondecreasing continuous function with ϕ(0) = 0, u0 ∈ L1(Ω) and v ∈
L1(0, T ;L1(Ω)). It is known that problem (2.72) possesses a unique weak solution (see, e.g., [5]
and [23]). For fixed u0, let us denote by uv the unique weak solution of (2.72) for some v ∈
L1(0, T ;L1(Ω)).

Lemma 3. Suppose that ϕ : R→ R is a strictly increasing continuous function with ϕ(0) = 0, then
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(i) for each fixed u0 ∈ L1(Ω) and a weakly relatively compact set K in L1(0, T ;L1(Ω)), the set
{uv : v ∈ K} is relatively compact in C([0, T ];L1(Ω)),

(ii) for each fixed u0 ∈ L∞(Ω) and a bounded set K in L∞(0, T ;L∞(Ω)) the mapping v 7→ uv,
is sequentially continuous from K endowed with the weak topology of L1(0, T ;L1(Ω)) into
C([0, T ];Lp(Ω)) endowed with the strong topology, for all p ∈ [1,∞).

For the proof of Lemma 3 (i) we refer to the results of Diaz-Vrabie [12, 13]. It must be pointed
out that although the compactness results of the above references concern the case of Dirichlet
boundary conditions, the arguments are identical for the case of Neumann boundary conditions
(see [13, Section 2] and [5]). On the other hand Lemma 3 (ii) is a consequence of the counterpart
(i) thanks to the uniqueness of the weak solution (for details see [14, Corollary 1, Section 2] or [14,
Corollary 3.1] for the case p = 1).

For convenience in what follows, if u = (u1, u2, u3) is a vector function with ui ∈ X, where X is
a Banach space, we shall make use of the notation ‖u‖X := maxi=1,2,3{‖ui‖X}.

Proof of Theorem 3. Let us start with the existence of a local (in time) weak solution of (PN ). We
introduce the reaction functions R : R3 → R3 given by

R(b, w, h) = (R1(b, w, h), R2(b, w, h), R3(b, w, h))

with

(2.73)


R1(b, w, h) = wG1(b)(1− b)b− b
R2(b, w, h) = −(L̃(b) +G2(b))w + Ĩ(b)h|h|α−1

R3(b, w, h) = −Ĩ(b)h|h|α−1.

where Ĩ(b) (respectively L̃(b)) is a truncation of I(b) (respectively L(b)) extending it continuously
by a constant equal to I(0) (respectively L(0)) for b < 0. We choose K > 0 such that

max(‖b0‖L∞(Ω), ‖w0‖L∞(Ω), ‖h0‖L∞(Ω)) + 1 ≤ K.

Since the functions Ri : R3 → R are continuous it is possible to find M > 0, such that

max{|R1(b, w, h)| , |R2(b, w, h)| , |R3(b, w, h)|+ ‖p‖L∞(QT )} ≤M

assumed that

0 ≤ b, w, h ≤ K.
Now we define the ”solution operator” S : L1(0, T : L1(Ω))3 → C([0, T ];L2(Ω))3 by S(f, g, v) =
(b, w, h) where b, w, h are the unique weak solutions of the decoupled system

∂tb− db∆b = f in QT ,
∂tw − dw∆w = g in QT ,
∂th− dh∆hm = v in QT ,
∂b
∂n = ∂w

∂n = ∂h
∂n = 0 on ST ,

b(x, 0) = b0(x), w(x, 0) = w0(x), h(x, 0) = h0(x) for x ∈ Ω.

Next, to control some a priori estimates it is useful to introduce the following convex set (adapted
to the reaction terms R(b, w, h)):

Kr,T0
= {(f, g, v) : f, g, v ∈ L1(0, T0 : L1(Ω)), ‖(f, g, v)‖L∞(QT0 ) ≤ r},

where QT0
:= (0, T0)× Ω, r ≥M and T0 ∈ (0, T ] is such that

S(Kr,T0) ⊂ BL∞(QT0 )(0,K)
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with BL∞(QT0 )(0,K) := {u ∈ L∞(QT0)3 : ‖u‖L∞(QT0 )) ≤ K}. Recall that M depends on K through
the properties of R. Moreover, it is not difficult to see that Kr,T0

is nonempty and weakly compact
in (L1(0, T0 : L1(Ω)))3. Next let us define the restriction of the solution operator on Kr,T0 :

Ŝ = S|Kr,T0 : Kr,T0
→ L∞(QT0

)3.

