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Abstract

We consider the high-dimensional equation, ∂tu−∆um + u−βχ{u>0} = 0, extending the
mathematical treatment made on 1992 by B. Kawohl and R. Kersner for the one-dimensional
case. Besides the existence of a very weak solution u ∈ C

(
[0, T ] ;L1

δ (Ω)
)
, with u−βχ{u>0} ∈

L1 ((0, T )× Ω), δ (x) = d (x, ∂Ω), we prove some pointwise gradient estimates for a certain
range of the dimension N , m ≥ 1 and β ∈ (0,m), mainly when the absorption dominates
over the diffusion (1 ≤ m < 2 + β). In particular, a new kind of universal gradient estimate
is proved when m+ β ≤ 2. Several qualitative properties (such as the finite time quenching
phenomena and the finite speed of propagation) and the study of the Cauchy problem are
also considered.
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Dedicated to Laurent Véron in occasion of his 70th birthday

1 Introduction and main results

1.1 Introduction

The main goal of this paper is to extend to the high-dimensional case, the 1992 mathematical
treatment made by B. Kawohl and R. Kersner [49] for a one-dimensional degenerate diffusion
equation with a singular absorption term. More precisely, we will study nonnegative solutions
of the following possibly degenerate reaction-diffusion multi-dimensional problem





∂tu−∆um + u−βχ{u>0} = 0, in (0,∞)× Ω,

um = 0, on (0,∞)× ∂Ω,

u (0, x) = u0 (x) , in Ω,

(P)

where Ω is an open regular bounded domain of RN (for instance with ∂Ω of class C1,α, for some
α ∈ (0, 1]), N ≥ 1, m ≥ 1 (m > 1 corresponds to a typical slow diffusion) and mainly β ∈ (0,m)
(some remarks will be made on the case β ≥ m at the end of this paper). The case of the whole
space, Ω = R

N , will be treated separately. Here χ{u>0} denotes the characteristic function of
the set of points (t, x) where u (t, x) > 0, i.e.:

χ{u>0} (t, x) :=

{
1, if u (t, x) > 0,

0, if u (t, x) = 0.

Note that the absorption term u−βχ{u>0} becomes singular (and the diffusion becomes degen-

erate if m > 1) when u = 0, and that by this normalization we have that u−βχ{u>0} (t, x) = 0 if
u (t, x) = 0. Notice that the boundary condition implies an automatic permanent singularity on
the boundary ∂Ω, in contrast to other related problems in which the singularity is permanently
excluded of the boundary





∂tu−∆um + u−βχ{u>0} = 0, in (0,∞)× Ω,

um = 1, on (0,∞)× ∂Ω,

u (0, x) = u0 (x) , in Ω.

(P(1))

Notice also that the change of unknown v = 1−um, with u solution of (P(1)), in the semilinear
case (m = 1), for instance, leads to the formulation





∂tv −∆v =
χ{v<1}

(1− v)β
, in (0,∞)× Ω,

v = 0, on (0,∞)× ∂Ω,

v (0, x) = 1− u0 (x) , in Ω.

(1.1)

In this way, the study of the associated Cauchy problem
{
∂tu−∆um + u−βχ{u>0} = 0, in (0,∞)× R

N ,

u (0, x) = u0 (x) , in R
N ,

(CP)
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can be regarded from two different points of view according to the assumptions made on the
asymptotic behavior of the initial datum when |x| → +∞. The case u0 (x) ց 0, as |x| → +∞,
can be considered as a limit of problems of the type (P), and the case in which u0 (x) is growing
with |x|, as |x| → +∞, corresponds to a limit of problems of the type (P(1)) (see, e.g., [43]).
Our main goal in this paper is to analyze problems of the type (P) and (CP) when u0 (x) ց 0
as |x| → +∞.

The literature on this type of problems increased very quickly in the last decades. Problem
(P) (and (P(1))) was regarded as the limit case of the regularized Langmuir-Hinshelwood model
in chemical catalyst kinetics (see [3, 25, 34] for the elliptic case and [7, 55] for the parabolic
equation). Some regularized singular absorption terms also arise in some models in enzyme
kinetics ([8]). See also many other references in the survey [44].

As mentioned before, what makes specially interesting equations like (P) is the fact that
the solutions may raise to a free boundary defined as ∂ {(t, x) ;u (t, x) > 0}. In some contexts,
problem (P(1)) was denoted as the quenching problem. It was soon pointed out the appearance
of a blow-up time for ∂tu at the first time Tc > 0 in which u (Tc, x) = 0 at some point x ∈ Ω
(see, e.g., [46, 52, 55]). More recently, parabolic problems with a singular absorption term of
this type have been investigated by many authors (see, e.g., [20, 21, 22, 23, 48, 52, 55, 62],
and references therein). Concerning the associate semilinear Cauchy problem we mention the
papers [40], [42, 43], and their references. The case β ≥ m presents special difficulties when the
free boundary ∂ {(t, x) ;u (t, x) > 0} is a nonempty hypersurface. This set corresponds to the
so-called set of rupture points in the study of thin films ([63]). This case, β ≥ m, also arises in
the modeling of micro-electromechanical systems (MEMS), in which mainly m = 1 and β = 2
([43, 54]).

A great amount of the previous papers in the literature concern only with the one-dimensional
case. To explain some historical progresses in founding gradient estimates for such kind of
problems we start by mentioning that the existence of weak solutions to (P) was obtained firstly
by Phillips [55] for the case N ≥ 1, m = 1, and β ∈ (0, 1). Later, Dávila and Montenegro [23]
proved an existence result to equation (P) with m = 1 and including also a possible source term
f (u) satisfying a sublinear condition, i.e., f (u) ≤ C (1 + u). They proved that the pointwise
gradient estimate:

|∇u (t, x)| ≤ Cu
1−β
2 (t, x) , in (0,∞)× Ω, (1.2)

plays a crucial role in proving the existence of solutions of (P). Besides, a partial uniqueness
result was obtained by the same authors for a class of solutions with initial data u0 (x) ≥
Cdist (x, ∂Ω)µ, for µ ∈ (1, 2/ (1 + β)) and some constant C > 0 (see also [22] for a uniqueness
result in another class of solutions). The uniqueness of solutions fails for general bounded
nonnegative initial data [62].

Concerning the qualitative properties satisfied by the solutions of (P), one of the more
peculiar facts is that the solutions may vanish after a finite time, even starting with a positive
initial data. This phenomenon occurs by the presence of the singular absorption u−βχ{u>0} and
can be understood as a generalization of the finite extinction property which arises for not so
singular absorption terms of the form uq, 0 < q < 1. Another motivation of the present paper is
to complete the previous work [27] in which the finite speed of propagation and other qualitative
properties were proved by means of some energy methods (see, e.g., [37], [2]) in the class of local
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weak solutions of the more general formulation

∂ψ (v)

∂t
− divA (x, t, v,Dv) +B (x, t, v,Dv) + C (x, t, v) = f (x, t, v) ,

for a singular absorption term. In that paper [27] the existence of weak solutions was merely
assumed (and not proved), so our goal is to give some answers in this complementary direction.
We also point out that, more specifically, when m = 1, β ∈ (0, 1) and we consider equation (P)
with a sublinear source term λf (u), λ > 0, it was shown in [53] that there is a real number
λ0 > 0 and a time t0 > 0, such that uλ (t0, x) = 0, a.e. in Ω, ∀λ ∈ (0, λ0): he called this
phenomenon as the complete quenching (see a more general statement in [40] and [27]). Other
qualitative properties were studied in [42].

The extension from semilinear to some one-dimensional quasilinear degenerate equations
of the p-Laplacian type was considered in [41] and [19]. In that one-dimensional case, the
formulation was





∂tu− ∂x

(
|ux|p−2ux

)
+ u−βχ{u>0} = 0, in (0,∞)× Ω,

u = 0, on (0,∞)× ∂Ω,

u (0, x) = u0 (x) , in Ω,

(1.3)

with p > 2, β ∈ (0, 1). To obtain the existence of solutions of (1.3), it was proved in [19] the
gradient estimate:

|ux (t, x)| ≤ Cu
1−β
p (t, x) , in (0,∞)× Ω. (1.4)

We note that (1.4) is a generalization of (1.2) as p > 2. Furthermore, it was shown in [19] that
any solution of equation (1.3) must vanish after a finite time. A complete quenching result for
equation (1.3) with a source λf (u) was obtained by the same authors in [20]. The extension of
the gradient estimates to the higher dimensional case remains today as an open problem.

As mentioned before, the first result in the literature for the one-dimensional problem (P)
with a slow diffusion (m > 1) was due to Kawohl and Kersner [49] in 1992. Once again, a
suitable gradient estimate was the key of the proof of the correct treatment of the problem.
They proved that ∣∣∣

(
u

m+β
2

)
x

∣∣∣ ≤ C, (1.5)

in the regime in which the absorption dominates the nonlinear diffusion, which corresponds to

1 ≤ m < 2 + β. (1.6)

Notice that the exponent in estimate (1.5) may be written also as 1/γ with γ := 2/ (m+ β).
As a matter of fact, in [49] it was also considered the opposite regime in which the diffusion
dominates over the absorption (m ≥ 2 + β) and it was shown that the correct value for the
pointwise gradient estimate is a different value of the exponent γ (this time 1/ (m− 1)). We
will not be specially interested in such a case in this paper but, in any case, see more details in
the second part of Lemma 2.

Our N -dimensional approach to derive a pointwise gradient estimate of the type (1.5) will
adapt the classical Bernstein method (see, e.g. [4, 13, 32, 58]) with some ideas introduced by
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Ph. Bénilan (see, e.g., [5, 10, 13]). In fact, for the special case N = 1, we will extend the results
of [49] to unbounded initial data. Our proof requires two technical additional assumptions:

1 ≤ m < 1 +
1√

N − 1
, (1.7)

and

β ∈
(
(m− 1−

√
∆m,N )+,m− 1 +

√
∆m,N

)
, with ∆m,N := 1− (N − 1) (m− 1)2. (1.8)

We think that such auxiliary assumptions arise merely as some limitations of our technique of
proof. The question of how to avoid them (in the framework in which the absorption dominates
the nonlinear diffusion, 1 < m < 2 + β) remains an open problem for us. Nevertheless, thanks
to our technique of proof we will prove a new gradient information for the case

β +m ≤ 2, (1.9)

(which applies to the semilinear framework) which seems to be unadvertised in the previous

literature: or the L∞ norm of gradient of u
m+β

2 (t) is smaller than

∥∥∥∥∇u
m+β

2
0

∥∥∥∥
L∞(Ω)

or if the

above norm is strictly smaller than this bound then it is smaller than an universal constant
C = C (m,β,N), independent of Ω, then it is always smaller than this constant for t ∈ (0,+∞).
Moreover, we will give some concrete examples proving the optimality of the estimate (1.5).

For the existence of solutions we will use a monotone family of regularized problems and we
will pass to the limit thanks to the monotonicity of the approximation of the singular nonlinear
term and the contractive properties of the semigroup associated to the (unperturbed) nonlinear
diffusion over suitable functional spaces. The pointwise gradient estimates will be previously
obtained for solutions of the regularized problems and then extended to the solutions of (P)
and (CP) by passing to the limit in the regularizing parameters. In the case of the assump-
tion (1.9) we will pass to the limit in the gradient term ∇um by means of a generalization of
the almost everywhere gradient convergence technique (introduced initially for p-Laplace type
operators in [15]). Finally, we will consider several qualitative properties of solutions of (P)
and (CP) implying the finite speed of propagation, the uniform localization of the support, and
the instantaneous shrinking of the support property. The well known results for solutions of the
porous media equation with a strong absorption (see, e.g. [1, 32, 45, 58]) remain being valid for
solutions of the problem (P). Here we will get some sharper estimates rather than to deal with
local solutions as in [27]. Our special interest is to analyze the differences arising among the
behavior of solutions of the porous media equation with a strong absorption and the solutions
of the porous media equation with a singular absorption term u−βχ{u>0}. In the case in which
the singularity is permanently excluded of the boundary, such as for the problem (P(1)), the
behavior of the solution (its “profile”) at the first time t = τ 0 in which there is a quenching
point, was studied in [38]. In our formulation (P), we know that there is an permanent singu-
larity on the boundary ∂Ω and thus our interest is to describe the profile of the solutions near
the boundary ∂Ω. We will construct a large class of solutions showing that their profile near
the boundary follow the gradient estimate proved in this paper. So, such gradient estimates are
sharp. Some commentaries on the case β ≥ m will be also given at the end of the paper.
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1.2 Main results

Let us first introduce the notion of weak solution that we use for the case of Ω bounded and
bounded initial data.

