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Abstract. This paper deals with nonnegative solutions of the one dimensional degenerate
parabolic equations with zero homogeneous Dirichlet boundary condition. To obtain an existence
result, we prove a sharp estimate for |ux|. Besides, we investigate the qualitative behaviors of
nonnegative solutions such as the quenching phenomenon, and the finite speed of propagation.
Our results of the Dirichlet problem are also extended to the associated Cauchy problem on the
whole domain R. In addition, we also consider the instantaneous shrinking of compact support
of nonnegative solutions.
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1 Introduction

In this paper, we study the nonnegative solutions of the following equation:
∂tu− (|ux|p−2ux)x + u−βχ{u>0} + f(u) = 0 in I × (0,∞),

u(−l, t) = u(l, t) = 0 t ∈ (0,∞),
u(x, 0) = u0(x) in I,

(1)
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where β ∈ (0, 1), p > 2; and χ{u>0} denotes the characteristic function of the set of points (x, t)
where u(x, t) > 0, i.e

χ{u>0} =

{
1, if u > 0,
0, if u ≤ 0.

Note that the absorption term χ{u>0}u
−β becomes singular when u is near to 0, and we impose

χ{u>0}u
−β = 0 whenever u = 0. Through this paper, we assume that f : [0,∞) → [0,∞), is a

nonnegative locally Lipschitz function, i.e: for any r > 0, there is a real number C(r) > 0 such
that

(H) |f(s1)− f(s2)| ≤ C(r)|s1 − s2|, ∀s1, s2 ∈ [0, r]; and f(0) = 0.

If f is nondecreasing on [0,∞), we can then relax the locally Lipschitz property in (H), see
Lemma 13 below.

As already known, problem (1) in the semi-linear case (p = 2, and f = 0) can be considered
as a limit of mathematical models arising in Chemical Engineering corresponding to catalyst
kinetics of Langmuir-Hinshelwood type (see, e.g. [31] p. 68, [28] and reference therein). The
semi-linear case was studied in many papers such as [28], [23], [26], [9], [10], [11], [20], [12],
[32], and references therein. These papers focused on studying the existence of solution, and
the behavior of solutions. The existence result of the semi-linear case was first proved by D.
Phillips for the Cauchy problem (see Theorem 1, [28]). The same result holds for the semi-linear
equation with positive Dirichlet boundary condition (see Theorem 2, [28]). Moreover, he proved
a property of the finite speed of propagation of nonnegative solutions, i.e, any solution with
compact support initially has compact support at all later times t > 0. The finite speed of
propagation was later studied for a more general formulation of the singular equation by means
of some energy methods by J. I. Diaz, see [14].

The semi-linear problem of this type was also extended in many aspects. In [12], J. Davila,
and M. Montenegro proved the existence of solution with zero Dirichlet boundary condition with
a source term f(u) being sub-linear. Furthermore, they showed that the uniqueness result holds
for a particular class of positive solutions, see Theorem 1.10 in [12]. Recently, N. A. Dao, J.
I. Diaz and P. Sauvy, [11] proved a uniqueness result for a class of solutions, which is different
from the one of [12]. However, Winkler showed that the uniqueness result fails in general, see
Theorem 1.1, [32].

After that, the equations of this type was considered under more general forms. For example,
Dao and Diaz [9] proved the existence of solution of equation (1) for the case f = 0. Further-
more, they also showed the behaviors of solutions such as the extinction phenomenon and the
free boundary. We also mention here the porous medium of this type, which was studied by B.
Kawohl and R. Kersner, [24].

Inspired by the above studies, we would like to investigate the existence of nonnegative
solutions and the behaviors of solutions of equation (1). Before stating our main results, let us
define the notion of a weak solution of equation (1).

Definition 1 Given 0 ≤ u0 ∈ L1(I). A function u ≥ 0 is called a weak solution of equation (1) if
f(u), u−βχ{u>0} ∈ L1(I×(0,∞)), and u ∈ Lploc(0,∞;W 1,p

0 (I))∩L∞loc(I×(0,∞))∩C([0,∞);L1(I))
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satisfies equation (1) in the sense of distributions D′(I × (0,∞)), i.e:∫ ∞
0

∫
I

(
−uφt + |ux|p−2uxφx + u−βχ{u>0}φ+ f(u)φ

)
dxdt = 0, ∀φ ∈ C∞c (I × (0,∞)). (2)

Then, we have the theorem on the existence of weak solutions.

Theorem 2 Let 0 ≤ u0 ∈ L∞(I), and f satisfy (H). Then, there exists a maximal weak
bounded solution u of equation (1). Moreover, there exists a positive constants C = C(β, p) such
that

|∂xu(x, τ)|p ≤ Cu1−β(x, τ)
(
τ−1‖u0‖1+β∞ + Θ(f, ‖u0‖∞)‖u0‖β∞ + Lip(f, u0)‖u0‖1+β∞ + 1

)
, (3)

for a.e (x, τ) ∈ I × (0,∞), where Lip(f, u0) is the local Lipschitz constant of f on the closed
interval [0, 2‖u0‖∞], and Θ(g, r) = max

0≤s≤r
{|g(s)|}.

In addition, if (u
1
γ

0 )x ∈ L∞(I), with γ = p
p+β−1 then we have

|∂xu(x, τ)|p ≤ Cu1−β(x, τ)
(
‖u0‖1+β∞ + Θ(f, ‖u0‖∞)‖u0‖β∞ + Lip(f, u0)‖u0‖1+β∞ + 1

)
, (4)

for a.e (x, τ) ∈ I × (0,∞), with C = C(β, p, ‖(u
1
γ

0 )x‖∞) > 0.

As a consequence of (3) (resp. (4)), we have

Corollary 3 For any τ > 0, there is a positive constant C = C(β, p, τ, |I|, ‖u0‖∞) such that

|u(x, t)− u(y, s)| ≤ C
(
|x− y|+ |t− s|

1
3

)
, ∀x, y ∈ I, ∀t, s ≥ τ. (5)

Furthermore, if (u
1
γ

0 )x ∈ L∞(I), then there is a constant C = C(β, p, |I|, ‖u0‖∞, ‖(u
1
γ

0 )x‖∞) such
that

|u(x, t)− u(y, s)| ≤ C
(
|x− y|+ |t− s|

1
3

)
, ∀x, y ∈ I, ∀t, s ≥ 0. (6)

Remark 4 The above corollary implies that u is continuous up to the boundary. This result
answers an open question stated in the Introduction of [32] for the semi-linear case.

Remark 5 Estimate (6) says that u continues up to t = 0.

A second goal of this article is to study the most striking phenomenon of equations of
this type, the so called quenching phenomenon that solution vanishes after a finite time. This
property arises due to the presence of the singular term u−βχ{u>0}. It occurs even starting with
a positive unbounded initial data and there is a lack of uniqueness of solutions (see Theorem
1.1, [32] again and see Theorem 3 of Y. Belaud and J.I. Daz, [4]). Then we have the following
results:

Theorem 6 Assume as in Theorem 2. Then, there is a finite time T0 = T0(β, p, ‖u0‖∞) such
that any solution of equation (1) vanishes after T0.