We also define the composition of the realization operator associated to R and Ŝ, namely, the
operator R : Kr,T0

→ C([0, T ];L2(Ω))3 defined by

R(f, g, v) = (R1(Ŝ(f, g, v)), R2(Ŝ(f, g, v)), R3(Ŝ(f, g, v)) + p)

i.e. R(f, g, v) = R(b, w, h) with (b, w, h) = Ŝ(f, g, v). Then, from the choice of the set Kr,T0
we

know that R maps Kr,T0 into Kr,T0 .
Next we prove that there exists at least one fixed point ofR : Kr,T0 → Kr,T0 . This will be a conse-

quence of a variant of the Schauder fixed point theorem given in [24, Theorem 1.2.11], which requires
R to be weakly-weakly sequentially continuous. It is actually enough to show that the graph of R,
is weakly-weakly sequentially closed [24, Corollary 1.2.5]. To this end, let {(fn, gn, vn)}n∈N ∈ Kr,T0

and {(Fn, Gn, Vn)}n∈N ∈ R(fn, gn, vn) be sequences which converge weakly in (L1((0, T );L1(Ω)))3

to (f, g, v) and (F,G, V ), respectively. Then from Lemma 3 (ii) Ŝ is weakly-strongly sequentially
continuous from L1(0, T0;L1(Ω)) into C([0, T0];Lp(Ω)) and so we may assume without loss of gen-
erality (taking a subsequence if necessary) that

(2.74) Ŝ(fn, gn, vn)→ Ŝ(f, g, v) a.e in QT0
,

which, by continuity of Ri, implies that

(2.75) Ri(Ŝ(fn, gn, vn))→ Ri(Ŝ(f, g, v)) a.e in QT0
.

Moreover, Ri(Ŝ(fn, gn, vn)) is a.e bounded in QT0
and therefore by the dominated convergence the-

orem we have that R(fn, gn, vn)→ R(f, g, v) strongly in (L1(QT0
))3. Consequently, by uniqueness

of weak limits we conclude that (F,G, V ) = R(f, g, v).
Therefore, the graph of R is weakly-weakly sequentially closed and so R has at least one fixed

point (f, g, v). Since (b, w, h) = Ŝ(f, g, v) we conclude that (b, w, h) is a weak solution of the problem
(PN ) on the cylinder QT0

:= (0, T0)× Ω, i.e. a local (in time) solution of (PN ) on QT0
.

Now it only remains to prove that no possible blow-up of the norm in
C([0, T ];L2(Ω))3 may arise to get the continuation of the local weak solution to the whole cylinder
QT . But for the reaction terms R(b, w, h) given by (2.73) and for positive initial conditions satisfying
(2.5), (2.7) this is an easy task: indeed, similar arguments to the ones of the proof of Theorem 1
show that the local weak solution satisfies that

0 ≤ b ≤ 1, 0 ≤ w ≤ C a.e. in QT0
,

where C > 0 is independent of T0 and, by well-known estimates for the porous medium with
monotone absorption

0 ≤ h ≤ ‖h0‖L∞(Ω) + T‖p‖L∞(QT ) a.e. in QT0

which is also independent of T0. Therefore, the local weak solution can be extended, by taking T0

as initial time and the values of b, w, h, at t = T0 as new initial data, to the complete cylinder QT
producing at least one global weak solution of (PN ) in view of the fact that b, w, h are nonnegative.

�
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Remark. The above type of arguments can be applied to prove the convergence of some numer-
ical algorithms that relies in suitable decoupling of the system and applying the Dı́az-Vrabie ([12])
ad hoc compactness argument. For instance we can consider the following iterative argument: we
solve the uniformly parabolic equations by prescribing the h-component

(2.76)

{
∂tbn = db∆bn + wnG1(bn)(1− bn)bn − bn in QT ,

∂twn = dw∆wn − (L(bn) +G2(bn))wn + I(bn)hαn−1 in QT ,

together with the initial conditions,

(2.77) bn(x, 0) = b0(x), wn(x, 0) = w0(x), for x ∈ Ω,

and Neumann boundary conditions

(2.78)
∂bn
∂n

=
∂wn
∂n

= 0, on ∂Ω× (0, T ).

