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Abstract

We prove the exact multiplicity of flat and compact support stable solutions of an autonomous non-
Lipschitz semilinear elliptic equation of eigenvalue type according to the dimension N and the two ex-
ponents, 0 < α < β < 1, of the involved nonlinearites. Suitable assumptions are made on the spatial
domain Ω where the problem is formulated in order to avoid a possible continuum of those solutions and,
on the contrary, to ensure the exact number of solutions according to the nature of the domain Ω. Our
results also clarify some previous works in the literature. The main techniques of proof are a Pohozhaev’s
type identity and some fibering type arguments in the variational approach.

1 Introduction
In this paper we study the existence of non-negative solutions of the following problem{

−∆u+ |u|α−1u = λ|u|β−1u in Ω,

u = 0 on ∂Ω.
P (α, β, λ)

Here Ω is a bounded domain in RN , N ≥ 3, with a smooth boundary ∂Ω, which is strictly star-shaped
with respect to a point x0 ∈ RN (which will be identified as the origin of coordinates if no confusion may
arise), λ is a real parameter, 0 < α < β < 1. By a weak solution of P (α, β, λ) we mean a critical point
u ∈ H1

0 := H1
0 (Ω) of the energy functional

Eλ(u) =
1

2

∫
Ω

|∇u|2dx+
1

α+ 1

∫
Ω

|u|α+1dx− λ

β + 1

∫
Ω

|u|β+1dx,

where H1
0 (Ω) is the standard vanishing on the boundary Sobolev space. We are interested in ground states

of P (α, β, λ): i.e., a weak solution uλ of P (α, β, λ) which satisfies the inequality

Eλ(uλ) ≤ Eλ(wλ)

for any non-zero weak solution wλ of P (α, β, λ). Notice that in [29] the authors also use the term “ground
state” with a different meaning.

Since the diffusion-reaction balance −∆u = f(λ, u) involves the non-linear reaction term

f(λ, u) := λ|u|β−1u− |u|α−1u,

and it is a non-Lipschitz function at zero (since α < 1 and β < 1) important peculiar behavior of solutions
of these problems arises. For instance, that may lead to the violation of the Hopf maximum principle on the
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boundary and the existence of compactly supported solutions as well as the so called flat solutions which
correspond to weak solutions u > 0 in Ω such that

∂u

∂ν
= 0 on ∂Ω, (1)

where ν denotes the unit outward normal to ∂Ω. When the additional information (1) holds but the weak
solution may vanish in a positively measured subset of Ω, i.e. u ≥ 0 in Ω, we shall call it as a compact
support solution of P (α, β, λ) (sometimes also called as a free boundary solution, since the boundary of its
support is not a priori known). Notice that in that case the support of u is strictly included in Ω. If u is a
weak solution such that property (1) is not satisfied we shall call it as an “classical” weak solution (since,
at least for the associated linear problem and for Lipschitz non-linear terms, the strong maximum principle
due to Hopf, implies that (1) cannot be verified). However, we cannot exclude a priori the existence of
solutions where (1) is only satisfied on part of ∂Ω.

In what follows we shall use the following notation: any largest ballBR(Ω) := {x ∈ RN : |x| ≤ R(Ω)}
contained in Ω will be denoted as an inscribed ball in Ω. Our exact multiplicity results will concern the
case of some classes of starshaped sets of RN containing a finite number of different inscribed balls in Ω.

For sufficiently large λ the existence of a compactly supported solution of P (α, β, λ) follows from
[15, 32] (see also for the case N = 1, [7, 8], [5, 6, 23, 24]. Indeed, by [23, 24, 15, 32] the equation
in P (α, β, 1) considered in RN has a unique (up to translation in RN ) compactly supported solution u∗,
moreover u∗ is radially symmetric such that supp(u∗)=BR∗ for some R∗ > 0. Hence since the support
of u∗σ(x) := u∗(x/σ), x ∈ BσR∗ is contained in Ω, for sufficiently small σ, the function wσλ(x) =

σ−
2

1−α · u∗σ(x) weakly satisfies P (α, β, λ) in Ω with λ = σ−
2(β−α)
1−α . However, it is not hard to show (see,

e.g., Corollary 5.2 below) that, in general (for all sufficiently large λ), weak solutions wλ are not ground
states.

On the other side, finding flat or compactly supported ground states is important in view of the study of
non-stationary problems (see [9, 10, 19] and [30]).

The existence of flat and compact support ground states, for certain λ∗ of P (α, β, λ) has been obtained
in [20] (see also [10]). In the present paper we develop this result presenting here a sharper explanation
of the main arguments of its proof. Furthermore, we shall offer here some more precise results on the
behaviour of ground states depending on λ.

It is well known that the non-Lipschitz nonlinearities may entail the existence of a continuum of non-
negative compact supported solutions of elliptic boundary value problems. However the answer for the
same question stated about ground states or “classical” weak solutions becomes unclear. Notice that this
question is important in the investigation of stability solutions for non-stationary problems (see [9, 10, 19]).
We recall that, as a matter of fact, flat solutions of P (α, β, λ∗) only may arise if Ω is the ballBR∗ mentioned
before. For the rest of domains, and values of λ ≥ λ∗, any weak solution which is not a “classical” weak
solution should be radially symmetric and has compact support.

Let us state our main results. For given u ∈ H1
0 (Ω), the fibrering mappings are defined by φu(t) =

Eλ(tu) so that from the variational formulation of P (α, β, λ) we know that φ′u(t)|t=1 = 0 for solutions,
where we use the notation

φ′u(t) =
∂

∂t
Eλ(tu).