As a consequence of Theorem 6, we show that the assumption f(0) = 0 is not only a necessary
condition, but also a sufficient condition for the existence of solution.
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Corollary 7 The condition f(0) = 0 is a necessary and sufficient condition for the existence of
a solution of equation (1).

Beside of the consideration of the Dirichlet problem, we shall investigate also here the exis-
tence of solution of the Cauchy problem associated to equation (1).{

∂tu− (|ux|p−2ux)x + u−βχ{u>0} + f(u) = 0, in R× (0,∞),

u(x, 0) = u0(x), in R. (7)

In [9], Dao and Diaz studied equation (7) for the case f = 0. They proved the existence of
solution. Moreover, they also studied the behaviors of solutions of equation (7) such as the
quenching phenomenon, and the finite speed of propagation (see Theorem 19 and Theorem 20,
[9]). Of course, these properties still hold for any solution of equation (7) because the appearance
of nonlinear absorption term f(u) does not influence to these properties. In this paper, we will
study the instantaneous shrinking of compact support (in short ISS), namely, if u0 only goes to
0 uniformly as |x| → ∞, then the support of solution is bounded for any t > 0. This property
was first proved in the literature in the study of variational inequalities by H. Brezis and A.
Friedman, see [8]. After that this phenomenon has been considered for quasilinear parabolic
equations, see [7], [18], [21], and references therein for more details. Then, our main results for
the Cauchy problem are as follows:

Theorem 8 Let 0 ≤ u0 ∈ L1(R) ∩ L∞(R), and let f satisfy (H). Then, there exists a weak
bounded solution u ∈ C([0,∞);L1(R)) ∩ Lp(0, T ;W 1,p(R)), satisfying equation (7) in D′(R ×
(0,∞)). Furthermore, u satisfies estimate (3) in R× (0,∞).

Besides, if (u
1
γ

0 )x ∈ L∞(R), then u satisfies estimate (4) in R× (0,∞).

Theorem 9 Let 0 ≤ u0 ∈ L1(R)∩L∞(R). Suppose that u0(x) tends to 0 uniformly as |x| → ∞.
Then, any nonnegative solution of equation (7) has the ISS property.

The paper is organized as follows: Section 2 is devoted to prove gradient estimates, which
are the main key of proving the existence of solution. In section 3, we shall give the proof of
Theorem 2, Theorem 6, and Corollary 7. Finally, we give the proof of the existence of solution
of equation (7) and Theorem 9 in Section 4.

Several notations which will be used through this paper are the following: we denote by C a
general positive constant, possibly varying from line to line. Furthermore, the constants which
depend on parameters will be emphasized by using parentheses. For example, C = C(p, β, τ)
means that C only depends on p, β, τ . We also denote by Ir(x) = (x− r, x+ r) to the open ball
with center at x and radius r > 0 in R. If x = 0, we denote Ir(0) = Ir. Next ∂xu (resp. ∂tu)
means the partial derivative with respect to x (resp. t). We also write ∂xu = ux. Finally, the
L∞-norm of u is denoted by ‖u‖∞.

Acknowledgement 10 The first author would like to express his gratitude to Ton Duc Thang
University for their support. JID was partially supported by the project ref. MTM2014-57113-P
of the DGISPI (Spain) and the Research Group MOMAT (Ref. 910480) of the UCM.
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2 Gradient estimate for the approximate solution

In this part, we shall modify Bernstein’s technique to obtain a variety of estimates on |ux|
depending on f(u). Roughly speaking, the gradient estimates that we shall prove are of the type

|ux(x, t)|p ≤ Cu1−β(x, t), for a.e (x, t) ∈ I × (0,∞). (8)

It is known that such a gradient estimate of (8) plays a crucial role in proving the existence of
solution (see e.g. [28], [12], [32] for the semi-linear case; and see [24], [9], for the quasilinear of
this type). By the appearance of the nonlinear diffusion, p-Laplacian, we shall establish previ-
ously the gradient estimates for the solutions of the regularizing problem.

For any ε > 0, let us set

gε(s) = s−βψε(s), with ψε(s) = ψ(
s

ε
),

and ψ ∈ C∞(R), 0 ≤ ψ ≤ 1 is a non-decreasing function such that ψ(s) =

{
0, if s ≤ 1,
1, if s ≥ 2.

Now fix ε > 0, we consider the following problem:
∂tu− (a(ux)ux)x + gε(u) + f(u)ψε(u) = 0, in I × (0,∞),
u(−l, t) = u(l, t) = η, t ∈ (0,∞),
u(x, 0) = u0(x) + η, x ∈ I,

(9)

with a(s) = b(s)
p−2
2 , b(s) = |s|2 + η2; and η → 0+. Note that a(ux) is a regularization of

|ux|p−2. Then, problem (Pε,η) can be understood as a regularization of equation (1). The
gradient estimates, presented in this framework are as follows:

Lemma 11 Let 0 ≤ u0 ∈ C∞c (I), u0 6= 0. Suppose that f ∈ C1([0,∞)). Then, for any 0 < η <
ε < ‖u0‖∞, there exists a unique classical solution uε,η of equation (9).

i) Moreover, there is a positive constant C = C(β, p) such that

|∂xuε,η(x, τ)|p ≤ Cu1−βε,η (x, τ)
(
τ−1‖u0‖1+β∞ + Θ(f, ‖u0‖∞)‖u0‖β∞ + Θ(f ′, ‖u0‖∞)‖u0‖1+β∞ + 1

)
,

(10)
for (x, τ) ∈ I × (0,∞). Recall here for a convenience Θ(h, r) = max

0≤s≤r
{|h(s)|}.

ii) If we assume more that (u
1
γ

0 )x ∈ L∞(I), then there exists a positive constant

C = C(β, p, ‖(u
1
γ

0 )x‖∞) such that

|∂xuε,η(x, τ)|p ≤ Cu1−βε,η (x, τ)
(
‖u0‖1+β∞ + Θ(f, ‖u0‖∞)‖u0‖β∞ + Θ(f ′, ‖u0‖∞)‖u0‖1+β∞ + 1

)
,

(11)
for any (x, τ) ∈ I × (0,∞).
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Proof: i) Obviously, equation (9) is not degenerated. Thus, the existence and uniqueness of
solution uε,η ∈ C∞(I × [0,∞)) is well-known (see, e.g. [34], [21], [25], and [33]). In short, we
denote u = uε,η. Then, we observe that η (resp. ‖u0‖∞) is a sub-solution (resp. super-solution)
of equation (9). Thus, the strong comparison principle yields

η ≤ u ≤ ‖u0‖∞, in I × (0,∞). (12)

For any 0 < τ < T <∞ , let us consider a test function ξ(t) ∈ C∞c (0,∞), 0 ≤ ξ(t) ≤ 1 such
that

ξ(t) =


1, on [τ, T ],

0, outside ( τ2 , T + τ
2 ).

, and |ξt| ≤
c0
τ
,

and put
u = ϕ(v) = vγ , w(x, t) = ξ(t)v2x(x, t).

We write briefly a(ux) = a, (a(ux))x = ax, and (a(ux))xx = axx.