Then we solve the degenerate equation by prescribing the b-component

(Ph,n) =


∂thn = dh∆hmn − I(bn−1)hαn + p in QT ,
∂hn
∂n = 0 on ∂Ω× (0, T ),
hn(x, 0) = h0(x) for x ∈ Ω.

Obviously the iteration starts with the initial data. The existence of weak solutions for the decoupled
problems are easy modifications of previous results in the literature (or they can be obtained
by following some ideas of the preceding section for the treatment of the Dirichlet case). The
convergence of the algorithm is a small variant of the proof of Theorem 3.

3. Some qualitative properties of the surface water component

In this section, we focus on the qualitative properties of the surface water component h investi-
gating the impact of dry periods on the zero set of h. More precisely, we start by assuming that
precipitation is negligible for sufficiently long time, in the sense that

(3.1) p(t) = 0 for t ∈ (0, T ),

with T large enough. Then, we will show that h vanishes after a finite time for the Dirichlet
boundary conditions. As a second qualitative property, we will consider a compactly supported
initial condition h0 and we will show that h has a compact support (which defines a free boundary
during a dry period in which p = 0).

In what follows, without loss of generality we suppose that δh = 1. We let (b, w, h) be a solution
of system (2.1) for a non-negative and bounded initial datum (b0, w0, h0), with 0 ≤ b0 ≤ 1. In order
to determine the properties of h it suffices to study the following scalar equation

(3.2) ∂th−∆hm + I(b(t, x))hα = 0 in QT ,

which involves the bounded solution component b. We consider (3.2), subject to the homogeneous
Dirichlet boundary conditions

(3.3) h(t, x) = 0, on (0, T )× ∂Ω,

and a given non-negative initial datum

(3.4) h0(x) = h(0, x), x ∈ Ω.
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At the end of the section some remarks are given concerning the homogeneous Neumann boundary
conditions as well as the non-homogeneous Dirichlet boundary conditions. We point out that these
qualitative behavior properties can be proved by means of some energy methods (see, e.g. [4])
but here we shall use some comparison arguments because they are simpler and lead to sharper
estimates.

3.1. Extinction in finite time. We recall that 0 ≤ b0 ≤ 1 implies 0 ≤ b ≤ 1, and thus I(0) ≤
I(b(t, x) ≤ I(1). Therefore, if h satisfies (3.2)–(3.4) and Ū is such that

(3.5)


∂Ū

∂t
−∆Ūm + I(0)Ūα ≥ 0 in Ω

Ū(t, x) ≥ h(t, x) on (0, T )× Ω

Ū(0, x) ≥ h(0, x) in Ω

since

(3.6)
∂h

∂t
−∆hm + I(0)hα ≤ ∂h

∂t
−∆hm + I(b(t, x))hα = 0.

by comparison we have that h ≤ Ū in QT [8]. This simple observation leads to the following

Theorem 4. Let (3.1) hold true and let (b, w, h) be a solution of problem (2.1)–(2.3) in the time
interval (0, T ). Then, if T > 0 is large enough, there exists T ∗ ∈ (0, T ) such that h(t, x) = 0 for all
t > T ∗.

Proof. Let U be uniform in space satisfying the non-linear ODE:

(3.7)


∂U

∂t
+ λUα = 0,

U(0) = ‖h0‖L∞(Ω),

for λ > 0. Then, for α < 1, (3.7) possesses the following explicit solution

(3.8) U(t;λ) = (max{0, ‖h0‖1−αL∞(Ω) − λ(1− α)t})1/(1−α) .

Obviously, U(t; I(0)) = Ū(t) satisfies (3.5). As a result, letting

T ∗(‖h0‖L∞(Ω), I(0), α) =
(‖h0‖L∞(Ω))

(1−α)

I(0)(1− α)
,

by comparison 0 ≤ h(t) ≤ Ū(t), h(t) = 0 for all t ≥ T ∗(‖h0‖L∞(Ω), I(0), α). �

3.2. Estimates on the support of h(t, .). First, let us introduce the following notation. If f is
a real-valued function defined on Ω, we denote by supp(f) the support of f in Ω, that is

supp(f) := {x ∈ Ω| f(x) 6= 0},

and by N(f) the complement of the support, namely,

N(f) := Ω̄− supp(f).