Definition 1. Let u0 ∈ L∞ (Ω), u0 ≥ 0. A nonnegative function u (t, x) is called a weak
solution of (P) if u ∈ C

(
[0,∞) ;L1 (Ω)

)
∩L∞ ((0,∞)× Ω), u−βχ{u>0} ∈ L1 ((0, T )× Ω) , um ∈

L2
(
0, T ;H1

0 (Ω
)
) for any T > 0, and u satisfy (P) in the sense of distributions D′ ((0,∞) × Ω),

i.e., ∫ ∞

0

∫

Ω

(
−uϕt +∇um · ∇ϕ+ u−βχ{u>0}ϕ

)
dxdt = 0, ∀ϕ ∈ C∞

c ((0,∞)× Ω) .

Any weak solution is also a very weak solution to equation (P) (see e.g., [6, 49, 58]). Since
the reaction term u−βχ{u>0} is required to be in L1 ((0,∞) ×Ω) , a natural weaker notion of
solution will be used sometimes in the paper for the class of nonnegative initial data which are
merely in L1 (Ω):

Definition 2. Let u0 ∈ L1 (Ω), u0 ≥ 0, and T > 0. A nonnegative function u ∈ C
(
[0, T ] ;L1 (Ω)

)

is called a L1-mild solution of (P) if u−βχ{u>0} ∈ L1 ((0, T )× Ω) and u coincides with the unique

L1-mild solution of the problem




∂tu−∆um = f, in (0, T )× Ω,

u = 0, on (0, T )× ∂Ω,

u (0, x) = u0 (x) , in Ω,

(1.10)

where f (t, x) := −u−β (t, x)χ{u>0} (t, x) on (0, T )× Ω.

As a matter of fact, a weaker notion of solutions can be obtained when introducing the
distance to the boundary as a weight: u0 ∈ L1

δ (Ω) =
{
v ∈ L1

loc (Ω) ;
∫
Ω v (x) δ (x) dx <∞

}
,

where
δ (x) = d (x, ∂Ω) .

Definition 3. Let u0 ∈ L1
δ (Ω), u0 ≥ 0, and T > 0. A nonnegative function u ∈ C

(
[0, T ] ;L1

δ (Ω)
)

is called a L1
δ-mild solution of (P) if u−βχ{u>0} ∈ L1

(
0, T ;L1

δ (Ω)
)
and u coincides with the

unique L1
δ-mild solution of the problem (1.10), with f := −u−βχ{u>0}.

We recall that the notion of mild solution of the problem for the non-homogeneous problem
(1.10) is well-defined thanks to the fact that the nonlinear diffusion operator −∆um (with
Dirichlet boundary conditions) is am-accretive operator in L1 (Ω) with a dense domain (see, e.g.,
[10, 14, 58] and their references). The similar properties of this operator on the space L1

δ (Ω) will
be shown in this paper as easy consequences of well-known results ([16, 17, 35, 57, 61] and Section
6.6 of [58]). In fact, there are other equivalent formulations for very weak solutions obtained as
L1
δ-mild solution of the problem (1.10). One formulation which is specially useful for our purposes

starts by introducing the auxiliary equivalent weight function ζ (x), ζ ∈ C∞ (Ω)∩C1
(
Ω
)
, ζ > 0,

given as the unique solution of the problem
{
−∆ζ = 1, in Ω,

ζ = 0, on ∂Ω.
(1.11)
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It is well known that
Cδ (x) ≤ ζ (x) ≤ Cδ (x) , for any x ∈ Ω, (1.12)

for some positive constants C < C, so that L1
δ (Ω) = L1

ζ (Ω). Then, it is easy to see that

every L1
δ-mild solution of (P) is a very weak solution of the problem (1.10) in the sense that

u ∈ C
(
[0, T ] ;L1

δ (Ω)
)
, u ≥ 0, um ∈ L1 ((0, T ) ×Ω), f = −u−βχ{u>0} ∈ L1

(
0, T ;L1

δ (Ω)
)
, and for

any t ∈ [0, T ],

∫

Ω
u (t, x) ζ (x) dx+

∫ t

0

∫

Ω
um (t, x) dxdt =

∫

Ω
u0 (x) ζ (x) dx+

∫ t

0

∫

Ω
f (t, x) ζ (x) dxdt.

In what follows, our main interest will deal with the cases of N ≥ 2, and m > 1 since the two
other cases (N = 1, m ≥ 1; and N ≥ 1, m = 1) were studied in [49] and [55], respectively. We
also mention that some singular reaction terms were considered previously in the literature for
the case of m ∈ (0, 1) (see, e.g., [18, 24]). Some of our results also hold for m ∈ (0, 1) but we
will not pursuit such a goal in this paper.

Our main result in this paper is the following one:

Theorem 1. i) Let u0 ∈ L1
δ (Ω), u0 ≥ 0. Assume m ≥ 1 and β ∈ (0,m). Then, problem (P)

has a maximal L1
δ-mild solution u. Moreover if u0 ∈ L1 (Ω) then u is also the maximal

L1-mild solution.

ii) Let u0 ∈ L1
δ (Ω), u0 ≥ 0 and assume (1.6), (1.7), and (1.8). Then

∥∥∥∇u
m+β

2 (t)
∥∥∥
L∞(Ω)

≤ C

(
1

tω
+ 1

)
, a.e. t ∈ (0,+∞) ,

for some positive constants ω = ω (m,β,N) and C = C (m,β,N,Ω) if m > 1, C =

C
(
m,β,N, ‖u0‖L1

δ(Ω)

)
if m = 1. Moreover the maximal L1-mild solution is Hölder con-

tinuous on (0, T ] × Ω.

iii) Let u0 ∈ L1
δ (Ω), u0 ≥ 0 such that ∇u

m+β
2

0 ∈ L∞ (Ω) and assume m ≥ 1, (1.6), (1.7), (1.8)
and (1.9). Then

∥∥∥∇u
m+β

2 (t)
∥∥∥
L∞(Ω)

≤ max





∥∥∥∥∇u
m+β

2
0

∥∥∥∥
L∞(Ω)

,
(m+ β)

√
2 + β −m√

2m
(
∆m,N − (β + 1−m)2

)




,

a.e. t ∈ (0,+∞) .

We point out that in the rest of the paper we will denote by C different positive constants,
possibly changing from line to line. Furthermore, any constant, depending on some parameters
will be emphasized by a parentheses indicating such a dependence: for instance, C = C (m,β,N)
will mean that C depends only on m, β, N .
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Remark 1. Concerning the one-dimensional quasilinear case, m > 1, Theorem 1 extends the
results by Kawohl and Kersner [49] to a class of more general initial data. Notice also that the
gradient estimate given by in part iii) is new with respect to the paper [49] and also with respect to
the literature on the semilinear problem. It can be useful for many different purposes (for instance
to control possible approximating algorithms when there are some additional perturbations in the
right hand side of the equation, and so on).

Remark 2. We emphasize that the gradient estimates prove (see Proposition 1 below) that in

fact u
m+1

2 is Hölder continuous on (0,∞)×Ω (and in fact also on [0,∞)×Ω provided that u
m+1

2
0

is also Hölder continuous on Ω and ∇u
m+β

2
0 ∈ L∞ (Ω)).

The existence of solutions to the Cauchy problem (CP) can be obtained as a consequence of
Theorem 1. Moreover, the above gradient estimates hold on L∞

(
R
N
)
for a.e. t ∈ (0, T ) (see

Theorem 3 below).

This paper is organized as follows. In the next section, we will prove the pointwise gradient
estimates of solutions of a regularized version of equation (P). Section 3 is devoted to prove
Theorem 1 and its application to the study of the Cauchy problem (CP). Different qualitative
properties will be considered in the final Section 4.

2 Technical lemmas

In this section, we will adapt to our framework the classical Bernstein’s technique and some
ideas of Ph. Bénilan and his collaborators, in order to obtain a gradient estimate of the type∣∣∇u1/γ

∣∣ ≤ C with γ := 2/ (m+ β). Let ψ ∈ C∞ (R : [0, 1]) be a non-decreasing real function
such that

ψ (s) =

{
0, if s ≤ 1,

1, if s ≥ 2.

For every ε > 0, we define gε (s) := s−βψε (s), where ψε (s) = ψ (s/ε), for s ∈ R. It is
straightforward to check that gε is a globally Lipschitz function for any ε > 0.

Now, for every ε > 0 and η > 0, we consider the regularized version of problem (P) given by

(Pε,η) =





∂tu−∆um + gε (u) = 0, in (0,∞)× Ω,

u = η, on (0,∞)× ∂Ω,

u (0, x) = u0 (x) + η, in Ω.

The main goal of this section is to get some pointwise estimates for ∇uε,η (with uε,η the
unique solution of (Pε,η)) which will allow to pass to the limit, as η, ε ↓ 0, to prove the gradient
estimates indicated in Theorem 1.

We start by showing a general auxiliary result which is useful to handle expressions containing
terms of the type |∇u|2 ∆u arising in the study of gradient estimates in the multi-dimensional
case. Our proof corresponds to a slight generalization of Bénilan’s ideas (see, e.g., [5, 10] and
the application made in [9]).
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Lemma 1. Let u ∈ C2(RN ,R), and g ∈ C1 (R, [0,∞)). Then, the following inequality holds over
the set

{
x ∈ R

N ; g (u (x)) 6= 0
}
:

g (u)
∣∣D2u

∣∣2 + g′ (u)

(
1

2
∇u · ∇

(
|∇u|2

)
− |∇u|2∆u

)
≥ −(N − 1) g′ (u)2|∇u|4

4g (u)
.

Proof of Lemma 1. Set w := |∇u|2 and denote by S (g, u) the left-hand side of the wanted
inequality. Then S (g, u) can be rewritten as

S (g, u) = g (u)
∣∣D2u

∣∣2 + g′ (u)

(
1

2
∇u · ∇w − w∆u

)
.

As in [9], we can adapt the Bénilan’s method presented in [10] in the following way:

S (g, u) = g (u)

N∑

i,j=1

(∂iju)
2 + g′ (u)




N∑

i,j=1

∂iu∂ju∂iju− w

N∑

i=1

∂2i u




= g (u)
N∑

i=1

[(
∂2i u

)2
+
g′

g
(u)

(
(∂iu)

2 − w
)
∂2i u

]
+ g (u)

∑

i 6=j

[
(∂iju)

2 +
g′

g
(u) ∂iu∂ju∂iju

]

= g (u)

N∑

i=1

[
∂2i u+

g′

2g
(u)

(
(∂iu)

2 −w
)]2

− g (u)

4

N∑

i=1

(
g′

g

)2

(u)
(
(∂iu)

2 − w
)2

+ g (u)
∑

i 6=j

(
∂iju+

g′

2g
(u) ∂iu∂ju

)2

− g (u)

4

∑

i 6=j

(
g′

g

)2

(u) (∂iu)
2(∂ju)

2

≥− (g′)2

4g
(u)




N∑

i=1

(
(∂iu)

2 − w
)2

+
∑

i 6=j

(∂iu)
2(∂ju)

2


 = −(N − 1) (g′)2

4g
(u)w2,

which completes the proof.

Given u0 ∈ C1
c (Ω), u0 ≥ 0, u0 6= 0, m ≥ 1 and 0 < η ≤ min {ε, ‖u0‖∞}, the existence and

uniqueness of a classical solution uε,η of (Pε,η) is a well-known result (see, e.g., [51]). Moreover,
the comparison principle applies and thus

η ≤ uε,η (t, x) ≤ ‖u0‖∞ + η ≤ 2‖u0‖∞, in (0,∞)× Ω.