Then, we have

wt − awxx = ξtv
2
x + 2ξvx(vt − avxx)x − 2ξav2xx + 2ξaxvxvxx. (13)

From the equation satisfied by u, we get

vt − avxx = axvx + av2x
ϕ′′

ϕ′
− gε(ϕ)

ϕ′
− f(ϕ)ψε(ϕ)

ϕ′
. (14)

Combining (13) and (14) provides us

wt − awxx = ξtv
2
x + 2ξvx

(
axvx + av2x

ϕ′′

ϕ′
− gε(ϕ)

ϕ′
− f(ϕ)ψε(ϕ)

ϕ′

)
x

− 2ξav2xx + 2ξaxvxvxx. (15)

Now, we define
L = max

I×[0,∞)
{w(x, t)}.

If L = 0, then the conclusion (10) is trivial, and |zx(x, τ)| = 0, in I × (0,∞). If not we have
L > 0. This implies that vx(x0, t0) 6= 0, and the function w must attain its maximum at a point
(x0, t0) ∈ I × ( τ2 , T + τ

2 ) since w(x, t) = 0 on ∂I × (0,∞), and w(., t) = 0 outside ( τ2 , T + τ
2 ).

Therefore, we get{
wt(x0, t0) = wx(x0, t0) = 0, and
0 ≥ wxx(x0, t0) = 2ξ(t0)v

2
xx(x0, t0) + 2ξ(t0)vx(x0, t0)vxxx(x0, t0),

which implies
vxx(x0, t0) = 0, (16)

and
vx(x0, t0)vxxx(x0, t0) ≤ 0, (17)

At the moment, our argument focuses on the functions v, and w at the point (x0, t0). Note that
by (16), inequality (15) reduces to

0 ≤ wt − awxx = ξtv
2
x + 2ξvx

(
axxvx + axv

2
x

ϕ′′

ϕ′
+ av2x

(
ϕ′′

ϕ′

)
x

−
(
gε(ϕ)

ϕ′

)
x

−
(
f(ϕ)ψε(ϕ)

ϕ′

)
x

)
.
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0 ≤ ξtξ−1v2x + 2vx

(
axxvx + axv

2
x

ϕ′′

ϕ′
+ av2x

(
ϕ′′

ϕ′

)
x

−
(
gε(ϕ)

ϕ′

)
x

−
(
f(ϕ)ψε(ϕ)

ϕ′

)
x

)
.

Or

−av3x
(
ϕ′′

ϕ′

)
x

≤ 1

2
ξtξ
−1v2x + axxv

2
x + axv

3
x

ϕ′′

ϕ′
− vx

(
gε(ϕ)

ϕ′

)
x

− vx
(
f(ϕ)ψε(ϕ)

ϕ′

)
x

. (18)

By using the fact vxx(x0, t0) = 0 again, we get
(a(ux))x = (p− 2)b

p−4
2 (ux)ϕ′ϕ′′v3x,(

ϕ′′

ϕ′

)
x

=

(
ϕ′′′ϕ′ − ϕ′′2

ϕ′2

)
vx = −(γ − 1)v−2vx.

(19)

Next, we compute

(a(ux))xx = (p− 2)(p− 4)b
p−6
2 (ux)(ϕ′ϕ′′)2v6x + (p− 2)b

p−4
2 (ux)(ϕ′′2 + ϕ′ϕ′′′)v4x

+ (p− 2)b
p−4
2 (ux)ϕ′2vxvxxx.

Thanks to (17), we obtain

(a(ux))xx ≤ (p− 2)(p− 4)b
p−6
2 (ux)(ϕ′ϕ′′)2v6x + (p− 2)b

p−4
2 (ux)(ϕ′′2 + ϕ′ϕ′′′)v4x. (20)

After that, we have
vx

(
gε(ϕ)

ϕ′

)
x

= (g′ε − gε
ϕ′′

ϕ′2
)v2x =

(
ψ′ε(ϕ)v−β − (β +

γ − 1

γ
)ψε(ϕ)v−(1+β)γ

)
v2x,

vx

(
f(ϕ)ψε(ϕ)

ϕ′

)
x

=

(
(fψε)

′ − (fψε)
ϕ′′

ϕ′2

)
v2x = (fψε)

′v2x − f(ϕ(v))ψε(ϕ(v))(
γ − 1

γ
)v−γv2x.

Since f, ψε, ψ
′
ε ≥ 0, and 0 ≤ ψε ≤ 1, we get

vx

(
gε(ϕ)

ϕ′

)
x

≥ −(β +
γ − 1

γ
)v−(1+β)γv2x,

vx

(
f(ϕ)ψε(ϕ)

ϕ′

)
x

≥ f ′(ϕ(v))ψε(ϕ(v))v2x − (
γ − 1

γ
)f(ϕ(v))v−γv2x.

(21)

Inserting (19), (20), and (21) into (18) yields

1

2
ξtξ
−1v2x + (p− 2)(p− 4)b

p−6
2 (ux)(ϕ′ϕ′′)2v8x + (p− 2)b

p−4
2 (ux)(2ϕ′′2 + ϕ′ϕ′′′)v6x︸ ︷︷ ︸

B

+(β+
γ − 1

γ
)v−(1+β)γv2x+(

γ − 1

γ
)f(ϕ(v))v−γv2x−f ′(ϕ(v))ψε(ϕ(v))v2x ≥ (γ−1)v−2a(zx)v4x (22)
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Now, we handle the term B

B = (p− 2)b
p−6
2 (ux)v6x

(
(p− 4)(ϕ′ϕ′′)2v2x + (2ϕ′′2 + ϕ′ϕ′′′)b(ux)

)
=

(p− 2)ϕ′2b
p−6
2 (ux)v8x

(
(p− 2)ϕ′′2 + ϕ′ϕ′′′

)
+ η2(p− 2)(2ϕ′′2 + ϕ′ϕ′′′)b

p−6
2 (ux)v6x =

(p− 2)(p(γ − 1)− γ)γ2(γ − 1)v2(γ−2)ϕ′2b
p−6
2 (ux)v8x︸ ︷︷ ︸

B1

+ η2(p− 2)γ2(γ − 1)(3γ − 4)v2(γ−2)b
p−6
2 (ux)v6x︸ ︷︷ ︸

B2

It is clear that B1 ≤ 0 since p(γ − 1)− γ < 0, thereby proves

B ≤ B2. (23)

From (22) and (23), we get

1

2
ξtξ
−1v2x + (β +

γ − 1

γ
)v−(1+β)γv2x + (

γ − 1

γ
)f(ϕ(v))v−γv2x − f ′(ϕ(v))ψε(ϕ(v))v2x + B2

≥ (γ − 1)v−2a(ux)v4x.

Since p > 2, b
p−2
2 (.) is an increasing function, thereby proves

a(ux) = b
p−2
2 (ux) ≥ |ux|p−2 = γp−2v(γ−1)(p−2)|vx|p−2.

It follows then from the last two inequalities

1

2
ξtξ
−1v2x + (β +

γ − 1

γ
)v−(1+β)γv2x + (

γ − 1

γ
)f(ϕ(v))v−γv2x − f ′(ϕ(v))ψε(ϕ(v))v2x + B2

≥ (γ − 1)γp−2v(γ−1)(p−2)−2|vx|p+2.