Next we estimate the location of the support of h(t, .) in Ω, which is equivalent to study the
location of the set N(h(t, .)).
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Theorem 5. Let σ = α/m < 1 and suppose that h0 ∈ L∞(Ω), h0 ≥ 0 and with compact support.
Then N(h(t, .)) ⊂ N(h0(.)) for all t ∈ (0, T ). In particular, if we set M = ‖h0‖L∞(Ω), L

∗ =(
Mm

K

) 2
1−σ

and K =
(

I(0)(1−σ)2

2(2σ+N(1−σ))

) 1
1−σ

, we have that

N(h(t, .)) ⊂ {x ∈ (Ω− supp(h0)) such that dist(x, supp(h0)) ≥ L∗}.

Proof. We look for local supersolutions which may vanish at points of the zero set of the initial
datum h0. Letting σ = α/m, we have that for 0 < σ < 1 and λ > 0, the function V (x) =

K(λ)|x−x0|
2

1−σ , with K(λ) =
(

λ(1−σ)2

2(2σ+N(1−σ))

) 1
1−σ

satisfies the equation −∆V +λV σ = 0 (see [7]).

Now, let x0 ∈ Ω− supp(h0), R := dist{x0, supp(h0)} and Ω̃ := (BR(x0)∩Ω). Then for ū(t, x) =
(V (x))1/m we have that

(3.9)

{
∂tū−∆ūm + I(0)ūσ = 0 in (0, T )× Ω̃,

ū(x) ≥ 0 = h0(x) on Ω̃,

and

(3.10) ū ≥ 0 on (0, T )× (∂Ω ∩ Ω̃).

By (3.6), ū is a local super solution of (3.2) as long as the inequality h(t, x) ≤ ū(t, x) is also
satisfied for all x in ∂BR(x0) ∩ int (Ω) and t ∈ (0, T ).

In fact, since |x− x0| = R on ∂BR(x0), if

(3.11) R ≥
(

Mm
h

K(I(0))

) 1−σ
2

and ‖h‖L∞(0,T ;Ω) ≤Mh, we have that
(
K(I(0))R

2
1−σ

)1/m

≥Mh which in turn implies that

(3.12) ū ≥ h, on (0, T )× ∂Ω̃− ∂Ω.

Therefore, when (3.11) holds true, ū is a local supersolution thanks to (3.6), (3.9), (3.10) and (3.12).
Finally, ‖h‖L∞(0,t;Ω) ≤ ‖h0‖L∞(Ω), so we may set Mh = ‖h0‖L∞(Ω) and since 0 ≤ h(x0) ≤ ū(x0) = 0
the result follows. �

Remark 1. In the case of homogeneous Neumann boundary conditions, a similar result is true
due to the local nature of the supersolutions. In particular, in the proof above we may take R :=
dist{x0, supp(h0) ∪ ∂Ω} so that the ball BR(x0) for x0 ∈ Ω − supp(h0) is entirely contained in
Ω, then if (3.11) is satisfied, (3.6), along with (3.9) and (3.12) ensure that the super-solution is
appropriately defined.

Remark 2. The same result holds true for the problem with compactly supported inhomogeneous
Dirichlet boundary conditions, i.e when h(t, x) = g(t, x) ≥ 0 on (0, T )× (∂Ω∩ Ω̃) with g(t, ·) > 0 on
a compact subset of ∂Ω. In this case, we may take R := dist{x0, supp(h0) ∪ (∪τ>0 supp (g(τ, ·)))}.

Remark 3. It seems possible to extend most of the results of this paper to the case in which
α ∈ (−1, 0]. See, e.g, the treatment made in [11] for a scalar equation.

We shall end with a result which implies an infinite waiting time (see [4] and [23] for some general
expositions on the subject). More precisely, as in [9] it is enough to consider the stationary problem
this time for the condition α ∈ (0,m). Moreover, we shall not assume that p = 0 but that p(x)
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vanishes outside a closed subset ω of R2 (the study could be extended to Rn for any n ≥ 1). The
case ω ⊂⊂ Ω and p(x) = pχω(x) on Ω, where χω denotes the characteristic function of ω (as well
as with Neumann boundary conditions on ∂Ω) was considered in [19]. In this paper we will extend
the mentioned study to the case in which ω = Ω, i.e.

p(x) > 0 in Ω and p = 0 on ∂Ω.