We will prove the gradient estimates in a separate way: first for the case N ≥ 2 and then for
N = 1.

Lemma 2. Let u0 ∈ C1
c (Ω) be nonnegative, 0 < η ≤ min {ε, ‖u0‖∞} . Let N ≥ 2 and m ≥ 1

be such that ∆m,N > 0. Define γ := 2
m+β and assume (1.8). Then there is a positive constant

C = C (m,β,N) such that

∣∣∣∇u1/γε,η (t, x)
∣∣∣
2
≤ C

(
t−1 ‖u0‖1+βL∞(Ω) + 1

)
, in (0,∞)× Ω. (2.1)
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In addition, if one assumes (1.9) and ∇u1/γ0 ∈ L∞ (Ω), then

∣∣∣∇u1/γε,η (t, x)
∣∣∣ ≤ max





∥∥∥∥∇u
m+β

2
0

∥∥∥∥
L∞(Ω)

,
(m+ β)

√
2 + β −m√

2m
(
∆m,N − (β + 1−m)2

)




, in (0,∞)×Ω. (2.2)

Proof. Let hε,η := u
1/γ
ε,η . Then, hε,η satisfies the following equation:

∂thε,η −mhγ(m−1)
ε,η ∆hε,η −m (mγ − 1)hγ(m−1)−1

ε,η |∇hε,η|2 + γ−1ψε
(
hγε,η

)
h1−γ(1+β)ε,η = 0. (2.3)

Differentiating in (2.3) with respect to the variable x, we obtain

∂t∇hε,η −mhγ(m−1)
ε,η ∇∆hε,η = mγ (m− 1)hγ(m−1)−1

ε,η ∆hε,η∇hε,η
+m (mγ − 1) (γ (m− 1)− 1) hγ(m−1)−2

ε,η |∇hε,η|2∇hε,η
+m (mγ − 1) hγ(m−1)−1

ε,η ∇
(
|∇hε,η|2

)
− ψε

′
(
hγε,η

)
h−βγε,η ∇hε,η

− γ−1 (1− γ (1 + β))ψε
(
hγε,η

)
h−γ(1+β)ε,η ∇hε,η, in (0,∞)× Ω. (2.4)

For any 0 < τ < T <∞, let ζ ∈ C∞ (R : [0, 1]) be a cut-off function such that

ζ (t) =





1, if t ∈ [τ , T ] ,

0, if t /∈
(τ
2
, T +

τ

2

)
,
and

∣∣ζ ′
∣∣ ≤ c0

τ
for some positive constant c0.

Consider now the function vε,η (t, x) := ζ (t) |∇hε,η (t, x)|2. Let M := max[0,∞)×Ω vε,η. It is
enough to assume M > 0, otherwise it is clear that ∇hε,η ≡ 0, likewise ∇uε,η ≡ 0. Therefore,
there is a point (t0, x0) ∈ (τ/2, T + τ/2) × Ω such that vε,η (t0, x0) = M (since vε,η = 0 on
[0,∞) × ∂Ω). As a consequence, one has

∇
(
|∇hε,η|2

)
= 0 and ∂tvε,η −mhγ(m−1)

ε,η ∆vε,η ≥ 0, at (t0, x0) . (2.5)

This implies

ζ ′|∇hε,η|2 + 2ζ∇hε,η · ∂t∇hε,η ≥ 2mζhγ(m−1)
ε,η

(∣∣D2hε,η
∣∣2 +∇hε,η · ∇∆hε,η

)
, at (t0, x0) ,

or, equivalently,

ζ∇hε,η ·
(
∂t∇hε,η −mhγ(m−1)

ε,η ∇∆hε,η

)
≥ −ζ

′

2
|∇hε,η|2 +mζhγ(m−1)

ε,η

∣∣D2hε,η
∣∣2, at (t0, x0) .

Combining this with (2.4) and the former version of (2.5), we obtain

m (mγ − 1) (1− γ (m− 1)) ζhγ(m−1)−2
ε,η |∇hε,η|4

≤ ζ ′

2
|∇hε,η|2 +mγ (m− 1) ζhγ(m−1)−1

ε,η ∆hε,η|∇hε,η|2 −mζhγ(m−1)
ε,η

∣∣D2hε,η
∣∣2

− ζψε
′
(
hγε,η

)
h−βγε,η |∇hε,η|2 +

(
1 + β − γ−1

)
ζψε

(
hγε,η

)
h−γ(1+β)ε,η |∇hε,η|2, at (t0, x0) . (2.6)
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From (2.5), applying Lemma 1 to g (s) = sγ(m−1) we get

hγ(m−1)
ε,η

∣∣D2hε,η
∣∣2 − γ (m− 1)hγ(m−1)−1

ε,η |∇hε,η|2∆hε,η

= hγ(m−1)
ε,η

∣∣D2hε,η
∣∣2 + γ (m− 1) hγ(m−1)−1

ε,η

(
1

2
∇hε,η · ∇

(
|∇hε,η|2

)
− |∇hε,η|2∆hε,η

)

≥ −1

4
γ2 (N − 1) (m− 1)2hγ(m−1)−2

ε,η |∇hε,η|4, at (t0, x0) .

A combination of this equality, (2.6), and ∇hε,η (t0, x0) 6= 0 implies

m
[
(mγ − 1) (1− γ (m− 1))− γ2 (N − 1) (m− 1)2/4

]
ζhγ(m−1)−2

ε,η |∇hε,η|2

≤ ζ ′

2
− ζψε

′
(
hγε,η

)
h−βγε,η +

(
1 + β − γ−1

)
ζψε

(
hγε,η

)
h−γ(1+β)ε,η , at (t0, x0) . (2.7)

Denote

B := m

[
(mγ − 1) (1− γ (m− 1))− 1

4
γ2 (N − 1) (m− 1)2

]
=
m

[
∆m,N − (β + 1−m)2

]

(m+ β)2
.

Note that the assumption (1.8) on β implies that B > 0. Since ψ′
ε ≥ 0, it is clear that the second

term on the right hand side of (2.7) is non-positive. As a consequence, we get

Bvε,η = Bζ|∇hε,η|2 ≤
ζ ′

2
h2−γ(m−1)
ε,η +

(
1 + β − γ−1

)
ζψε

(
hγε,η

)
h2−γ(m+β)
ε,η , at (t0, x0) .

Note that 2− γ (m− 1) = 2 (1 + β) / (m+ β) > 0 and 1 + β − γ−1 = (2 + β −m) /2 > 0 (since
∆m,N > 0 implies m < 1 + 1/

√
N − 1 ≤ 2 for all N ≥ 2), the last inequality then implies

M ≤ 1

2B
[c0
τ
(2‖u0‖∞)1+β + 2 + β −m

]
.

Since vε,η (t, x) ≤M in (0,∞)× Ω, the last inequality implies, in particular, at t = τ :

∣∣∣∇u1/γε,η (τ , x)
∣∣∣
2
≤ 1

2B
(
21+βc0τ

−1 ‖u0‖1+β∞ + 2 + β −m
)
, ∀x ∈ Ω.

The proof of the second statement is a small variation of the above case. For any τ > 0, it suffices
to make a slight modification by replacing the cut-off function ζ (t) by ζ (t) ∈ C∞ (R : [0, 1])
defined by

ζ̄ (t) =

{
1, if t ≤ τ ,

0, if t ≥ 2τ ,
and ζ̄

′ ≤ 0 in R.

Now, if define vε,η := ζ |∇hε,η|2 and assume that vε,η attains its maximum at (0, x̄) for some
x̄ ∈ Ω, then we have

ζ (t) |∇hε,η (t, x)|2 = vε,η (t, x) ≤ vε,η (0, x̄) = |∇hε,η (0, x̄)|2 =
1

γ2
(u0 (x̄) + η)

2
(

1
γ
−1

)

|∇u0 (x̄)|2

≤
(

u0 (x̄)

u0 (x̄) + η

)2
(

1− 1
γ

)

∥∥∥∇u1/γ0

∥∥∥
∞

≤
∥∥∥∇u1/γ0

∥∥∥
∞
,
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where we have used γ ≥ 1 stemming from the additional assumption β ≤ 2−m. Thus
∣∣∣∇u1/γε,η

∣∣∣ ≤
∥∥∥∇u1/γ0

∥∥∥
∞
, in (0,∞)× Ω.

Otherwise, vε,η must attain its maximum at some (t̄0, x̄0) ∈ (0, 2τ ) × Ω since vε,η = 0 on
{(2τ ,∞)× Ω}∪{(0,∞)× ∂Ω}. Then, repeating the proof of the first statement until (2.7), and

from the fact that ζ
′ ≤ 0, we deduce

Bvε,η = Bζ|∇hε,η|2 ≤
(
1 + β − γ−1

)
ζψε

(
hγε,η

)
, at (t̄0, x̄0) .

By the same argument, this leads us to

∣∣∣∇u1/γε,η (t, x)
∣∣∣ ≤

(
2 + β −m

2B

) 1
2

, in (0,∞)× Ω.

Then, combining both estimates we arrive to the conclusion.

Now we will consider the one-dimensional case to prove similar gradient estimates to the
ones obtained in the above result. Moreover, we will get also a gradient estimate for the case in
which the diffusion dominates over the absorption (similar to the one given in [47]).

Lemma 3. Let N = 1, m ≥ 1, β ∈ (0,m). Consider u0 ∈ C1
c (Ω), u0 ≥ 0, u0 6= 0 and

0 < η ≤ min {ε, ‖u0‖∞}. Then

i) if m < β + 2, there is a constant C = C (m,β) such that

∣∣∣
(
u1/γε,η

)
x
(t, x)

∣∣∣
2
≤ C

(
t−1 ‖u0‖1+βL∞(Ω) + 1

)
, in (0,∞)× Ω.

In addition, if we assume (1.9) and
(
u
1/γ
0

)′
∈ L∞ (Ω), we get

∣∣∣
(
u1/γε,η

)
x
(t, x)

∣∣∣ ≤ max

{∥∥∥∥
(
u
1/γ
0

)′
∥∥∥∥
L∞(Ω)

,
m+ β√

2m (m− β)

}
, in [0,∞)× Ω.

ii) If m ≥ β + 2, then there is a constant C = C (m) such that

∣∣∣
(
um−1
ε,η

)
x
(t, x)

∣∣∣
2
≤ Ct−1 ‖u0‖m−1

L∞(Ω) , in (0,∞)× Ω.

Proof. i) Repeating the proof of Lemma 2 until (2.5) we get

∂2xhε,η = 0 and ∂tvε,η −mhγ(m−1)
ε,η ∂2xvε,η ≥ 0, at (t0, x0) .

Then

ζ∂xhε,η

(
∂txhε,η −mhγ(m−1)

ε,η ∂3xhε,η

)
≥ −ζ

2
(∂xhε,η)

2, at (t0, x0) .

Combining this with the 1D-analogue of (2.3) and ∂2xhε,η (t0, x0) = 0 we obtain

m (mγ − 1) (1− γ (m− 1)) ζhγ(m−1)−2
ε,η (∂xhε,η)

2
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≤ ζ ′

2
− ζψε

′
(
hγε,η

)
h−βγε,η +

(
1 + β − γ−1

)
ζψε

(
hγε,η

)
h−γ(1+β)ε,η , at (t0, x0) .

Using the same argument, we arrive at the desired estimate.

ii) Let now γ := 1/ (m− 1) and define hε,η := u
1/γ
ε,η . Then, hε,η satisfies

∂thε,η −mhε,η∂xhε,η −
m

m− 1
(∂xhε,η)

2 + (m− 1)ψε
(
hγε,η

)
h1−γ(1+β)ε,η = 0.

As in [4] (see also [47] and [32]), we consider the auxiliary function p (y) = N0y (4− y) /3, for
all y ∈ [0, 1], where N0 := (2‖u0‖∞)m−1. Note that p is invertible and

p ∈ [0, N0] , p
′ ∈

[
2N0

3
,
4N0

3

]
, p′′ = −2N0

3
,

(
p′′

p′

)′

≤ −1

4
, in [0, 1] .