By noting that 2− (γ − 1)(p− 2) = (1 + β)γ, we get

1

2
ξtξ
−1v2x + (β +

γ − 1

γ
)v−(1+β)γv2x + (

γ − 1

γ
)f(ϕ(v))v−γv2x − f ′(ϕ(v))ψε(ϕ(v))v2x + B2

≥ (γ − 1)γp−2v−(1+β)γ |vx|p+2.

Multiplying both sides of the above inequality by v(1+β)γ yields

1

2
ξtξ
−1v(1+β)γv2x + (β +

γ − 1

γ
)v2x + (

γ − 1

γ
)f(ϕ(v))vβγv2x − f ′(ϕ(v))ψε(ϕ(v))v(1+β)γv2x

+v(1+β)γB2 ≥ (γ − 1)γp−2|vx|p+2. (24)

Now, we divide the study of inequality (24) in two cases:

(?) Case: 3γ − 4 ≤ 0.

We have B2 ≤ 0. It follows then from (24) that

(γ − 1)γp−2|vx|p+2 ≤
(

1

2
ξtξ
−1v(1+β)γ + (β +

γ − 1

γ
) + (

γ − 1

γ
)f(ϕ(v))vβγ

−f ′(ϕ(v))ψε(ϕ(v))v(1+β)γ
)
v2x.
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Since vx(x0, t0) 6= 0, we can simplify the term |vx|2 of both sides of the above inequality to
obtain

(γ−1)γp−2|vx|p ≤
(

1

2
ξtξ
−1v(1+β)γ + (β +

γ − 1

γ
) + (

γ − 1

γ
)f(ϕ(v))vβγ − f ′(ϕ(v))ψε(ϕ(v))v(1+β)γ

)
.

(25)
Since ψε(.) ≤ 1, there is a positive constant C depending on β, p such that

|vx|p ≤ C
(
|ξt|ξ−1v(1+β)γ + 1 + f(ϕ(v))vβγ + |f ′(ϕ(v))|v(1+β)γ

)
. (26)

Remind that u = ϕ(v) = vγ . Thus, we infer from (12) and (26)

|vx|p ≤ C
(
|ξt|ξ−1(t0)‖u0‖1+β∞ + ‖u0‖β∞Θ(f, ‖u0‖∞) + ‖u0‖1+β∞ Θ(f ′, ‖u0‖∞) + 1

)
. (27)

By multiplying both sides of (27) with ξ(t0)
p
2 , we get(

ξ(t0)|vx(x0, t0)|2
) p

2 ≤ C
(
|ξt|ξ(t0)

p
2
−1‖u0‖1+β∞ + ξ(t0)

p
2 ‖u0‖β∞Θ(f, ‖u0‖∞)+

ξ(t0)
p
2 ‖u0‖1+β∞ Θ(f ′, ‖u0‖∞) + ξ(t0)

p
2

)
.

Since ξ(t) ≤ 1, and |ξt(t)| ≤ c0τ−1, there is a positive constant (still denoted by C) such that

w(x0, t0)
p
2 ≤ C

(
τ−1‖u0‖1+β∞ + ‖u0‖β∞Θ(f, ‖u0‖∞) + ‖u0‖1+β∞ Θ(f ′, ‖u0‖∞) + 1

)
.

Remind that w(x0, t0) = max
(x,t)∈I×[0,∞)

{w(x, t)}. The last estimate induces

w(x, t)
p
2 ≤ C

(
τ−1‖u0‖1+β∞ + ‖u0‖β∞Θ(f, ‖u0‖∞) + ‖u0‖1+β∞ Θ(f ′, ‖u0‖∞) + 1

)
,

for any (x, t) ∈ I × (0,∞). By noting that ξ(τ) = 1, we obtain

|vx(x, τ)|p = w(x, τ)p ≤ C
(
τ−1‖u0‖1+β∞ + ‖u0‖β∞Θ(f, ‖u0‖∞) + ‖u0‖1+β∞ Θ(f ′, ‖u0‖∞) + 1

)
,

which implies

|ux(x, τ)|p ≤ Cu1−β(x, τ)
(
τ−1‖u0‖1+β∞ + ‖u0‖β∞Θ(f, ‖u0‖∞) + ‖u0‖1+β∞ Θ(f ′, ‖u0‖∞) + 1

)
.

This inequality holds for any τ > 0, so we get (10).

(??) Case: 3γ − 4 > 0⇐⇒ p < 4(1− β).

Now b
p−6
2 (.) is a decreasing function, so we have

b
p−6
2 (zx) ≤ |zx|

p−6
2 = (v2xϕ

′2)
p−6
2 ,

which implies

v(1+β)γB2 ≤ η2(p− 2)γ2(γ − 1)(3γ − 4)γp−6v2(γ−2)+(1+β)γ+(γ−1)(p−6)|vx|p.

9



Note that 2(γ − 2) + (1 + β)γ + (γ − 1)(p− 6) = −2(γ − 1). Then, we obtain

v(1+β)γB2 ≤ η2(p− 2)γ2(γ − 1)(3γ − 4)γp−6v−2(γ−1)|vx|p. (28)

A combination of (28) and (24) gives us

1

2
ξtξ
−1v(1+β)γv2x + (β +

γ − 1

γ
)v2x + (

γ − 1

γ
)f(ϕ(v))vβγv2x − f ′(ϕ(v))ψε(ϕ(v))v(1+β)γv2x

+ η2(p− 2)γ2(γ − 1)(3γ − 4)γp−6v−2(γ−1)|vx|p ≥ (γ − 1)γp−2|vx|p+2.

The fact v = u
1
γ ≥ η

1
γ implies v−2(γ−1) ≤ η−

2(γ−1)
γ . Therefore, there is constant C = C(β, p) > 0

such that

|vx(x0, t0)|p+2 ≤ C
(
|ξt|ξ−1v(1+β)γ + 1 + f(ϕ(v))vβγ − f ′(ϕ(v))ψε(ϕ(v))v(1+β)γ

)
v2x(x0, t0)

+Cη
2− 2(γ−1)

γ |vx(x0, t0)|p.

Now, if |vx(x0, t0)| < 1, then we have w(x0, t0) = ξ(t0)|vx(x0, t0)|2 < 1, thereby proves
w(x, t) ≤ 1, in I×(0,∞). Thus, estimate (10) follows immediately. If not, we have |vx(x0, t0)|p ≤
|vx(x0, t0)|p+2, then it follows from the last inequality

|vx(x0, t0)|p+2 ≤ C
(
|ξt|ξ−1v(1+β)γ + f(ϕ(v))vβγ − f ′(ϕ(v))ψε(ϕ(v))v(1+β)γ + 1

)
v2x(x0, t0)

+Cη
2
γ |vx(x0, t0)|p+2,

or (
1− Cη

2
γ

)
|vx(x0, t0)|p ≤ C

(
|ξt|ξ−1v(1+β)γ + f(ϕ(v))vβγ − f ′(ϕ(v))ψε(ϕ(v))v(1+β)γ + 1

)
.

Because η is small enough, there exists a positive constant C1 = C1(β, p) such that

|vx(x0, t0)|p ≤ C1

(
|ξt|ξ−1v(1+β)γ + f(ϕ(v))vβγ − f ′(ϕ(v))ψε(ϕ(v))v(1+β)γ + 1

)
.

