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We show that the existence of flat solutions for the Schrödinger equation with super-singular
potentials V (x) ≥ Cδ(x)−2, with δ(x) = d(x, ∂�), requires the condition C > N −1. This
corrects Theorem 2.1 of the mentioned paper by the author. New results and estimates are
also presented.

One the main results of the paper [5] (which extends to the multidimensional case most
of the conclusions of the previous paper by the author [4]) was to show that, given a bounded
regular open set of RN , any eigenfunction un of the problem

DP(V, λ,�)

{−�u + V (x)u = λnu in �,

u = 0 on ∂�

is a flat solution, in the sense that
∂un
∂n

= 0 on ∂�. This result was stated in Theorem 2.1 of

[5] under the key assumption

C

δ(x)2
≤ V (x) ≤ C

δ(x)2
a.e. x ∈ �, (1)

for some C > C ≥ 0. Here, δ(x) = d(x, ∂�). Nevertheless one of the arguments of the
proof must be corrected since the Moser iterative process, leading to the boundedness of un ,
does not imply (as a by-product) that δ−2un ∈ L∞(�) but merely that un ∈ L∞(� : δ−2).
The first property means that ∥∥∥un

δ2

∥∥∥
L∞(�)

< +∞,
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but it is not difficult to show (see, e. g., page 45 of [11]) that the second property is equivalent
to the simpler fact that un ∈ L∞(�). Remember that after defining, for 1 ≤ p < ∞

‖u‖L p(�:δ−2) =
[∫

�

|u(x)|p
δ(x)2

dx

]1/p
,

we have
lim

p↗+∞ ‖u‖L p(�:δ−2) = ‖u‖L∞(�:δ−2) = ‖u‖L∞(�) .

As a matter of fact, this slight mistake appeared already in the preprint of the paper [10]
as I communicated to those authors. In spite of that, the main conclusion remains valid in
the case of several dimensions under the additional condition C > N − 1 (notice that for
N = 1 this condition becomes merely C > 0: as a matter of fact, the proof given in [4] for
the one-dimensional case was entirely different to the one presented in [5]). Moreover, the
quantitative estimate given in Theorem 2.1 of [5] should be slightly modified.

In the present new version, the key assumption will be generalized to the case of super-
singular potentials V (x) satisfying merely that

C

δ(x)2
≤ V (x) a.e. x ∈ �, (2)

for some C ≥ 0 and thus it can be applied to show the existence of flat solutions for this class
of potentials already considered in [7–9].

The following corrected version ofTheorem2.1 of [5] shows that themore general assump-
tion (2), when C > N − 1, suffices to ensure that any eigenfunction un is a flat solution. The
existence of a countable set of eigenfunctions, under the general assumption (2), was shown
in [7].
Theorem 2.1* Assume (2) and let un be an eigenfunction of DP(V, λn,�) associated to the
eigenvalue λn .
(a) There exists ε ∈ [0, 2), ε = ε(C, N , n) and Kn = Kn(C, N , n,�) > 0 such that

|un(x)| ≤ Knd(x, ∂�)2−ε a.e. x ∈ �. (3)

(b) If
C > N − 1, (4)

then (3) holds for some ε ∈ [0, 1). In particular, un is a flat solution.
(c) If

C > 2N , (5)

then (3) holds for ε = 0.
For the proof we shall need an auxiliary result constructing some suitable barrier functions

(in the spirit of [4]) for the associated non-homogeneous Dirichlet problem

(Pf )

{−�u + V (x)u = f (x) in �,

u = 0 on ∂�.

The existence, uniqueness and comparison principle of u ∈ L1(�), very weak solution of
problem (Pf ), when f ∈ L1

δ (�) , under the general assumption that V is nonnegative, was
carried out in [7–9].

Lemma Let f ∈ L1
δ(�), V nonnegative, and let u ∈ L1(�) be the (unique) very weak

solution of the problem (Pf ).