Its inverse function is given by p−1 (z) = 2 − (4− 3z/N0)
1/2 for all z ∈ [0, N0]. Finally, define

vε,η := p−1 ◦ hε,η. We obtain the following equation, satisfied by vε,η:

∂tvε,η −mp (vε,η) ∂
2
xvε,η −

(
m

m− 1
p′ +mp

(
p′
)−1

p′′
)
(vε,η) (∂xvε,η)

2

+ (m− 1)ψε
(
pγ
)
p1−γ(1+β)

(
p′
)−1

(vε,η) = 0, in (0,∞)× Ω. (2.8)

Differentiating in (2.8) with respect to the variable x, we obtain

∂txvε,η −mp (vε,η) ∂
3
xvε,η = mp′ (vε,η) ∂xvε,η∂

2
xvε,η +

(
m

m− 1
p′ +mp

(
p′
)−1

p′′
)′

(vε,η) (∂xvε,η)
3

+ 2

(
m

m− 1
p′ +mp

(
p′
)−1

p′′
)
(vε,η) ∂xvε,η∂

2
xvε,η (2.9)

− (m− 1)
(
ψε

(
pγ
)
p1−γ(1+β)

(
p′
)−1

)′
(vε,η) ∂xvε,η, in (0,∞)× Ω.

Let us consider now the function wε,η := ζ(∂xvε,η)
2 and use the same argument as in the proof of

Lemma 2. Then, there is a point (t0, x0) ∈ (τ/2, T + τ/2) × Ω where wε,η attains its maximum
and thus

∂2xvε,η = 0 and ∂twε,η −mp (vε,η) ∂
2
xwε,η ≥ 0, at (t0, x0) .

Then

ζ∂xvε,η
(
∂txvε,η −mp (vε,η) ∂

3
xvε,η

)
≥ −ζ

′

2
(∂xvε,η)

2, at (t0, x0) .

Combining this and (2.9), we get

−m

(
m

m− 1
p′′ + p

(
p′′

p′

)′)
(vε,η) ζ(∂xvε,η)

2

≤ ζ ′

2
− ζψε

′
(
pγ
)
p−βγ (vε,η) + (m− 1) ζψε

(
pγ
)
p1−γ(1+β)

(
p′
)−2

p′′ (vε,η)

+ (β + 2−m) ζψε
(
pγ
)
p−γ(1+β) (vε,η) , at (t0, x0) . (2.10)

Note that all the last three terms in the right hand side of (2.10) are non-positive, and

−m
(

m

m− 1
p′′ + p

(
p′′

p′

)′)
(vε,η) ≥

2m2N0

3 (m− 1)
+
m

4
p (vε,η) ≥

2m2N0

3 (m− 1)
.
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Then (2.10) implies the following estimate

ζ(∂xvε,η)
2 (t0, x0) ≤

3c0 (m− 1)

4m2N0
τ−1.

By using the same arguments than in Lemma 2, the last inequality implies

(∂xhε,η)
2 (τ , x) =

(
p′
)2

(vε,η) (∂xvε,η)
2 (τ , x) ≤

(
4N0

3

)2 3c0 (m− 1)

4m2N0
τ−1

=
2m+1c0 (m− 1)

3m2
τ−1 ‖u0‖m−1

∞ , ∀x ∈ Ω.

The rest of the proof is straightforward.

As in many other parabolic problems, the spatial gradient estimates given in Lemma 2 imply
the global Cα-Hölder regularity of the solutions. Similar results hold for the one-dimensional
case by using Lemma 3.

Proposition 1. Assume the conditions of the first part of Lemma 2. Then, for any τ > 0, the
following estimates hold for all (t, x) , (s, y) ∈ [τ ,∞)× Ω:

∣∣∣∣u
m+1

2
ε,η (t, x)− u

m+1
2

ε,η (s, y)

∣∣∣∣ ≤ C1

[
C2

(
|x− y|+ |t− s|

1
3N

)
+ C3|t− s|

1
3

]
,

C1 = C (m,β,N )
(
τ−1 ‖u0‖1+βL∞(Ω) + 1

) 1
2
, C2 = ‖u0‖

1−β
2

L∞(Ω),

C3 = |Ω|
1
2 ‖u0‖

m−β
2

L∞(Ω)

if β ≤ 1, and
∣∣∣∣u

m+1
2

ε,η (t, x)− u
m+1

2
ε,η (s, y)

∣∣∣∣ ≤ Ĉ1

[
Ĉ2

(
|x− y|+ |t− s|

1
3N

)m+1
m+β

+C3|t− s|
1
3

]

Ĉ1 = C(m,β, ‖u0‖L∞(Ω)),

Ĉ2 = 2
(
τ−1 ‖u0‖1+βL∞(Ω) + 1

) m+1
2(m+β)

,

if β > 1. Moreover, if β +m ≤ 2 and ∇u1/γ0 ∈ L∞ (Ω), then
∣∣∣∣u

m+1
2

ε,η (t, x)− u
m+1

2
ε,η (s, y)

∣∣∣∣ ≤ K1

[(
|x− y|+ |t− s|

1
3N

)
+K

2
|t− s|

1
3

]
,

K1 = 3 · 2 1−β
2

m+1
m+β ‖u0‖

1−β
2

L∞(Ω)max

{∥∥∥∇u1/γ0

∥∥∥
L∞(Ω)

,

[
(2+β−m)(m+β)2

2m(∆m,N−(β+1−m)2)

]1/2}

K2 = C (m,β,N) |Ω|
1
2

(
τ−1 ‖u0‖1+βL∞(Ω) + 1

) 1
2 ‖u0‖

m−β
2

L∞(Ω) ,

for all (t, x) , (s, y) ∈ [0,∞)× Ω.

Proof. Let us first extend uε,η by η outside Ω if needed and denote still by uε,η to that extension.
For arbitrary t ≥ s ≥ τ > 0, by multiplying the equation by ∂tu

m
ε,η = mum−1

ε,η ∂tuε,η and
integrating by parts over (s, t)× Ω we get
∫ t

s

∫

Ω
mum−1

ε,η |∂tuε,η|2dxdσ +
1

2

d

dt

∫ t

s

∫

Ω

∣∣∇umε,η
∣∣2dxdσ +

∫ t

s

∫

Ω
mum−1

ε,η gε (uε,η) ∂tuε,ηdxdσ = 0.
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Define Gε (r) := m
∫ r
0 s

m−1gε (s) ds. Notice that

Gε (r) ≤ m

∫ r

0
sm−β−1ds =

m

m− β
rm−β, ∀r > 0.

Then the last equality implies that

∫ t

s

∫

Ω
mum−1

ε,η |∂tuε,η|2dxdσ ≤ 1

2

∫

Ω

∣∣∇umε,η (s, x)
∣∣2dx+

∫

Ω
Gε (uε,η (s, x)) dx.

Let zε,η := 2
√
mu

(m+1)/2
ε,η / (m+ 1). Using (2.1) we get

∫ t

s

∫

Ω
|∂tzε,η|2dxdσ ≤ C (m,β,N)

(
τ−1 ‖u0‖1+β∞ + 1

)∫

Ω
um−β
ε,η (s, x) dx

≤ C (m,β,N) |Ω|
(
τ−1 ‖u0‖1+β∞ + 1

)
‖u0‖m−β

∞ =: C0.

Given x, y ∈ Ω, define r := |x− y|+ |t− s|
1

3N . Then, for some x̄ ∈ Br (x):

|zε,η (t, x̄)− zε,η (s, x̄)|2 ≤ (t− s)

∫ t

s
|∂tzε,η (σ, x̄)|2dσ

=
t− s

|Br|

∫ t

s

∫

Br(x)
|∂tzε,η (σ, z)|2dzdσ ≤ C0 |t− s|

αNrN
≤ C0|t− s|

2
3

αN
,

where αN := |B1| = 2πN/2/ (NΓ (N/2)). From the triangle inequality one has

|zε,η (t, x)− zε,η (s, y)|
≤ |zε,η (t, x)− zε,η (t, x̄)|+ |zε,η (t, x̄)− zε,η (s, x̄)|+ |zε,η (s, x̄)− zε,η (s, y)| .

Then, if β ≤ 1,

|zε,η (t, x)− zε,η (s, y)|
≤ ‖∇zε,η (t)‖∞ |x− x̄|+

(
C0
αN

)1/2
|t− s|1/3 + ‖∇zε,η (s)‖∞ |x̄− y| .

Combining this with the estimate

|∇zε,η (t, x)| =
√
mu

m−1
2

ε,η (t, x) |∇uε,η (t, x)| ≤ C (m,β,N) u
1−β
2

ε,η (t, x)
(
t−1 ‖u0‖1+βL∞(Ω) + 1

) 1
2
,

we get the first desired estimate.

If β > 1, then, since zε,η (t, x) = C(m,β)

(
u

m+β
2

ε,η

)ν
with ν = (m + 1)/(m + β) and ν ∈ (0, 1),

using the Hölder continuity of the function r → rν we get

|zε,η (t, x)− zε,η (t, x̄)|
≤ C(m,β, ‖u0‖L∞(Ω))

∣∣∣∣u
m+β

2
ε,η (t, x)− u

m+β
2

ε,η (t, x̄)

∣∣∣∣
ν

≤ C(m,β, ‖u0‖L∞(Ω))

∥∥∥∥∇u
m+β

2
ε,η (t)

∥∥∥∥
ν

∞

|x− x̄|ν
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and we argue analougously with the term |zε,η (s, x̄)− zε,η (s, y)| to get the desired estimate.

The proof of the remaining statement can be obtained easily by using (2.2) instead of (2.1) in
the last inequality. Note also that β ≤ 2−m < 1. This completes our proof.

Before ending this section we point out that the estimates (2.1) and (2.2) are independent of
ε and η. Thus, they play a role of some useful a priori estimates which will allow the passing
to the limit as η, ε ↓ 0, successively. So, for any ε > 0 fixed, since gε (s) is a globally Lipschitz
function, we can pass to the limit as η ↓ 0 showing that uε,η → uε and that uε is the (unique)
weak solution of the problem:

(Pε)





∂tu−∆um + gε (u) = 0, in (0,∞)× Ω,

u = 0, on (0,∞)× ∂Ω,

u (0, x) = u0,ε (x) , in Ω,

where, more in general, we can assume that the initial datum is also depending on the parameter
ε > 0, with u0,ε ∈ L∞ (Ω), u0,ε ≥ 0 (see details, e.g., in [6] or [58]). Moreover, obviously uε also
satisfies the corresponding pointwise gradient estimates given in Lemma 2 and Lemma 3.

In the following section we will justify that the limit ε ↓ 0 allows us to prove the existence
of solutions of equation (P) presented in Theorem 1.

3 Proof of Theorem 1 and study of the Cauchy problem

In order to complete the proof of Theorem 1 we will structure it in a series of steps.

Step 1: Monotone convergence in L1
(
0, T ;L1

δ (Ω)
)
for bounded initial data.

Let us first consider the case in which u0 = u0,ε ∈ L∞ (Ω), u0 ≥ 0. The family of functions,
(uε)ε>0, obtained at the end of the previous section, forms a bounded monotone sequence.
Indeed, from the definition of gε we see that

gε1 (s) ≥ gε2 (s) , ∀s ∈ R, for 0 < ε1 < ε2.

This implies that uε1 is a subsolution of the equation satisfied by uε2 and then since the com-
parison principle holds for the problem (Pε) (see e.g., [6]) we get that

uε1 ≤ uε2 , in (0,∞)× Ω, for 0 < ε1 < ε2.

Then, there is a nonnegative function u ∈ L1
(
0, T ;L1

δ (Ω)
)
such that

uε ↓ u, as ε ↓ 0.