This inequality is just a version of (25). By the same analysis as in (?), we also obtain estimate
(10).

(ii) Now, we prove estimate (11). For any T ≥ 1 large enough, let us consider the cut-off
function ξ(t) ∈ C∞(R) instead of ξ(t) above, 0 ≤ ξ(t) ≤ 1 such that

ξ(t) =


1, if t < T,

0, if t > 2T,
and |ξt| ≤

c0
T
.

The proof of estimate (11) is most likely to the one of estimate (10). In fact, we observe that
Either w(x, t) attains its maximum at the initial data, i.e:

max
(x,t)∈I×[0,∞)

{w(x, t)} = w(x0, 0) = v2x(x0, 0) = |(u
1
γ

0 )x|2 ≤ ‖(u
1
γ

0 )x‖2∞, for some x0 ∈ I,
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thereby proves

|ux(x, t)|p ≤ γp‖(u
1
γ

0 )x‖p∞u1−β(x, t), for any (x, t) ∈ I × (0, T ). (29)

Or there is a point (x0, t0) ∈ I × (0, 2T ) such that max
(x,t)∈I×[0,∞)

{w(x, t)} = w(x0, t0).

Then, we repeat the proof in i) to get for (x, t) ∈ I × (0,∞)

|ux(x, t)|p ≤ C(β, p)u1−β(x, t)
(
T−1‖u0‖1+β∞ + Θ(f, ‖u0‖∞)‖u0‖β∞ + Θ(f ′, ‖u0‖∞)‖u0‖1+β∞ + 1

)
.

Since T ≥ 1, we obtain from the above inequality

|ux(x, t)|p ≤ Cu1−β(x, t)
(
‖u0‖1+β∞ + Θ(f, ‖u0‖∞)‖u0‖β∞ + Θ(f ′, ‖u0‖∞)‖u0‖1+β∞ + 1

)
. (30)

A combination of (29) and (30) implies that there is a positive constant (still denoted by C)

depending only on β, p, ‖(u
1
γ

0 )x‖∞ such that

|ux(x, t)|p ≤ Cu1−β(x, t)
(
‖u0‖1+β∞ + Θ(f, ‖u0‖∞)‖u0‖β∞ + Θ(f ′, ‖u0‖∞)‖u0‖1+β∞ + 1

)
, (31)

for (x, t) ∈ I × (0,∞).
This puts an end to the proof of Lemma 11. �

If f is only a local Lipschitz function on [0,∞), we have then

Lemma 12 Assume as in Lemma 11. Suppose that f is only a locally Lipschitz function on
[0,∞). Then estimate (10) becomes

|∂xuε,η(x, τ)|p ≤ Cu1−βε,η (x, τ)
(
τ−1‖u0‖1+β∞ + Θ(f, ‖u0‖∞)‖u0‖β∞ + Lip(f, u0)‖u0‖1+β∞ + 1

)
,

(32)
for (x, τ) ∈ I× (0,∞), where Lip(f, u0) is the local Lipschitz constant of f on the closed interval
[0, 2‖u0‖∞].

Moreover, if (u
1
γ

0 )x ∈ L∞(I), then estimate (11) becomes

|∂xuε,η(x, τ)|p ≤ Cu1−βε,η (x, τ)
(
‖u0‖1+β∞ + Θ(f, ‖u0‖∞)‖u0‖β∞ + Lip(f, u0)‖u0‖1+β∞ + 1

)
, (33)

with C = C(β, p, ‖(u
1
γ

0 )x‖∞) > 0.

Proof: At the beginning, we regularize f on [0,∞). To do it, we extend f by 0 in (−∞, 0)
(still denoted by f). Let fn be the standard regularization of f on R. Then, we consider the
following equation:

∂tu− (a(ux)ux)x + gε(u) + fn(u)ψε(u) = 0, in I × (0,∞),
u(−l, t) = u(l, t) = η, t ∈ (0,∞),
u(x, 0) = u0(x) + η, x ∈ I.

(34)
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Let ε, η be in Lemma 11. Then, equation (34) possesses a unique classical solution un. Thanks
to Lemma 11, we have

|∂xun(x, t)|p ≤ Cu1−βn (x, τ)
(
τ−1‖u0‖1+β∞ + Θ(fn, ‖u0‖∞)‖u0‖β∞ + Θ(f ′n, ‖u0‖∞)‖u0‖1+β∞ + 1

)
,

(35)
for any (x, t) ∈ I × (0,∞). One hand, we observe that for any n ≥ 1

Θ(fn, ‖u0‖∞) ≤ Θ(f, ‖u0‖∞ +
1

n
) ≤ Θ(f, 2‖u0‖∞). (36)

Other hand, Rademacher’s theorem (see, e.g., [17]) ensures that

Θ(f ′n, ‖u0‖∞) ≤ Lip(f, ‖u0‖∞ +
1

n
) ≤ Lip(f, 2‖u0‖∞). (37)

From (35), (36), and (37), we observe that |∂xun(x, t)| is bounded by a constant not depending
on n. Then, the classical argument allows us to pass to the limit as n→∞ in (35) in order to
get the gradient estimate (32).
Similarly, we also obtain estimate (33). �

If f in Lemma 12 is nondecreasing on [0,∞), then we can relax the term Lip(f, u0) in (32)
and (33).

Lemma 13 Let f be a continuous and a nondecreasing function on [0,∞). Then, there exists
a positive constant C = C(β, p) such that

|∂xuε,η(x, τ)|p ≤ Cu1−βε,η (x, τ)
(
τ−1‖u0‖1+β∞ + f(‖u0‖∞)‖u0‖β∞ + 1

)
, (38)

for (x, τ) ∈ I × (0,∞). Note that Θ(f, ‖u0‖∞) = f(‖u0‖∞) in this case.

Furthermore, if (u
1
γ

0 )x ∈ L∞(I), then there is a positive constant C = C(β, p, ‖(u
1
γ

0 )x‖∞)
such that

|∂xuε,η(x, τ)|p ≤ Cu1−βε,η (x, τ)
(
‖u0‖1+β∞ + f(‖u0‖∞)‖u0‖β∞ + 1

)
. (39)

Proof: We can assume without loss of generality that f ∈ C1([0,∞)). If not, we work on the
standard regularization of f , i.e fn above. Note that fn is also a nondecreasing function.
The proof of this Lemma is most likely to the one of Lemma 11. In fact, we just make a slight
change in (25) in order to remove the term containing f ′. Let us recall inequality (25) here for
a convenience.

(γ−1)γp−2|vx|p ≤
(

1

2
ξtξ
−1v(1+β)γ + (β +

γ − 1

γ
) + (

γ − 1

γ
)f(ϕ(v))vβγ − f ′(ϕ(v))ψε(ϕ(v))v(1+β)γ

)
.

Since f ′ ≥ 0, we have

(γ − 1)γp−2|vx|p ≤
(

1

2
ξtξ
−1v(1+β)γ + (β +

γ − 1

γ
) + (

γ − 1

γ
)f(ϕ(v))vβγ

)
.