123



Correction to: On the ambiguous treatment of…

(i) Let x0 ∈ ∂� and assume

V (x) ≥ C |x − x0|−2 with C > 0 a.e. x ∈ � (6)

and that there exists R > 0 such that

u ∈ L∞(�R(x0)), (7)

where �R(x0) := � ∩ BR(x0). Let ϕ(ε) = ε2 − ε(N + 2) + 2N, for ε ∈ (0, 2), and
assume

ϕ(ε∗) < C for some ε∗ = ε∗(C, N ) ∈ (0, 2). (8)

Assume that there exists Cx0,R > 0 such that

f (x) ≤ Cx0,R |x − x0|−ε∗
a.e. x ∈ �R(x0). (9)

Let

CU = CU,x0,R,ε∗ = max

(
Cx0,R

C − ϕ(ε∗)
,
‖u‖L∞(�R(x0))

R2−ε∗

)
. (10)

Then
u(x) ≤ CU |x − x0|2−ε∗

a.e. x ∈ �R(x0). (11)

(ii) Assume f ∈ L∞(�), (2) and (8), then, for any x0 ∈ ∂�

u(x)

|x − x0|2−ε∗ ≤ ‖ f ‖L∞

C − ϕ(ε∗)
Mε∗

a.e. in �, (12)

for some M = M(�) > 0. In particular

u

δ2−ε∗ ∈ L∞(�). (13)

(iii) Assume f ∈ L∞(�), (2) and (4), then estimate (13) holds for some ε∗ ∈ [0, 1). In
particular, u is a flat solution.

(iv) Assume f ∈ L∞(�), (2) and (5), then estimate (13) holds for some ε∗ = 0.
(v) Assume (6), (5) and

ψ(β∗) < C, for some β∗ = β∗(C, N ) > 2, (14)

whereψ(β) = β2+β(N−2). Assume that there exists R > 0 such that u ∈ L∞(�R(x0))
and that there exists Cx0,R > 0 such that

f (x) ≤ Cx0,R |x − x0|β∗−2 a.e. x ∈ �R(x0). (15)

Let

CU = CU,x0,R,β∗ = max

(
Cx0,R

C − ψ(β∗))
,
‖u‖L∞(�R(x0))

Rβ∗

)
. (16)

Then,
u(x) ≤ CU |x − x0|β∗

a.e. x ∈ �R(x0). (17)

(vi) Assume (2), (5) and let f ∈ L∞(�) such that

| f (x)| ≤ C f δ(x)
β∗−2 a.e. x ∈ �,

where β∗ > 2 is given by (14). Then

|u(x)| ≤ CU δ(x)β
∗
a.e. in �, (18)
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with

CU = C f

C − ψ(β∗)
. (19)

In particular
u

δβ∗ ∈ L∞(�). (20)

Proof (i) Let us consider the barrier function U (x) = CU |x − x0|β with β > 0. Then,
using spherical coordinates centered at x0 we get

−�U + VU = (−β(β + N − 2) + C)CU |x − x0|β−2 (21)

≥ C f,x0 |x − x0|−ε ≥ f (x) a.e. x ∈ �R(x0), (22)

once we assume
β = 2 − ε∗

and (10). Notice that β(β + N − 2) = ϕ(ε∗). Moreover, on ∂�R(x0) ∩ ∂� we trivially
have U ≥ 0 = u. In addition, on ∂�R(x0)\∂�, thanks to (10), we have

U (x) = CU R2−ε∗ ≥ ‖u‖L∞(�R(x0)) ≥ u(x).

Then, by the comparison principle we get that u ≤ U on �R(x0) which leads to (11).
(ii) Let us start by assuming that f ≥ 0 a.e. on�. Since f ∈ L∞(�)wehave that u ∈ L∞(�)

(see, e.g. [7,8]). We consider, again, the barrier function U (x) = CU |x − x0|β with
β = 2 − ε∗, but now with

CU = ‖ f ‖L∞

C − ϕ(ε∗)
R(x0)

ε∗
, (23)

where R(x0) = maxx∈�̄ d(x, x0) (i.e. such that � ⊂ BR(x0)). Then

−�U + VU ≥ (C − ϕ(ε))CU |x − x0|−ε∗
(24)

≥ (C − ϕ(ε∗))CU R(x0)
−ε∗

(25)

= ‖ f ‖L∞(�) a.e. in �. (26)

Since U ≥ 0 = u on ∂� we have that U ≥ u a.e. in �. This proves (12). In particular,
since δ(x) = minx0∈∂� |x − x0| we have that

u(x)

δ(x)2−ε∗ = max
x0∈∂�

u(x)

|x − x0|2−ε∗ ≤ max
x0∈∂�

‖ f ‖L∞(�)

C − ϕ(ε∗)
M(�)ε

∗
. (27)