From the L1
δ (Ω)-contractivity proved in Section 6.6 of [58] we know that for all T ∈ (0,∞),

∫

Ω
uε (T, x) ζ (x) dx+

∫ T

0

∫

Ω
gε (uε) ζ (x) dxdt ≤

∫

Ω
u0 (x) ζ (x) dx.
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It follows from the last inequality and the Dominated Convergence Theorem that there is a
function Υ such that

lim
ε↓0

gε (uε) = Υ, in L1
(
0, T ;L1

δ (Ω)
)
.

Moreover, the monotonicity of (uε)ε>0 implies

gε(uε (t, x)) ≥ gε (uε)χ{u>0} (t, x) , a.e. in (0,∞)× Ω,

so
lim
ε↓0

gε(uε (t, x)) = Υ (t, x) ≥ u−βχ{u>0} (t, x) , a.e. in (0,∞)× Ω. (3.1)

Thus, ∥∥∥u−βχ{u>0}

∥∥∥
L1(0,T ;L1

δ(Ω))
≤

∫

Ω
u0 (x) ζ(x)dx.

As a matter of fact, we will prove later that

Υ = u−βχ{u>0}, in L
1
(
0, T ;L1

δ (Ω)
)
. (3.2)

Step 2: Passing to the limit in C
(
[0, T ] ;L1 (Ω)

)
and C

(
[0, T ] ;L1

δ (Ω)
)
for bounded initial

data.

Let us start by presenting some arguments which are valid to the case in which u0 ∈ L1 (Ω),
u0 ≥ 0. Since uε are limits of classical solutions, by applying Section 3 of Benilan, Crandall and
Sacks [12], we know that (uε)ε>0 are generalized (and L1-mild) solutions of the problems





∂tu−∆um = fε, in (0, T )×Ω,

u = 0, on (0, T )× ∂Ω,

u (0, x) = u0,ε (x) , in Ω,

(3.3)

with fε ∈ L1
(
0, T ;L1 (Ω)

)
given by fε (t, x) = −gε (uε (t, x)).

From the Step 1 we know that fε → −Υ in L1
(
0, T ;L1 (Ω)

)
and u0,ε → u0 in L1 (Ω), as

ε ↓ 0. Then, by [12, Theorem I] we know that uε → u in C
(
[0, T ] ;L1 (Ω)

)
with u the unique

generalized (and L1-mild) solution of the problem





∂tu−∆um = −Υ, in (0, T )× Ω,

u = 0, on (0, T )× ∂Ω,

u (0, x) = u0 (x) , in Ω.

(3.4)

Let us now prove (3.2). Since uε is a weak solution of equation (Pε), one has

∫∫

Supp(ϕ)
( −uε∂tϕ− umε ∆ϕ+ gε (uε)ϕ) dxdt = 0, ∀ϕ ∈ C∞

c ((0, T )× Ω) , ϕ ≥ 0.

Letting ε ↓ 0 and since u is also a very weak solution of problem (3.4), we get

−
∫∫

Supp(ϕ)
( u∂tϕ+ um∆ϕ) dxdt+ lim

ε↓0

∫∫

Supp(ϕ)
gε (uε)ϕdxdt = 0.
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Thus,

lim
ε↓0

∫∫

Supp(ϕ)
gε (uε)ϕdxdt =

∫∫

Supp(ϕ)
u−βχ{u>0}ϕdxdt, ∀ϕ ∈ C∞

c ((0, T )× Ω) , ϕ ≥ 0. (3.5)

Then, Υ = u−βχ{u>0}, in L
1
(
0, T ;L1 (Ω)

)
follows from (3.1) and (3.5).

The same conclusion also holds for similar arguments for the more general case in which
u0 ∈ L1

δ (Ω), u0 ≥ 0. The only modification to be justified is the application of the continuous
dependence result for mild-solutions of (3.3). The mean ingredient of the proof of Theorem I of
[12] is that the abstract operator associated to problem (Pε) is a m-T -accretive operator on the
Banach space X = L1 (Ω) but the same conclusion arises once we prove the same properties on
the space X = L1

ζ (Ω) = L1
δ (Ω) (with ζ given by (1.11)). This is more or less implicitly well-

known property (see, e.g., Section 6.6 of [58]) but since we are unable to find a more detailed
proof we will get here a short proof of this set of properties. Given f ∈ L1

δ (Ω) and λ ≥ 0, we
start by recalling the definition of very weak solution of the stationary problem

P (f, λ) =

{
−∆(|u|m−1u) + λu = f, in Ω,

|u|m−1u = 0, on ∂Ω.
(3.6)

Definition 4. Given f ∈ L1
δ (Ω) and λ ≥ 0, a function u ∈ L1

δ (Ω) is called a very weak solution

of P (f, λ) if |u|m−1 u ∈ L1 (Ω) and for any ψ ∈W 2,∞ (Ω) ∩W 1,∞
0 (Ω),

∫

Ω
um (x)∆ψ (x) dx+ λ

∫

Ω
u (x)ψ (x) dx =

∫

Ω
f (x)ψ (x) dx.

We have

Lemma 4. Let X = L1
ζ (Ω), m > 0 and define the operator A : D (A) → X given by

Au = −∆(|u|m−1u) =: f, u ∈ D (A) ,

with

D (A) =
{
u ∈ L1

ζ (Ω) ;u is a very weak solution of P (f, 0) for some f ∈ L1
ζ (Ω)

}
.

Then A is a m-T -accretive operator on the Banach space X and D (A) = X.

Proof. To show that A is a T -accretive operator on X we have to show that, given f, f̂ ∈ L1
ζ (Ω)

and λ > 0, if u, û are very weak solutions of P (f, λ) and P
(
f̂ , λ

)
, respectively. Then

λ
∥∥[u− û]+

∥∥
L1
ζ(Ω)

≤
∥∥∥∥
[
f − f̂

]
+

∥∥∥∥
L1
ζ(Ω)

. (3.7)

But by introducing v = |u|m−1 u then v ∈ L1 (Ω) is a very weak solution of

P̃ (f, λ) =

{
−∆v + λ|v|

1
m
−1v = f, in Ω,

v = 0, on ∂Ω,
(3.8)
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(and similarly for v̂ = |û|m−1 û). Assume for the moment that f, f̂ ≥ 0 and thus the positivity of
u, û was proved in [16] (see also [17]) and the estimate (3.7) coincides exactly with the estimate
(19) given in Theorem 2.5 of Dı́az and Rakotoson [35] (notice that although L1

ζ (Ω) = L1
δ (Ω),

thanks to (1.12), the norms ‖·‖L1
ζ(Ω) and ‖·‖L1

δ(Ω) are related by some constants: by replacing

‖·‖L1
δ(Ω) by the norm ‖·‖L1

ζ(Ω) then the constant C arising in the estimate (19) given in Theorem

2.5 of Dı́az and Rakotoson [35] becomes exactly C = 1 as needed in (3.7)). By using the
decomposition f = f+ − f− the estimate (3.7) holds for general f, f̂ ∈ L1

ζ (Ω). An alternative
proof can be obtained by applying the local Kato’s inequality given in Theorem 4.4 of [28].

The proof of the m-accretivity of A (i.e., R (A+ λI) = X) was already proved in [16] (see
also [17] and Theorem 2.5 of [35]).

Moreover, given f ∈ L1
ζ (Ω) we consider uα ∈ D (A) be the unique solution of αAuα+uα = f .

Then making α ↓ 0 we have (again by Theorem 2.5 [35]) that uα → f in L1
ζ (Ω), which proves

that D (A) = X.

As a consequence of Lemma 4, we can apply the Crandall-Liggett theorem and by the

accretive operator theory we know that fε → −Υ in L1
(
0, T ;L1

ζ (Ω)
)
and u0,ε → u0 in L1

ζ (Ω),

implies that uε → u in C
(
[0, T ] ;L1

ζ (Ω)
)

with uε and u the unique L1
ζ (Ω)-mild solutions of

the problems (3.3) and (3.4), respectively, as ε ↓ 0. Now, the adaptation of the proof of [12,

Theorem I] to show that uε → u in C
(
[0, T ] ;L1

ζ (Ω)
)
as generalized solutions is a trivial fact.

This implies, as before, that Υ = u−βχ{u>0}, in L
1
(
0, T ;L1

δ (Ω)
)
.

Remark 3. We point out that the uniqueness of a generalized (or L1-mild) solution of the prob-

lem (3.4), when Υ(t, x) is prescribed in L1
(
0, T ;L1

ζ (Ω)
)
does not imply the uniqueness of the

generalized (or L1
ζ-mild) solution of the non-monotone problem (P). This question remains as an

open problem: as in [62], the uniqueness of solutions fails even for general bounded nonnegative
initial data. Some partial results are given in [31].

Step 3: Maximality of the above constructed solution. Let us show that if v is a different
solution of equation (P) then,

v (t, x) ≤ u (t, x) , a.e. in (0,∞)× Ω.

Indeed, since gε (v) ≤ v−βχ{v>0}, ∀ε > 0, then

∂tv −∆vm + gε (v) ≤ 0, in D′ ((0,∞) ×Ω) ,

which implies that v is a subsolution of problem (Pε) (with the same initial datum). Since gε (s)
is a globally Lipschitz function, thanks to L1

ζ-contraction result (consequence of the T -accretivity

of A in X = L1
ζ (Ω) (see also [6] or [12])), we get

v (t, x) ≤ uε (t, x) , a.e. in (0,∞)× Ω.

Passing to th elimit as ε ↓ 0 we obtain the wanted inequality.

Step 4: Treatment of unbounded nonnegative initial data u0. Let u0 ∈ L1
δ (Ω), u0 ≥ 0

and let
u0,n (x) = inf {u0 (x) , n} .
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Then u0,n ∈ L∞ (Ω), u0,n ≥ 0 and u0,n ↑ u0 in L1
δ (Ω) as n ↑ +∞. Then, as before we can apply

the comparison principle to deduce that, for any ǫ > 0, if uǫ,n is the (unique) solution of problem
(Pǫ), then

uǫ,n1 ≤ uǫ,n2 in (0,∞)× Ω, if n1 ≤ n2.

Moreover, we have the uniform bound

0 ≤ un (t, x) ≤ U (t, x) , a.e. in (0, T ) ×Ω, (3.9)

with U ∈ C
(
[0, T ] ;L1

ζ (Ω)
)
the unique L1

ζ-mild solution of the homogeneous problem





∂tU −∆Um = 0, in (0, T )× Ω,

U = 0, on (0, T )× ∂Ω,

U (0, x) = u0 (x) , in Ω.

(3.10)

Indeed, it suffices to use that for any n and ǫ > 0 we have −gε (uǫ,n) (t, x) ≤ 0 in (0, T )×Ω, and
to use the comparison principle for the unperturbed nonlinear diffusion problem. Then, passing
to the limit, as in Step 2, we deduce that if un is the maximal L1

ζ-mild solution of (P) associated
to u0,n ∈ L∞ (Ω) then

un1 ≤ un2 in C
(
[0, T ] ;L1

ζ (Ω)
)
, if n1 ≤ n2.

Moreover,
u−βn1

≥ u−βn2
on {(t, x) ∈ (0,∞)× Ω, un1(t, x) > 0} , if n1 ≤ n2,

and that, in fact, {un1 > 0} ⊃ {un2 > 0}. Then Υn := −u−βn χ{un>0}, is a monotone sequence

of nonnegative functions in L1
(
0, T ;L1

δ (Ω)
)
which converges to some Υ in L1

(
0, T ;L1

δ (Ω)
)
and

thus we can apply, again the extension of the Benilan-Crandall-Saks [12] argument to pass to
the limit of L1

ζ−mild solutions of problems of the type (3.3) and thus we get that un → u

in C
(
[0, T ] ;L1

ζ (Ω)
)
with u the unique L1

ζ (Ω)-mild solution of the problem (3.4), as n ↑ +∞.

Arguing as in Step 2 we get that Υ = −u−βχ{u>0} and thus u−βχ{u>0} ∈ L1
(
0, T ;L1

δ (Ω)
)
. The

proof of the maximality is again similar to the arguments of Step 4.

Step 5: Gradient estimate for u0 ∈L1
ζ (Ω).