Obviously, the term containing f ′ does not appear in the last inequality. Then, we just repeat
the proof of Lemma 11 to get estimate (38).
Finally, by the same argument as in the proof of ii) Lemma 11, we get (39). �

12



Remark 14 Note that the solution in Lemma 13 is unique because of the monotonicity of f .

Remark 15 Note that the estimates in the proof of Lemma 11 (resp. Lemma 12, Lemma 13)
are independent of η, ε. This observation allows us to pass to the limit as η, ε → 0 in order to
get gradient estimates for solution u of equation (1).

Next, we pass to the limit as η → 0 to obtain a solution of the following equation.

(Pε)


∂tu− ∂x

(
|∂xu|p−2∂xu

)
+ gε(u) + f(u)ψε(u) = 0 in I × (0,∞),

u(−l, t) = u(l, t) = 0 t ∈ (0,∞),
u(x, 0) = u0(x) on I.

Theorem 16 Let 0 ≤ u0 ∈ L∞(I), and let f satisfy (H). Then, there exists a unique weak
solution uε of equation (Pε). Furthermore, uε is bounded by ‖u0‖∞, and it fulfills gradient
estimate (32) for a.e (x, t) ∈ I × (0,∞).

Besides, if (u
1
γ

0 )x ∈ L∞(I), then uε satisfies estimate (33) for a.e (x, t) ∈ I × (0,∞).

Proof: Note that we can regularize initial data u0 if necessary. Then, the proof of this Theorem
is obtained by passing η → 0 in equation (9). It is today a classical argument, see, e.g., [34],
[33], [16]. Thus, we leave the details to the reader. �

Remark 17 Up to now, we have not used the assumption f(0) = 0 yet. However, this assump-
tion will be utilized in the step of passing ε→ 0.

3 Existence of a maximal solution

Proof of Theorem 2: Thanks to Theorem 16, equation (Pε) has a unique (bounded) weak
solution uε. Furthermore, uε satisfies gradient estimate (32).
Now, we claim that {uε}ε>0 is a nondecreasing sequence. Indeed, we observe that ψε1(s) ≥ ψε2(s)
for any ε1 < ε2, thereby proves

gε1(uε1) ≥ gε2(uε1), and f(uε1)ψε1(uε1) ≥ f(uε1)ψε2(uε1).

These facts imply that uε1 is a sub-solution of equation satisfied by uε2 . By the comparison
principle, we obtain

0 ≤ uε1 ≤ uε2 , in I × (0,∞).

Thus, there is a nonnegative function u such that as ε→ 0

uε(x, t) ↓ u(x, t), for (x, t) ∈ I × (0,∞).

Now, we claim that
u−βχ{u>0} ∈ L1(I × (0,∞)). (40)

One hand, it follows from the energy estimate of the regularized equation that

‖uε(t)‖L1(I), ‖gε(uε)‖L1(I×(0,∞)), and ‖f(uε)‖L1(I×(0,∞)) ≤ ‖u0‖L1(I), (41)
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for any ε > 0. Other hand, the monotonicity of {uε}ε yields

gε(uε) ≥ gε(uε)χ{u>0}.

Thanks to (41) and Fatou’s Lemma, there exists a nonnegative function Φ ∈ L1(I×(0,∞)) such
that

lim inf
ε→0

gε(uε) = Φ ≥ u−βχ{u>0}, (42)

and ‖Φ‖L1(I×(0,∞)), ‖u−βχ{u>0}‖L1(I×(0,∞)) are also bounded by ‖u0‖L1(I). Or, we get claim
(40). We will prove after that

lim inf
ε→0

gε(uε) = u−βχ{u>0}, in L1(I × (0,∞)). (43)

Next, (41) allows us to apply a result of L. Boccardo et al., the so called almost everywhere
convergence of the gradients (see [5], [6]) in order to obtain

∂xuε(x, t)→ ∂xu(x, t), for a.e (x, t) ∈ I × (0,∞),

up to a subsequence. Therefore, u also satisfies estimate (32) for a.e (x, t) ∈ I × (0,∞). In
addition, we have

∂xuε → ∂xu, in Lr(I × (τ, T )), for any 0 < τ < T <∞, and for r ≥ 1. (44)

At the moment, we demonstrate that u must satisfy equation (1) in the sense of distribution.
For any η > 0 fixed, we use the test function ψη(uε)φ, φ ∈ C∞c (I × (0,∞)), in the equation
satisfied by uε. Then, using integration by parts yields∫

Supp(φ)

(
−Ψη(uε)φt +

1

η
|∂xuε|pψ′(

uε
η

)φ+ |∂xuε|p−2∂xuεφxψη(uε)

+gε(uε)ψη(uε)φ+ f(uε)ψε(uε)ψη(uε)φ
)
dxds = 0,

with Ψη(u) =

∫ u

0
ψη(s)ds. Note that the test function ψη(.) plays a role in isolating the

singularity when uε is near to 0. Thus, there is no problem of going to the limit as ε→ 0 in the
above equation to get∫
Supp(φ)

(
−Ψη(u)φt +

1

η
|ux|pψ′(

u

η
)φ+ |ux|p−2uxφxψη(u) + u−βψη(u)φ+ f(u)ψη(u)φ

)
dxds = 0.

(45)
Next, we will go to the limit as η → 0 in equation (45).

We first note that u−βψη(u)(x, t) ↑ u−βχ{u>0}(x, t), for any (x, t) ∈ I × (0,∞). By (40), the

Monotone Convergence Theorem deduces u−βψη(u) ↑ u−βχ{u>0} in L1(I × (0,∞)), thereby
proves

u−βψη(u)φ→ u−βχ{u>0}φ, in L1(I × (0,∞)). (46)

Since f(0) = 0, it follows from the Dominated Convergence Theorem that

lim
η→0

∫
f(u)ψη(u)φ dxds =

∫
f(u)φ dxds. (47)
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On the other hand, we have

lim
η→0

∫
Supp(φ)

1

η
|∂xu|pψ′(

u

η
)φ dxds = 0. (48)

In fact, we have

1

η

∫
Supp(φ)

|∂xu|pψ′(
u

η
)φ dxds =

1

η

∫
Supp(φ)∩{η<u<2η}

|∂xu|pψ′(
u

η
)φ dxds.

Because u satisfies estimate (32), we have then

1

η

∫
Supp(φ)∩{η<u<2η}

|∂xu|p|ψ′(
u

η
)||φ| dxds ≤ C 1

η

∫
Supp(φ)∩{η<u<2η}

u1−βdxds

≤ 2C

∫
Supp(φ)∩{η<u<2η}

u−βdxds,

where the constant C > 0 is independent of η. Moreover, u−βχ{u>0} is integrable on I × (0,∞)
by (40). Thus, we get

lim
η→0

∫
Supp(φ)∩{η<u<2η}

u−βdxds = 0,

thereby proves the conclusion (48).
A combination of (46) , (47), and (48) deduces∫

Supp(φ)

(
−uφt + |ux|p−2uxφx + u−βχ{u>0}φ+ f(u)φ

)
dxds = 0. (49)

In other words, u satisfies equation (1) in D′(I × (0,∞)).