It is easy to see that in the stationary problem there exists a positive constant cb such that

cbd(x) ≤ b(x) ≤ 1 for any x ∈ Ω,

where d(x) = d(x, ∂Ω). Indeed, it suffices to apply the strong maximum principle to the stationary
equation satisfied by b(x).

We set

Λ(x) := θ
b(x) + r/c

b(x) + r
in Ω.

Then

θ
(cbd(x) + r/c)

1 + r
≤ Λ(x) ≤ θ (1 + r/c)

cbd(x) + r
in Ω,

and the stationary version of the third equation of (1.1) can be written for ĥ = hm as the stationary

problem −dh∆ĥ+ Ib
(
ĥ
)α/m

= p

(3.13)

 −∆ĥ+
Λ(x)

dh
ĥα/m = φ(x) in Ω,

ĥ = 0 on ∂Ω,

with φ(x) :=
p(x)

dh
. For b fixed (i.e., for a given Λ(x)) it is well-known that there is a unique solution

ĥ of (3.13). The following result gives a sufficient condition on p(x) in order to get that ĥ is a flat

solution (in the sense that also ∂ĥ
∂n = 0 on ∂Ω). In fact, the following result holds for

(3.14) α ∈ (0,m).

Theorem 6. Assume (3.14), let σ = α/m and suppose that p(x) is such that

(3.15) 0 ≤ p(x) ≤ dhKd(x)
2σ

1−σ in Ω,

for some K > 0 small enough. Then, there exists a constant C∗σ > 0 such that

(3.16) 0 ≤ ĥ(x) ≤ C∗σd(x)
2

1−σ in Ω.

In particular, ĥ is a flat solution.

Proof. As in the proof of Theorem 5, we shall apply the method of local supersolutions such as
presented in [7]. Let x0 ∈ ∂Ω and define Ωx0,R = Ω ∩ BR(x0) for some R > 0 to be determined
later. Observe that since d(x) ≤ |x− x0|, we have

−∆ĥ+
θr

dhc(1 + r)
ĥσ ≤ φ(x) ≤ K |x− x0|

2σ
1−σ in Ωx0,R.
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Let h(x : x0) = C |x− x0|
2

1−σ . As a consequence of Theorem 1.15 of [7], if we set ξ =
θr

dhc(1 + r)
then we know that

−∆h+ ξh
σ

=

[
ξCσ − 2(2σ +N (1− σ))

(1− σ)
2 C

]
|x− x0|

2σ
1−σ ,

(in our model N = 2 but the result applies to any arbitrary N ≥ 1). The function

Ψ(C) = ξCσ − 2(2σ +N (1− σ))

(1− σ)
2 C

takes nonnegative values for C ∈ [0, CN,ξ,σ] with

CN,ξ,σ =

[
ξ(1− σ)2

2(2σ +N(1− σ))

] 1
1−σ

,

(notice that Ψ(CN,ξ,σ) = 0). Moreover Ψ(C) attains its maximum at some C∗N,ξ,σ. Then, a good

choice of the constant K mentioned in (3.15) is

K =
Ψ(C∗N,ξ,σ)

dh
.

In that case we know that

−∆ĥ+ ξĥσ ≤ −∆h+ ξh
σ

in Ωx0,R.

Moreover, clearly ĥ ≤ h on ∂Ωx0,R ∩ ∂Ω and we also have ĥ ≤ h on ∂Ωx0,R \ ∂Ω if, for instance,

(3.17)
∥∥∥ĥ∥∥∥

L∞(Ω)
≤ C∗N,ξ,αR

2
1−σ .

Finally, we assume R “large enough” so that

R ≥


∥∥∥ĥ∥∥∥

L∞(Ω)

C∗N,ξ


(1−σ)/2

and then (3.17) holds. In conclusion, by the maximum principle

0 ≤ ĥ(x) ≤ C∗N,ξ,σ |x− x0|
2

1−σ in Ωx0,R,

and since x0 ∈ ∂Ω is arbitrary this implies (3.16). �

Remark 4. An easy modification of the proof of Theorem 5, by using the special constant C∗N,ξ,σ
of the above proof, allows to show the infinite waiting time property when the initial datum h0(x)

grows at most as d(x, ∂S(h0))
2

m−α near the boundary of its support S(h0). Indeed, it suffices to use
the same arguments of Theorem 3.1 of [3]. Other qualitative behavior can be proved by using the
methods of [2, 3].
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