Notice that, from (3.9) we get (after passing to the limit, as n ↑ +∞)

0 ≤ u (t, x) ≤ U (t, x) , a.e. in (0, T )× Ω, (3.11)

On the other hand, by applying the smoothing effects shown in Veron [59] (see also [57] for the
semilinear case), and the explicit sharp estimate given in [58, (17.32)] (see a different proof via
other rearrangement arguments in [26] combined with Theorem 3.1 of [35]), we know that for
any m ≥ 1

‖U (t)‖L∞(Ω) ≤
C (Ω)

tα
‖u0‖σL1

ζ(Ω) , (3.12)

with

α =
N

N(m− 1) + 2
and σ =

2

N(m− 1) + 2
.
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In the special case of m > 1 we have an universal estimate for U (see, e.g. Proposition 5.17 of
[58])

‖U (t)‖L∞(Ω) ≤ C(m,N)R
2

m−1 t−
1

m−1 (3.13)

where R is the radius of a ball containing Ω.

Thus the same estimates (3.12), for m ≥ 1, and (3.13), for m > 1, also hold for u. Using Lemma
2 we get that for any t > 0, a.e. x ∈ Ω, and for any λ ∈ (0, t) we have

∣∣∣∇u1/γε (t, x)
∣∣∣
2
≤ C


‖u(t− λ)‖1+βL∞(Ω)

t− λ
+1


 ≤ C


C(Ω)1+β‖u0‖(1+β)σL1(Ω)

(t− λ)α+1
+1


 ,

if m ≥ 1, or

∣∣∣∇u1/γε (t, x)
∣∣∣
2
≤ C


‖u(t− λ)‖1+βL∞(Ω)

t− λ
+1


 ≤ C




[
C(m,N)R

2
m−1 (t− λ)−

1
m−1

]1+β

(t− λ)
+1


 ,

if m > 1. Passing to the limit, first as λ ↓ 0 and then as ε ↓ 0, (using the convergence of the
Step 2 and weak-⋆ convergence in L∞ (Ω)) we get the pointwise gradient estimate given in ii) of
Theorem 1, with ω = α+ 1 if m ≥ 1 and ω = (β +m)/(m− 1) if m > 1.

Now, the proof of the fact that the maximal L1-mild solution is Hölder continuous on (0, T ]×Ω
is a simple consequence of Proposition 1 and the above convergence arguments.

Step 6: Case m+ β < 2: gradient convergence and proof of iii) of Theorem 1.

In order to prove part iii) of Theorem 1 we shall use other type of convergence arguments. As
a matter of fact, we will prove a stronger result showing the gradient convergence as ε ↓ 0:

∇uε → ∇u, a.e. in (0, T )× Ω,

up to a subsequence. Indeed, from the equations satisfied by uε and uε′ for any ε > ε′ > 0, we
have

∂t (uε − uε′)− (∆umε −∆umε′ ) + gε (uε)− gε′ (uε′) = 0.

For any δ > 0, let us define

Tδ (s) =

{
s, if |s| < δ,

δ sign (s) , if |s| ≥ δ,
and Sδ (r) =

∫ r

0
Tδ (s) ds.

For any 0 < τ < T <∞, by using Tδ (uε − uε′) as a test function in (3.5), and integrating both
sides of (3.5) on (τ , T )× Ω, we obtain

∫

Ω
Sδ (uε − uε′) (T, x) dx+

∫ T

τ

∫

Ω

(
mum−1

ε ∇uε −mum−1
ε′ ∇uε′

)
· ∇Tδ (uε − uε′) dxdt

+

∫ T

τ

∫

Ω
(gε (uε)− gε′ (uε′))Tδ (uε − uε′) dxdt =

∫

Ω
Sδ (uε − uε′) (τ , x) dx.

It follows from the facts Sδ (r) ≥ 0 and Sδ (r) ≤ δ |r|, ∀r ∈ R that

∫ T

τ

∫

Ω
mum−1

ε ∇ (uε − uε′) · ∇Tδ (uε − uε′) dxdt
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+

∫ T

τ

∫

Ω
m

(
um−1
ε − um−1

ε′

)
∇uε′ · ∇Tδ (uε − uε′) dxdt

+

∫ T

τ

∫

Ω
(gε (uε)− gε′ (uε′))Tδ (uε − uε′) dxdt ≤ δ

∫

Ω
|(uε − uε′) (τ , x)| dx.

Since |Tδ (s)| ≤ δ, ∀s ∈ R, we obtain from the last inequality

∫∫

{|uε−uε′ |<δ}
um−1
ε |∇ (uε − uε′)|2dxdt ≤ 4δ‖u0‖L1(Ω)

+

∫ T

τ

∫

Ω

∣∣(um−1
ε − um−1

ε′

)
∇uε′ · ∇Tδ (uε − uε′)

∣∣ dxdt. (3.14)

Then, from (2.1) and the Dominated Convergence Theorem we get

∫ T

τ

∫

Ω

∣∣(um−1
ε − um−1

ε′

)
∇uε′ · ∇Tδ (uε − uε′)

∣∣ dxdt → 0, as ε, ε′ ↓ 0,

and ∫∫

{|uε−uε′ |<δ}
um−1
ε |∇ (uε − uε′)|2dxdt ≤ 4δ‖u0‖L1(Ω) + o

(
ε, ε′

)
,

where o (ε, ε′) → 0 as ε, ε′ ↓ 0. Moreover, it is clear that

∫∫

{uε>δ, |uε−uε′ |<δ}
|∇ (uε − uε′)|2dxdt ≤ δ1−m

∫∫

{uε>δ, |uε−uε′ |<δ}
um−1
ε |∇ (uε − uε′)|2dxdt.

It follows from the last inequality that
∫∫

{uε>δ, |uε−uε′ |<δ}
|∇ (uε − uε′)|2dxdt ≤ 4δ2−m‖u0‖L1(Ω) + δ1−mo

(
ε, ε′

)
.

Thanks to (2.1), we obtain

∫∫

{uε≤δ, |uε−uε′ |<δ}
|∇uε|2dxdt ≤ C

∫∫

{uε≤δ, |uε−uε′ |<δ}
u
2
(

1− 1
γ

)

ε dxdt ≤ CT |Ω| δ2
(

1− 1
γ

)

,

where the constant C > 0 is independent of ε, δ. Since uε ≥ uε′ , and by the same argument, we
also obtain ∫∫

{uε≤δ, |uε−uε′ |<δ}
|∇uε′ |2dxdt ≤ Cδ

2
(

1− 1
γ

)

.

Combining these, we get

∫∫

{|uε−uε′ |<δ}
|∇ (uε − uε′)|2dxdt . δ2−m‖u0‖L1(Ω) + δ1−mo

(
ε, ε′

)
+ δ

2
(

1− 1
γ

)

.

Here we used the notation A . B in the sense that there is a constant c > 0 such that A ≤ cB.
Thanks to (2.1), and the fact that uε → u, we obtain

∫∫

{|uε−uε′ |≥δ}
|∇ (uε − uε′)|2dxdt ≤ Cmeas ({|uε − uε′ | ≥ δ}) ≤ Co

(
ε, ε′

)
,
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with C = C (m,β,N, τ , T, ‖u0‖∞). It follows from that

∫ T

τ

∫

Ω
|∇ (uε − uε′)|2dxdt . δ2−m‖u0‖L1(Ω) +

(
1 + δ1−m

)
o
(
ε, ε′

)
+ δ

2
(

1− 1
γ

)

.

Hence,

lim sup
ε↓0

∫ T

τ

∫

Ω
|∇ (uε − uε′)|2dxdt ≤ δ2−m‖u0‖L1(Ω) + δ

2
(

1− 1
γ

)

.

The last inequality holds for any δ > 0 and since, now, m+ β < 2, we obtain

lim sup
ε↓0

∫ T

τ

∫

Ω
|∇ (uε − uε′)|2dxdt = 0.

Consequently, we have
∇uε → ∇u, in L2 ((τ , T )× Ω) .

Up to a subsequence, we deduce ∇uε → ∇u a.e. in (τ , T ) × Ω. A diagonal argument implies
that there is a subsequence of (uε)ε>0 (still denoted as (uε)ε>0) such that

∇uε → ∇u, a.e. in (0,∞)× Ω.

Hence, u also satisfies the gradient estimates (2.1) and (2.2).

This puts an end to the proof of Theorem 1. �

Remark 4. An alternative proof of the regularity u ∈ C
(
[0,∞) ;L1 (Ω)

)
, in part iii) of Theorem

1, when u0 ∈ L∞ (Ω) , is the following: for any 1 < p < 2, thanks to Lemma 2, we have that for
any finite time T > 0

∫ T

0

∫

Ω
|∇u|pdxdt ≤ C

∫ T

0

∫

Ω
u
p
(

1− 1
γ

)(
t−1 ‖u0‖1+βL∞(Ω) + 1

)p/2
dxdt ≤ C1, (3.15)

where C1 > 0 only depends on T , Ω, ‖u0‖L∞(Ω), and the parameters involved. Since u is bounded
on (0,∞) × Ω, it follows from (3.15) that

∇um ∈ Lp
(
(0, T ) ,W 1,p

0 (Ω)
)
.

This implies that

∂tu = div (∇um)− u−βχ{u>0} ∈ Lp
(
(0, T ) ,W−1,p

0 (Ω)
)
∩ L1 ((0, T )× Ω) ,

where W−1,p (Ω) is the dual space of W 1,p
0 (Ω). Then, by a compactness embedding (see [56]),

we obtain u ∈ C
(
[0, T ] , L1 (Ω)

)
.

The rest of this section is devoted to consider the associated Cauchy problem for initial
data u0 ∈ L1

(
R
N
)
∩ L∞

(
R
N
)
. The existence of solutions to the Cauchy problem (CP) can be

obtained as a consequence of Theorem 1. Here is a simplified statement:
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Theorem 2. Assume m, N , β as in Theorem 1. Let u0 ∈ L1
(
R
N
)
∩ L∞

(
R
N
)
, u0 ≥ 0. Then,

problem (CP) has a weak solution u ∈ C
(
[0,∞) , L1

(
R
N
))

∩L∞
(
(0,∞)× R

N
)
satisfying (CP)

in the sense of distributions:

∫ ∞

0

∫

RN

(
−uϕt − um∆ϕ+ u−βχ{u>0}ϕ

)
dxdt = 0, ∀ϕ ∈ D

(
(0,∞)× R

N
)
.

Moreover, the gradient estimates of Lemma 2 remain valid with C = C
(
m,β,N, ‖u0‖L1(Ω)

)
for

any m ≥ 1.

Proof. We will start by constructing a sequence (uε)ε>0 of solutions of the regularized problem

{
∂tu−∆um + gε (u) = 0, in (0,∞)× R

N ,

u (0, x) = u0 (x) , in R
N .

(3.16)

After that we will prove that uε → u, with u a weak solution of problem (CP).

The proof of the construction of (uε)ε>0 is quite similar to the one given in the proof of Theorem
1. Thus, we just sketch out the main idea. We start by considering the approximate problem
over (0,∞) × BR, for any R > 0, taking as initial data the function u0χBR

. By some classical
results on the accretive operators theory (see, e.g., [6, 58]) we know that there is a unique weak
solution uε,R of the approximate problem in (0,∞) × BR. and that (from the construction of
the initial datum on BR), for any ε, R > 0, we have the estimates

‖uε,R (t)‖L1(BR) ≤ ‖u0‖L1(RN ), ∀t > 0,

and
‖uε,R (t)‖L∞(BR) ≤ ‖u0‖L∞(RN ), ∀t > 0.

Thanks to Lemma 2, we also know that

∣∣∣∣∇u
1
γ

ε,R (t, x)

∣∣∣∣
2

≤ C
(
t−1 ‖u0‖1+βL∞(RN )

+ 1
)
, in (0,∞)×BR.