As mentioned above, we prove (43) now. The fact that uε is a weak solution of (Pε) leads to∫
Supp(φ)

(
−uεφt + |∂xuε|p−2∂xuε∂xφ+ gε(uε)φ+ f(uε)ψε(uε)φ

)
dxds = 0,

for φ ∈ C∞c (I × (0,∞)), φ ≥ 0. Letting ε→ 0 in the last equation deduces∫
Supp(φ)

(
−uφt + |ux|p−2uxφx

)
dxds+lim

ε→0

∫
Supp(φ)

gε(uε)φ dxds+

∫
Supp(φ)

f(u)φ dxds = 0. (50)

By (49) and (50), we get

lim
ε→0

∫ ∞
0

∫
I
gε(uε)φ dxds =

∫ ∞
0

∫
I
u−βχ{u>0}φ dxds. (51)

According to (51) and Fatou’s Lemma, we obtain∫ ∞
0

∫
I

Φφ dxds =

∫ ∞
0

∫
I

lim inf
ε→0

gε(uε)φ dxds ≤
∫ ∞
0

∫
I
u−βχ{u>0}φ dxds,

∀φ ∈ C∞c (I × (0,∞)), φ ≥ 0. The last inequality and (42) yield

u−βχ{u>0} = Φ, a.e in I × (0,∞).

Or, we get (43).

It remains to show that u is the maximal solution of equation (1).
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Proposition 18 Let v be a weak solution of equation (1). Then, we have

v(x, t) ≤ u(x, t), for a.e (x, t) ∈ I × (0,∞).

Proof: For any ε > 0, we observe that gε(v) ≤ v−βχ{v>0}, and f(v)ψε(v) ≤ f(v). Thus, we
get

∂tv −
(
|vx|p−2vx

)
x

+ gε(v) + f(v)ψε(v) ≤ 0.

This means that v is a sub-solution of equation (Pε), so the comparison theorem yields

v(x, t) ≤ uε(x, t), for a.e (x, t) ∈ I × (0,∞).

The conclusion follows by letting ε→ 0 in the last inequality.
This puts an end to the proof of Theorem 2. �

If f is a global Lipschitz function, or f is a nondecreasing function on [0,∞), then the
existence result holds for L1-initial data.

Theorem 19 Let 0 ≤ u0 ∈ L1(I). Suppose that f is a global Lipschitz function on [0,∞), and
f(0) = 0. Then there exists a maximal weak solution u of equation (1). Furthermore, we have

‖u(t)‖∞ ≤ C(p, |I|)t−
1
λ ‖u0‖

p
λ

L1(I)
, ∀t > 0, with λ = 2(p− 1). (52)

Besides, for any τ > 0, u satisfies the following gradient estimate

|ux(x, t)|p ≤ C(β, p)u1−β(x, t)
(
τ−1‖u(τ)‖1+β∞ + Θ(f, ‖u(τ)‖∞)‖u(τ)‖β∞ + Lip(f)‖u(τ)‖1+β∞ + 1

)
,

(53)
for a.e (x, t) ∈ I × (τ,∞), where Lip(f) is the global Lipschitz constant of f .

Theorem 20 Let 0 ≤ u0 ∈ L1(I). Suppose that f is continuous and nondecreasing on [0,∞),
and f(0) = 0. Then, equation (1) possesses a maximal weak solution u satisfying the universal
bound (52). Moreover, for any τ > 0, we have

|ux(x, t)|p ≤ C(β, p)u1−β(x, t)
(
τ−1‖u(τ)‖1+β∞ + f(2‖u(τ)‖∞)‖u(τ)‖β∞ + 1

)
, (54)

for a.e (x, t) ∈ I × (τ,∞).

Proof: The proof of Theorem 19 and Theorem 20 is just a combination of the one of Theorem
2 and the L1-framework argument in [9] (see also [11] for the semi-linear case). Then, we leave
the details to the reader. �

Remark 21 We emphasize that our existence results also hold for a class of C1-functions
f(u, x, t) such that f(0, x, t) = 0, ∀(x, t) ∈ I × (0,∞), see the paper [10].

Next, we give the proof of Theorem 6 and Corollary 7.

Proof of Theorem 6: It is sufficient to show that the quenching result holds for the maximal
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solution u.
Indeed, let v be the maximal solution of the equation:

∂tv − (|vx|p−2vx)x + v−βχ{v>0} = 0 in I × (0,∞),

v(−l, t) = v(l, t) = 0 t ∈ (0,∞),
v(x, 0) = u0(x) in I.

(55)

Thanks to the result of Theorem 13, [9], there is a finite time T0 = T0(β, p, ‖u0‖) such that

v(x, t) = 0, ∀(x, t) ∈ I × (T0,∞).

It follows from the construction of u and v that

u ≤ v, ∀(x, t) ∈ I × (0,∞).

Thus, we get the conclusion. �

Proof of Corollary 7:
If f(0) = 0, then the existence result follows from Theorem 2 above.
Next, assume that equation (1) possesses a weak solution w. Thanks to Theorem 6, there is a
finite time T0 such that

w(x, t) = 0, for x ∈ I, t > T0.

Thus, it follows from equation (1) that f(0) = 0. �

4 The Cauchy problem

4.1 Existence of a weak solution

We first give the proof of Theorem 8.

Proof: Let ur be the maximal solution of the following equation
∂tu− (|ux|p−2ux)x + u−βχ{u>0} + f(u) = 0 in Ir × (0,∞),

u(−r, t) = u(r, t) = 0, ∀t ∈ (0,∞),
u(x, 0) = u0(x), in Ir,

(56)

see Theorem 2. It is clear that {ur}r>0 is a nondecreasing sequence. Moreover, the strong
comparison principle deduces

ur(x, t) ≤ ‖u0‖L∞(R), for (x, t) ∈ Ir × (0,∞). (57)

Thus, there exists a function u such that ur ↑ u as r →∞. We will show that u is a solution of
problem (7).
First, the energy estimate provides us

‖ur(., t)‖L1(Ir) ≤ ‖u0‖L1(R), for any t ∈ (0,∞),

‖f(ur)‖L1(Ir×(0,∞)), ‖u
−β
r χ{ur>0}‖L1(Ir×(0,∞)) ≤ ‖u0‖L1(R).