Here M(�) = maxx0∈∂� R(x0), which is finite since � is a bounded set. This completes the
proof of (13) when f ≥ 0 a.e. on� (because then u ≥ 0 a.e. on�). In the general case, since
− f− ≤ f ≤ f+, with f+(x) = max{ f (x), 0}, f−(x) = max{− f (x), 0}, then we get that
u− ≤ u ≤ u+ where u+ ≥ 0 (respectively u− ≤ 0) is the solution of (Pf+) (respectively
(P− f−)) and the same arguments, applied now to u−, leads to the conclusion.
Properties (iii), (iv) and (v) are simple consequences of the definition of ϕ(ε) since ϕ(ε) is a
convex decreasing function such that ϕ(0) = 2N , ϕ(1) = N − 1 and ϕ(2) = 0.
For the proof of (v) and (vi) it suffices to consider the barrier functionU (x) = CU |x − x0|β∗

and to check that

−�U + VU = (C − ψ(β∗))CU |x − x0|β∗−2 (28)

≥ C f,x0 |x − x0|β∗−2 ≥ f (x) a.e. x ∈ �R(x0), (29)
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once we take CU given by (16). Notice that if β = 2 − ε then ψ(β) = ϕ(ε). To get (vi) it
suffices to apply (v) to any point x0 ∈ ∂�, since

| f (x)| ≤ C f δ(x)
β∗−2 ≤ C f |x − x0|β∗−2 a.e. x ∈ �,

and to use that u ≤ U on ∂� without any other additional condition on CU .

Remark 1 We point out that we can get flat solutions even for suitable unbounded source
functions f (x). For instance, if we assume (4) and f ∈ L1

δ(�) satisfying (9) and f bounded
outside �R(x0) then the very weak solution is flat (some other examples are given in [2]).

Remark 2 Properties (v) and (vi) are typical of semilinear problems giving rise to a free
boundary as for instance

P(R,m, V0, λ) ≡
{−�v + V0 |v|m−1 v = f (x), v ≥ 0 in �,

v = 0, on ∂�,

for a given V0 > 0 and m ∈ (0, 1). In fact, this was the main argument used in the paper [4]
to study flat solutions of (Pf ) (see, also, Section 3 of [5]) as well as [1] for the semilinear
problem associated to super-singular potentials). Nevertheless, nothing similar to properties
(i), (ii) and (iii) arise for such semilinear equations (except for the obstacle problem) if f is
not flat enough near ∂� (see, e.g. [3, Subsection 1.1c]).

Remark 3 In the case C = 2N the barrier function satisfies that −�U + VU = 0 and so it
is a supersolution only when f ≤ 0 a.e. on �R(x0). This could be applied to the study of the
Signorini type problem for the equation −�u + V (x)u = f in a similar way to Theorem
2.50 of [3]).

Remark 4 Notice that, assumed that V is bounded on any compact of �, if C > 2N the
regularity of the solution near the boundary ∂� is implied by the estimate with respect to
δ(x)β(C,N )−2 and, curiously enough, it depends (decreasingly with respect to the dimension
N of the space) on the value of the coefficient C . For instance, if C = 5 then the solution is
C2 near ∂� for N = 1 and N = 2 but it is not so regular if N ≥ 3. Some other results in
this direction can be found in [2,9,12] (see also [1] for the associated semilinear problem).

Remark 5 For pointwise arguments applied to the study of flat solutions in the context of
relativistic (and fractionary) Schrödinger equations see [6,9].

Remark 6 For 0 < C ≤ N −1 the barrier function used in the proof of i) is an exact solution
of a similar problem on � = R

N\{x0} which is not flat on ∂�. As a matter of fact, the
flatness of the solution can appear merely over some subregions of ∂� (see [2]). It would be
interesting to construct a general class of domains for which the associated solution is not
flat in some subregion of ∂� for which (2) holds with 0 < C < N −1 (see also some related
results in this direction presented in [12]).

Proof of Theorem From Lemma 2.2 of [5], we know that un ∈ L∞(�). Then it suffices to
apply, respectively, (ii), (iii) or (iv) of the above Lemma and the conclusions hold. �
Remark 7 Some other results of the paper [5] are also affected by the mentioned correction
(since they are consequence of its Theorem 2.1). It is the case of Corollary 2.1, Theorem 4.1
and Corollary 2.1 in which we must also assume the additional condition C > N − 1 . As a
different minor modification, we point out that the exponent 2 in estimate (48) of [5] should
be replaced by 2 − ε if C ∈ (N − 1, 2N ).
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