Moreover, for any fixed ε > 0, it follows from the L1-contraction property (for the unperturbed
nonlinear diffusion problem) that the sequence (uε,R)R>0 is pointwise non-decreasing. Thus,
there exists a function, denoted by uε, such that uε,R ↑ uε as R→ ∞. Consequently, uε satisfies
the corresponding estimates for the respective L1

(
R
N
)
and L∞

(
R
N
)
norms. Moreover, since

gε (·) is a globally Lipschitz function, the classical regularity result (see, e.g., [6, 58]) implies that

∇umε,R → ∇umε , a.e. in (0,∞)× R
N ,

up to a subsequence. Similarly as in the proof of Theorem 1, we observe that (uε)ε>0 is a
non-decreasing sequence. Thus, there exists a function u such that uε ↓ u in (0,∞) × R

N , as
ε ↓ 0. Then, we mimic the different steps in the proof of Theorem 1 to pass to the limit as ε ↓ 0.
We point out that the continuous dependence in C

(
[0, T ] , L1

(
R
N
))

is quite similar to the case
of a bounded domain Ω since we do not need to approximate the nonlinear term ψ(u) = um.
Then we get that u is a weak solution of equation (CP) and in fact u is the maximal solution of
problem (CP).
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Remark 5. In a similar way to the case of bounded domains, the accretivity in L1
(
R
N
)
can

be replaced by the accretivity in some weighted spaces L1
ρα

(
R
N
)
allowing to get the existence of

solutions for the Cauchy problem for a more general class of initial data u0 (x) growing with |x|,
as |x| → +∞. That was started with the paper [11] and then developed and improved by several
authors (see the exposition made in Chapter 12 of [58]). The mentioned accretivity in L1

ρα

(
R
N
)

holds, for any, m > 0 and N ≥ 3, for the weight given by

ρα(x) =
1

(1 + |x|2)α

with α given such that 0 < α ≤ (N − 2)/2. For other values of N and α > 0 there is only
existence of local in time solutions of the Cauchy Problem ([58]). This property could be used
to get some generalizations of the results of [43] for the study of (CP) when m > 1, but we will
not pursuit this goal in this paper.

4 Qualitative properties

We start by recalling that the existence of a L1
δ-mild solution of (P(1)) (for more regular solutions

see, e.g. Subsection 5.5.1 of [58]).

Definition 5. Let u0 ∈ L1
δ (Ω), u0 ≥ 0, and T > 0. A nonnegative function u ∈ C

(
[0, T ] ;L1

δ (Ω)
)

is called a L1
δ-mild solution of (P(1)) if u−βχ{u>0} ∈ L1

(
0, T :L1

δ (Ω)
)
coincides with the unique

L1
δ-mild solution of the problem





∂tu−∆um = f, in (0, T )× Ω,

um = 1, on (0, T )× ∂Ω,

u (0, x) = u0 (x) , in Ω,

(4.1)

(1.10) where f := −u−βχ{u>0}.

The existence and uniqueness of a L1
δ-mild solution of (4.1) for a given f ∈ L1

(
0, T :L1

δ (Ω)
)

is an easy modification of the results of [16], [61], Theorem 1.10 of [33] and Step 2 of the above
Section. Indeed, given f ∈ L1

δ (Ω) and λ ≥ 0, we start by recalling the definition of very weak
solution of the stationary problem

P (f, λ, 1) =

{
−∆(|u|m−1u) + λu = f in Ω,

|u|m−1u = 1 on ∂Ω.
(4.2)

Definition 6. Given f ∈ L1
δ (Ω) and λ ≥ 0, a function u ∈ L1

δ (Ω) is called a very weak solution

of P (f, λ) if |u|m−1u ∈ L1 (Ω) and for any ψ∈W 2,∞(Ω) ∩ W 1,∞
0 (Ω)

∫
Ω u (x)

m∆ψ(x)dx +∫
Ω λu(x)ψ(x)dx =

∫
Ωf(x)ψ(x)dx−

∫
∂Ω

∂ψ
∂n (x)dx.

In a completely similar way to Step 2 of the above Section we have

Lemma 5. Let X = L1
ζ (Ω), m > 0 and define the operator A : D(A) → X given by

Au = −∆(|u|mu) := f u ∈ D(A)
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with

D(A) = {u ∈ L1
ζ (Ω) , u is a very weak solution of P (f, 0, 1) for some f ∈ L1

ζ (Ω)}.

Then A is a m-T -accretive operator on the Banach space X and D(A) = X.

Thus the Crandall-Liggett theorem can be applied to get the existence and uniqueness
of u ∈ C

(
[0, T ] ;L1

δ (Ω)
)
L1
δ-mild solution of (4.1). Moreover, u is a very weak solution of

(4.1) in the sense that u ∈ C
(
[0, T ] ;L1

δ (Ω)
)
, u ≥ 0, um ∈ L1 ((0, T )× Ω) , f = u−βχ{u>0} ∈

L1
(
0, T :L1

δ (Ω)
)
and for any t ∈ [0, T ]

∫

Ω
u (t, x) ζ(x)dx +

∫ t

0

∫

Ω
u(t, x)mdxdt

=

∫

Ω
u0(x)ζ(x)dx+

∫ t

0

∫

Ω
f(t, x)ζ(x)dxdt−

∫ t

0

∫

∂Ω

∂ψ

∂n
(x)dx.

The rest of arguments is completely similar to the case of problem (P).

Now, let us present some explicit examples of solution of (P(1)):

Lemma 6. i) Let q ∈ (−∞, 1), x0 ∈ R
N , and for C > 0 define the function

vq,C(x) = C |x− x0|
2

1−q . (4.3)

Then, for any λ > 0

L(v) := −∆v + λvq =

[
λC2 − 2(N(1 − q) + 2q)

(1− q)2
C

]
|x− x0|

2q
1−q . (4.4)

In particular, if we define

KN,q,λ =

[
λ(1− q)2

2(N(1 − q)) + 2q

] 1
1+β/m

, (4.5)

then L(v) ≡ 0 if C = KN,q,λ and L(v) > 0 (resp. L(v) < 0) if C < KN,q,λ (resp. C > KN,q,λ).

ii) If for m > 0 and β ∈ (0,m) we define

uβ,m,C(x) = (vq,C(x))
1/m= C1/m |x− x0|

2
m+β , i.e. with q = −β/m,

then

−∆(uβ,m,C)
m + λ(uβ,m,C)

−β =

[
λC2 − 2m(N(m+ β)− 2β)

(m+ β)2
C

]
|x− x0|

−2β
m+β . (4.6)

ii.a) Define

KN,m,β,λ =

[
λ(m+ β)2

2m(N(m+ β)− 2β)

] m
m+β

, (4.7)

then KN,m,β,λ > 0 and −∆(uβ,m,C)
m + λ(uβ,m,C)

−β = 0 in R
N if C = KN,q,λ.
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ii.b) If x0 ∈ Ω then −∆(uβ,m,C)
m + λ(uβ,m,C)

−β ∈ L1
δ (Ω) and −∆(uβ,m,C)

m + λ(uβ,m,C)
−β > 0

(resp. < 0) if C < KN,q,λ (resp. C > KN,q,λ).

iii) If m > 0 and β ∈ [m,+∞) then (4.6) holds in R
N . Moreover, the constant given by (4.7) is

such KN,m,β,λ > 0 if and only if N ≥ 2.

iii.a) If x0 ∈ ∂Ω and δ(x) = |x− x0| then −∆(uβ,m,C)
m+λ(uβ,m,C)

−β ∈ L1
δ (Ω) and −∆(uβ,m,C)

m+
λ(uβ,m,C)

−β > 0 (resp. < 0) if C < KN,q,λ (resp. C > KN,q,λ).

iii.b) If x0 ∈ Ω then −∆(uβ,m,C)
m + λ(uβ,m,C)

−β /∈ L1
δ (Ω) .

Proof. Part i) was given in Lemma 1.6 of [25]. Part ii) result from i) by a simple change of
variable. Moreover, the fact that −∆(uβ,m,C)

m + λ(uβ,m,C)
−β ∈ L1

δ (Ω) holds because

−2β

m+ β
+ 1 > −1, (4.8)

for the case x0 ∈ ∂Ω and since
−2β

m+ β
> −1, (4.9)

(thanks to the condition β ∈ (0,m)) when x0 ∈ Ω. From the definition (4.7) we see that if
β ∈ [m,+∞) then the positivity of KN,m,β,λ fails only for N = 1. Moreover, inequality (4.8) still
holds true, but we see that for any interior point x0 ∈ Ω the weight δ(x) is not from any help
and thus the singularity is not integrable (since condition (4.9) fails if β ≥ m). �

Corollary 1. Let Ω = BR(x0) and take u0(x) = uβ,m,C(x) with C = KN,m,β,λ and λ = 1.

Let R > 0 be such that R
2m

m+β = 1. Then u(t, x) = uβ,m,C(x) is the unique solution of (P(1)).
Moreover ∥∥∥∇u

m+β
2 (t)

∥∥∥
L∞(Ω)

= C
∗
,

for some C∗ > 0 and the exponent m+β
2 cannot be replaced by any other greater exponent α

such that ‖∇uα (t)‖L∞(Ω) < +∞.�

In order to prove some other qualitative properties it is useful the following result:

Lemma 7. i) Let q ∈ (−∞, 1), x0 ∈ R
N , t0 ≥ 0 and for C > 0 define the function

vq,C(x) = C |x− x0|
2

1−q . (4.10)

Given t0 ≥ 0, θ ≥ 0 and λ > 0, let

yq,θ,λ(t) =
[
θ1−q − λ(1− q)(t− t0)

] 1
1−q

+ , for t ≥ t0,

so that

yq,θ,λ(t) = 0 for any t ≥ θ1−q

λ(1− q)
.

Then, given m ≥ 1, if C ≤ KN,q,λ, the function

U(t, x) = [vq,C(x) + yq,θ,λ(t)
m]

1
m , (4.11)
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satisfies
∂tU −∆Um + µU q ≥ 0 on (t0,+∞)× R

N ,

with µ = 2λ.

ii) If for m ≥ 1 and β ∈ (0,m), we define

zm,β,θ,λ(t) =

[
θ

m+β
m − λ(

m+ β

m
)(t− t0)

] m
m+β

+

, for t ≥ t0.

and thus
W (t, x) = [uβ,m,C(x)

m + zm,β,θ,λ(t)
m]

1
m ,

then, if λ = 1
2 and C ≥ KN,q,λ, we have

∂tW −∆Wm+W−βχ{W>0} ≤ 0 on (t0,+∞)× R
N .

Proof. Notice that

{
dyq,θ,λ
dt + λyqq,θ,λ = 0

yq,θ,λ(t0) = θ.

Moreover, from the convexity of the function s→ sm we get that

∂tU = U−m−1
m

ym−1
q,θ,λ

dyq,θ,λ
dt

≥ dyq,θ,λ
dt

,

moreover

−∆Um =−∆vq,C .

Notice also that

(a+ b)r ≥ ar + br

2
, for any a, b ≥ 0 and r > 0.

Then

∂tU −∆Um + µU q ≥ dyq,θ,λ
dt

−∆vq,C + 2λ [vq,C(x) + yq,θ,λ(t)
m]

q
m

≥
(
dyq,θ,λ
dt

+ λyqq,θ,λ

)
−∆vq,C + λvq ≥ 0.

The proof of ii) is similar but uses now that

(a+ b)−r ≤ a−r + b−r

2
, for any a, b > 0 and r > 0.�

Here are some applications of the above Lemma.
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Proposition 2. Let m ≥ 1, β ∈ (0,m) and consider u0 ∈ L∞(Ω), u0 ≥ 0. Then:

i) Complete quenching and formation of the free boundary: there is a finite time τ 0 > 0 such
that if u is the mild solution of (P)

u (t, x) = 0, ∀t ∈ (τ0,∞) and a.e. x ∈ Ω.

ii) Let m ≥ 1, β ∈ (0,m). Assume (for simplicity) 1 ≥ u0 ≥ 0. If u is the mild solution of (P(1))

then for a.e. x0 ∈ Ω such that δ(x0) = d(x0, ∂Ω) ≥ (KN,q,λ)
− 2

1−q there exists a τ0 = τ0(x0) ≥ 0
such that

u (t, x0) = 0, ∀t ∈ (τ0,∞) . (4.12)

iii) Let m ≥ 1, β ∈ (0,m).If

0 ≤ u0(x) ≤KN,q,λ |x− x0|
2

1−q a.e. on Bδ(x0)(x0) ∩Ω and δ(x0) ≥
1

(KN,q,λ)
m+β
2m

then, if u is the mild solution of (P) we get that

0 ≤ u(t, x) ≤KN,q,λ |x− x0|
2

1−q a.e. on (0,+∞)×Bδ(x0)(x0) ∩ Ω

and, in particular u(t, x0) = 0 for any t > 0.

iv) Let m ≥ 1, β ∈ (0,m) and assume

u0(x) ≥
[
Cδ(x)

2m
m+β + θm

] 1
m
, δ(x) = d(x, ∂Ω) (4.13)

for some C ≥ KN,q,λ. Then if u is the mild solution of (1.3) and θ ≤ 1 we have

u(t, x) ≥W (t, x) for any x ∈ Ω and any t > 0.