(58)
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It follows immediately from the Monotone Convergence Theorem that ur(t) converges to u(t)
in L1(R), and f(ur) converges to f(u) in L1(R× (0,∞)) as r →∞, likewise

‖u(., t)‖L1(R) ≤ ‖u0‖L1(R), for any t ∈ (0,∞),

‖f(u)‖L1(R×(0,∞)) ≤ ‖u0‖L1(R).
(59)

Furthermore, ur satisfies gradient estimate

|∂xur(x, t)|p ≤ Cu1−βr (x, t)
(
t−1‖u0‖1+β∞ + Θ(f, ‖u0‖∞)‖u0‖β∞ + Lip(f, u0)‖u0‖1+β∞ + 1

)
, (60)

for a.e (x, t) ∈ Ir × (0,∞). By the same argument as in the proof of Theorem 2, there is a
subsequence of {ur}r>0 (still denoted as {ur}r>0) such that ∂xur

r→∞−→ ∂xu, for a.e (x, t) ∈
R× (0,∞).
By (60), we obtain

|ux(x, t)|p ≤ Cu1−β(x, t)
(
t−1‖u0‖1+β∞ + Θ(f, ‖u0‖∞)‖u0‖β∞ + Lip(f, u0)‖u0‖1+β∞ + 1

)
, (61)

for a.e (x, t) ∈ R× (0,∞), and

∂xur
r→∞−→ ux, in Lqloc(R× (0,∞)), ∀q ≥ 1. (62)

Now, we show that u satisfies equation (7) in the sense of distribution. Indeed, using the
test function ψη(ur)φ for the equation satisfied by ur gives us∫

Supp(φ)

(
−Ψη(ur)φt + |∂xur|p−2∂xurφxψη(ur) +

1

η
|∂xur|p−2∂xurψ′(

ur
η

)φ

+ u−βr χ{ur>0}ψη(ur)φ+ f(ur)ψη(ur)φ
)
dsdx = 0, ∀φ ∈ C∞c (R× (0,∞)).

We first take care of the term u−βr χ{ur>0}ψη(ur)φ in passing r → ∞ and η → 0. It is not

difficult to see that u−βr χ{ur>0}ψη(ur) = u−βr ψη(ur) is bounded by η−β. Then for any η > 0, the

Dominated Convergence Theorem yields u−βr ψη(ur)
r→∞−→ u−βψη(u) in L1

loc(R× (0,∞)).
By (58), we obtain

‖u−βψη(u)‖L1(R×(0,∞)) ≤ ‖u0‖L1(R).

Next, using the Monotone Convergence Theorem deduces u−βψη(u) ↑ u−βχ{u>0} in
L1(R× (0,∞)), as η → 0, thereby proves

‖u−βχ{u>0}‖L1(R×(0,∞)) ≤ ‖u0‖L1(R). (63)

Thanks to (62), (58) and (57), there is no problem of passing to the limit as r → ∞ in the
indicated variational equation in order to get

∫
Supp(φ)

(
−Ψη(u)φt + |ux|p−2uxφxψη(u) +

1

η
|ux|p−2uxψ′(

u

η
)φ

+ u−βψη(u)φ+ f(u)ψη(u)φ
)
dsdx = 0, ∀φ ∈ C∞c (R× (0,∞)).
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By (59), (61), and (63), we can proceed similarly as the proof of (45)-(48) to obtain after letting
η → 0∫

Supp(φ)

(
−uφt + |ux|p−2uxφx + u−βχ{u>0}φ+ f(u)φ

)
dxds = 0, ∀φ ∈ C∞c (R× (0,∞)). (64)

Or u satisfies equation (1) in the sense of distribution.

Then, it remains to prove that u ∈ C([0,∞);L1(R)). Let us first claim that

u ∈ C([0,∞);L1
loc(R)). (65)

In order to prove (65), we use a compactness result of Porretta, [29]. We present it here for a
convenience.

Lemma 22 (Theorem 1.1, [29]) Let p > 1 and p′ its conjugate exponent
(
1
p + 1

p′ = 1
)

, a, b ∈
R, and define the space

V p
1 (a, b) = {u : Ω× (a, b)→ R; u ∈ Lp(a, b;W 1,p

0 (Ω)),

ut ∈ Lp
′
(a, b;W−1,p

′
(Ω)) + L1(Ω× (a, b))},

where Ω is a bounded set in RN . Then, we have

V p
1 (a, b) ⊂ C([a, b];L1(Ω)).

For any r > 0, we extend ur by 0 outside Ir, still denoted as ur. Use ur as a test function to
the equation satisfied by ur to get∫ T

0

∫
R
|∂xur|pdxds ≤

1

2

∫
Ir

u20(x)dx ≤ 1

2
‖u0‖L1(R)‖u0‖L∞(R), for T > 0,

which implies ‖ux‖pLp(R×(0,T )) is also bounded by 1
2‖u0‖L1(R)‖u0‖L∞(R), or ux ∈ Lp(R× (0, T )).

By (59) and the boundedness of u, it follows from the Interpolation Theorem that
u ∈ Lp(R× (0, T )), for any T > 0. Thus, we have

u ∈ Lp(0, T ;W 1,p(R)). (66)

According to (66), (59) and (63), we get from the equation satisfied by u

ut ∈ Lp
′
(a, b;W−1,p

′
(R)) + L1(R× (0, T )). (67)

Then, a local argument of Lemma 22 yields the claim (65).
Note that the last conclusion does not implies u ∈ C([0,∞);L1(R)) since the proof of Theorem
1.1, [29] depends on the boundedness of Ω.

To prove u ∈ C([0,∞);L1(R)), it suffices to show that u(t) is continuous at t = 0 in L1(R),
i.e: lim

t→0
‖u(t)− u0‖L1(R) → 0.
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In fact, we have for any m ≥ 1∫
R
|u(x, t)− u0(x)|dx ≤

∫
Im

|u(x, t)− u0(x)|dx+

∫
R\Im

|u(x, t)− u0(x)|dx

≤
∫
Im

|u(x, t)− u0(x)|dx+

∫
R\Im

u(x, t)dx+

∫
R\Im

u0(x)dx =∫
Im

|u(x, t)− u0(x)|dx−
(∫

Im

(u(x, t)− u0(x))dx

)
+

∫
R
u(x, t)dx−

∫
Im

u0(x)dx+

∫
R\Im

u0(x)dx

≤ 2

∫
Im

|u(x, t)− u0(x)|dx+

∫
R
u0(x)dx−

∫
Im

u0(x)dx+

∫
R\Im

u0(x)dx =

2

∫
Im

|u(x, t)− u0(x)|dx+ 2

∫
R\Im

u0(x)dx.

Taking lim sup
t→0

both sides of the indicated inequality deduces

lim sup
t→0

∫
R
|u(x, t)− u0(x)|dx ≤ 2 lim sup

t→0

∫
Im

|u(x, t)− u0(x)|dx+ 2

∫
R\Im

u0(x)dx.

By u ∈ C([0,∞);L1
loc(R)), we obtain from the last inequality

lim sup
t→0

∫
R
|u(x, t)− u0(x)|dx ≤ 2

∫
R\Im

u0(x)dx.

Then the result follows as m→∞. Or, we complete the proof of Theorem 8. �

Remark 23 The existence result also holds for f , a nondecreasing function on [0,∞).

4.2 Instantaneous shrinking of support of solutions

Now, we prove Theorem 9.

Proof: Let u be a solution of equation (7). Since f(u) ≥ 0, we have for any q ∈ (0, 1)

f(u) + u−βχ{u>0} ≥ c0uq,

with c0 =
1

‖u0‖β+qL∞(R)

. This implies that u is a sub-solution of the following equation:

{
∂tw − (|wx|p−2wx)x + c0w

q = 0 in R× (0,∞),
w(x, 0) = u0(x), in R, (68)

Note that equation (68) has a unique solution w (see, e.g, [21], [34]). Thus, the comparison
principle implies

u(x, t) ≤ w(x, t), in R× (0,∞).

Thanks to the result of Herrero [21], w has an instantaneous shrinking of compact support, so
does u.
Thus, we obtain the conclusion. �
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