In particular, if θ > 0 then

u(t, x) > 0 for any x ∈ Ω and t ∈ [0,
2mθ

m+β
m

m+ β
).

The conclusion holds for solutions of (P), for any x ∈ Ω and t > 0 if in the assumtion (4.13)
we take θ = 0.

Proof. i) LetM = ‖u0‖L∞(Ω). Notice that since u
−β ≥ µuα for any u ∈ (0,M ] and any q ∈ (0, 1)

if 0 ≤ µ ≤M−(α+β), then

0 ≤ u (t, x) ≤ Uq (t, x) , a.e. in (0, T )× Ω, (4.14)

with Uq the unique mild solution of the porous media homogeneous problem with a possible
strong absorption 




∂tU −∆Um+λU q = 0, in (0, T )×Ω,

Um = 0, on (0, T )× ∂Ω,

U (0, x) = u0 (x) , in Ω,

(4.15)

29



since we know that 0 ≤ u(t, x) ≤M. Then if U is given by (4.11) we get that

0 ≤ Uq (t, x) ≤ U (t, x) on (0,+∞) ×Ω

if we take t0 = 0 and θ ≥M (remember that vq,C(x) ≥ 0). Taking x0 (in the definition of (4.3))
arbitrary in R

N we get the conclusion.

ii) We argue as in i) and thus

0 ≤ u (t, x) ≤ Uq (t, x) , a.e. in (0, T )× Ω, (4.16)

but now with Uq the unique mild solution of the problem





∂tU −∆Um+λU q = 0, in (0, T )×Ω,

Um = 1, on (0, T )× ∂Ω,

U (0, x) = u0 (x) , in Ω,

(4.17)

We use the function U given by (4.11) as supersolution and we conclude that if we take t0 = 0

and θ ≥M and x0 ∈ Ω such that δ(x0) = d(x0, ∂Ω) ≥ (KN,q,λ)
− 2

1−q then (since yq,θ,λ(t) ≥ 0)

Umq (t, x) ≤ 1 ≤ Cδ(x0)
2

1−q ≤ vq,C(x) ≤ Um(t, x) for x ∈ ∂Bδ(x0)(x0)

and thus

0 ≤ Uq (t, x) ≤ U (t, x) on (0,+∞)×Bδ(x0)(x0)

if we take t0 = 0 and θ ≥ ‖u0‖L∞(Bδ(x0)
(x0)), which proves (4.12).

The proof of iii) is similar to to the proof of ii) but even simpler than before since now u = 0
on the boundary and the supersolution is nonnegative.

The comparison of solutions u of (1.3) (respectively (P) with the subsolution W (t, x) uses some
properties of the function δ (x) = d (x, ∂Ω) and follows the same arguments than [23] (see also
[31] and Theorem 2.3 of [1]) thanks to the assumption β ≤ m.�

Remark 6. Conclusion iv) of Proposition 2 is very useful in order to prove the uniqueness of
the very weak solution of (P) (see, e.g. [23] and [31]).

A sharper estimate on the complete quenching time can be obtained without passing by the
porous media homogeneous problem with a possible strong absorption.

Proposition 3. Assume the same conditions of Theorem 1, part i). Then, every weak solution
of equation (P) must vanish after a finite time, i.e., there is a finite time τ0 > 0 such that

u (t, x) = 0, ∀t ∈ (τ0,∞) and a.e. x ∈ Ω.
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Proof. By Theorem 1, it suffices to show that the maximal solution u constructed in the
above Section vanishes after a finite time τ0 > 0. Thanks to the smoothing effect we can
assume without loss of generality that the initial datum is a nonnegative bounded function
u0 ∈ L∞ (Ω) .We shall use some energy methods in the spirit of ([2] and [19, Theorem 3]). For
any q ≥ β + 2, we can use uq−1 as a test function to equation (P) and we obtain

1

q

d

dt

∫

Ω
uq (t, x) dx+

4m (q − 1)

(m+ q − 1)2

∫

Ω

∣∣∣∇u(m+q−1)/2 (t, x)
∣∣∣
2
dx+

∫

Ω
uq−β−1 (t, x) dx = 0.

Define v := u(m+q−1)/2. By applying the Sobolev embedding to v, one obtains

‖v (t)‖L2⋆ (Ω) ≤ C (N) ‖∇v (t)‖L2(Ω), (4.18)

with

2⋆ :=





2N

N − 2
, if N ≥ 3,

l, for l ∈ (1,∞) , if N = 1, 2.

As we shall see, it is enough to consider the case of N ≥ 3 since the cases of N = 1, 2 can be
obtained by easy modifications. Observe that (4.18) is equivalent to

‖u (t)‖
q⋆(N−2)

N

Lq⋆ (Ω) ≤ C (N)

∫

Ω

∣∣∣∇u(m+q−1)/2 (t, x)
∣∣∣
2
dx,

with q⋆ := (m+ q − 1)N/ (N − 2). Note that q⋆ > q. From the interpolation inequality

‖u (t)‖Lq(Ω) ≤ ‖u (t)‖θLq⋆ (Ω) ‖u (t)‖
1−θ
Lq−β−1(Ω) ,

with 1/q = θ/q⋆ + (1− θ) / (q − β − 1), by a combination of the above inequalities, we deduce

‖u (t)‖
q⋆(N−2)

N

Lq(Ω) ≤ C
∥∥∥∇u(m+q−1)/2

∥∥∥
2θ

L2(Ω)
‖u (t)‖

(1−θ)q⋆(N−2)
N

Lq−β−1(Ω)

≤ CAθA
(1−θ)q⋆(N−2)

(q−β−1)N = CA
θ+

(1−θ)q⋆(N−2)
(q−β−1)N ,

where

A :=

∫

Ω

∣∣∣∇u(m+q−1)/2 (t, x)
∣∣∣
2
dx+

∫

Ω
uq−β−1 (t, x) dx.

This implies

‖u (t)‖Lq(Ω) ≤ C (N,m, q)A
θ
q⋆

N
N−2

+ 1−θ
q−1−β ≤ CA

1
q
+ 2θ

(N−2)q⋆ .

Then
1

q

d

dt

∫

Ω
uq (t, x) dx+C (m, q)A ≤ 0.

In particular, we obtain that y (t) := ‖u (t)‖qLq(Ω) satisfies the following ordinary differential
inequality

y′ (t) + Cyσ (t) ≤ 0, (4.19)

with σ := (1 + 2qθ/ ((N − 2) q⋆))
−1 ∈ (0, 1). Then, as in ([2]) we deduce that there is a time

τ0 > 0 such that y (τ0) = 0 and then y (t) = 0 for any t > τ0 since y (t) is a non-negative
function. Thus, u (t, x) = 0, in (τ0,∞)×Ω. Indeed, if on the contrary we assume that y (t) > 0
for every t > 0 then by solving (4.19), we get that y1−σ (t) + Ct ≤ y1−σ (0) . and since this
inequality holds for any t > 0 we arrive to a contradiction for t large enough. This ends the
proof.�
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Remark 7. We note that the above arguments are independent of the size of Ω. Thus, one
can easily verify that the quenching result also holds for the case Ω = R

N as pointed out in the
Introduction. Moreover the formation of the free boundary given in Proposition 2 can be also
adapted to solutions of the Cauchy problem.

Remark 8. Although several energy methods were developed in the literature (see, e.g., [2, 25],
and their references) the main new aspect was the application to the case of singular absorption
terms. The method applies to the class of local weak solutions of the more general formulation

∂ψ (v)

∂t
− divA (x, t, v,Dv) +B (x, t, v,Dv) + C (x, t, v) = f (x, t, u) , (4.20)

in which the absorption term can be singular and then including equation (P) as a special case.
More precisely the assumptions made in [27] were the following: under the general structural
assumptions

|A(x, t, r,q)| ≤ C|q|, C|q|2 ≤ A(x, t, r,q) · q,
C|r|θ+1 ≤ G(r) ≤ C∗|r|θ+1,

where

G(r) = ψ(r) r −
∫ r

0
ψ(τ ) dτ ,

and
C|r|α ≤ C(x, t, r) r,

f(x, t, r)r ≤ λ|r|q+1 + g(x, t)r, (4.21)

with p > 1, q ∈ R and the main assumptions

θ ∈ (0, 1), (4.22)

and α ∈ (0,min(1, 2θ)).Notice that by defining v = um (and thus u = v1/m), problem (P) can be
formulated as 




∂tv
1/m −∆v + v−β/mχ{v>0} = 0, in (0,∞)× Ω,

v = 0, on (0,∞)× ∂Ω,

v (0, x) = u
1/m
0 (x) , in Ω.

(4.23)

Thus, it corresponds to equation (4.20) with

A (x, t, v,Dv) = Dv, B (x, t, v,Dv) = 0, f (x, t, u) = 0

C(x, t, r) = v−β/mχ{ v>0} and ψ (v) = v1/m. Then the corresponding exponents are θ = 1/m,

α = m−β
m and the energy method apply presented in [27] applies to the cases:

{
β ∈ (0,m) if m ∈ [1, 2]
β ∈ (m− 2,m) if m > 2.

Theorem 1 of [27] shows the finite speed of propagation, and more exactly a stronger property
which usually is as called ”stable (or uniform) localization property” (see also [2], Chapter 3).
A sufficient condition for the existence of local waiting time (or, what we can call perhaps more
properly as the non dilation of the initial support): the free boundary cannot invade the subset
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where the initial datum is nonzero was given in Theorem 3 of [27]. Finally, the local quenching
property (i.e. the formation of a region where u = 0 even for strictly positive initial data:
sometimes called also as the instantaneous shrinking of the support property: see [2] and its
references) was shown in Theorem 4 of [27].

Remark 9. Let us recall that in the case of the semilinear formulation of problem (5), with
β ≥ 1 it is known that there is a finite time blow up τ0 of the time derivative ∂tu in the interior
points x0 ∈ Ω where the solution quenches (u(τ 0, x0) = 0) and that weak solutions ceases to
exits for t > τ0 (see, e.g., the exposition made in [46], [49], [52] and [38] [43]). Nevertheless,
it is possible to show that in the case in which the singularity is automatically present on the
boundary of Ω from the initial time t = 0, the existence of a very weak solution can be obtained
at least until the time in which the solution also quenches in some interior point x0 ∈ Ω. The
mean reason of this fact is that the weight δ(x) = d(x, ∂Ω) used in the definition of very weak
solution, when asking that u−βχ{u>0} ∈ L1

(
0, T :L1

δ (Ω)
)
, allows to compensate the singularity

arising in the boundary (but obviously it is ineffective for singularities arising in the inerior of
the domain Ω). In fact the above compensation of the boundary singularity, when β ≥ m, with
the weight δ(x) was already pointed out in parts iii.a) and iii.b) of Lemma 6. A global example
which requires some additional assumptions and holds for a modified equation

∂tu−∆um + λδ(x)νu−βχ{ u>0} = 0, in (0,∞)× Ω

for some suitable values of λ > 0 and ν > 1. This corresponds to an easy adaptation to the
framework of the slow diffusion with a singular term some of the results announced in [30] and
Section 7 of [57] concerning the associate semilinear problems.
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