If we also define φ′′u(t) = ∂2

∂t2Eλ(tu), then, since β < 1 the equation φ′u(t) = 0 may have at most
two nonzero roots tmin(u) > 0 and tmax(u) > 0 such that φ′′u(tmax(u)) ≤ 0, φ′′u(tmin(u)) ≥ 0 and
0 < tmax(u) ≤ tmin(u). This implies that any weak solution of P (α, β, λ) (any critical point of Eλ(u))
corresponds to one of the cases tmin(u) = 1 or tmax(u) = 1. However, it was discovered in [20] (see
also [10, 18, 19]) that in case when we study flat or compactly supported solutions this correspondence
essentially depends on the relation between α, β and N . Thus following this idea (from [10, 18, 19, 20], in
the case N ≥ 3, we consider the following subset of exponents

Es(N) := {(α, β) : 2(1 + α)(1 + β)−N(1− α)(1− β) < 0, 0 < α < β < 1}.

The main property of Es(N) is that for star-shaped domains Ω in RN , N ≥ 3, if (α, β) ∈ Es(N), any
ground state solution u of P (α, β, λ) satisfies φ′′u(t)|t=1 > 0 (see Lemma 2.2 below and [10, 20]).
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Remark 1.1 In the cases N = 1, 2, one has Es(N) = ∅. Furthermore, this implies (see [10]) that if
N = 1, 2 and 0 < α < β < 1, then any flat or compact support weak solution u of P (α, β, λ) satisfies
φ′′u(t)|t=1 < 0.

In what follows we shall use the notations

E′λ(u) = φ′u(t)|t=1 =
∂

∂t
Eλ(tu)|t=1, E

′′
λ(u) = φ′′u(t)|t=1 =

∂2

∂t2
Eλ(tu)|t=1, u ∈ H1

0 (Ω).

Our first result is the following

Theorem 1.1 Let N ≥ 3 and let Ω be a bounded strictly star-shaped domain in RN with C2-manifold
boundary ∂Ω. Assume that (α, β) ∈ Es(N). Then there exists λ∗ > 0 such that for any λ ≥ λ∗ problem
P (α, β, λ) possess a ground state uλ. Moreover E′′λ(uλ) > 0, uλ ∈ C1,γ(Ω) for some γ ∈ (0, 1) and
uλ ≥ 0 in Ω. For any λ < λ∗, problem P (α, β, λ) has no weak solution.

Our second main result deals with the existence (or not) of flat or compactly supported ground states.

Theorem 1.2 Under the same assumptions of the above theorem, there is a non-negative ground state uλ∗

which is flat or has compact support. Moreover, uλ∗ is radially symmetric about some point of Ω, and
supp(uλ∗)=BR(Ω) is an inscribed ball in Ω. For all λ > λ∗, any ground state uλ of P (α, β, λ) is a
““classical” weak solution.

Our last result deals with the multiplicity of solutions. Our main goal is to extend the results of [7] and
[8] concerning the one-dimensional case. We also recall that the existence of what we call now ““classical”
weak solutions was proved in some previous papers in the literature. Existence of a smooth branch of such
positive solutions was proved for λ > λ∗ in [17] by using a change of variables and then a continuation
argument. The existence of at least two non-negative solutions in such a case was shown in [26] by using
variational arguments and this result was improved in [1] showing that one of the solutions is actually
positive, again by variational arguments. Most of these results are valid even in the singular case−1 < α <
β < 1.

In order to present our exact multiplicity results we introduce the geometrical reflection across a given
hyperplaneH by the usual isometryRH : RN →RN . Remember that any point ofH is a fixed point ofRH .
Now we shall introduce some classes of starshaped sets Ω for which we can obtain the exact multiplicity
of flat stable ground solutions of problem P (α, β, λ∗). We say that Ω is of Strictly Starshaped Class m , if
it is a strictly starshaped domain and contains exactly m inscribed balls of the same radius R(Ω) such that
each of them can be obtained from any other by k ∈ {1, ...,m} reflections of Ω across some hyperplanes
Hi, i = 1, ..., k.

Theorem 1.3 Assume N ≥ 3, (α, β) ∈ Es(N). Let Ω be a domain of Strictly Starshaped Class m > 1
with a C2-manifold boundary ∂Ω. Then there exist exactly m stable nonnegative flat or compact supported
ground states u1

λ∗ , u2
λ∗ ,..., umλ∗ of problem P (α, β, λ∗) and m sets of “classical” ground states (u1

λn
)∞n=1,

(u2
λn

)∞n=1,..., (umλn)∞n=1 of P (α, β, λn), , with limn→∞ λn = λ∗, λn > λ∗, n = 1, 2, ... and such that
uiλn → uiλ∗ , strongly in H1

0 as n→∞, for any i = 1, ...,m.

The result concerning the exact number of stable non-negative flat (or compact support) solutions is,
at the best of our knowledge, new, and the same can be said of the introduction of the classes of strictly
star-shaped domains.

The second part of the statement of Theorem 1.3 seems to be a novelty as well. It provides a partial
answer to the very general problem of knowing how a branch of positive solutions “leaving” at the interior
of the positive cone in the spaceC1

0 (Ω) can “leave” this interior. It is known that in this case either u(a) = 0
for some a ∈ Ω or ∂u

∂ν (b) = 0 for some b ∈ ∂Ω. For the problem we consider we know the answer in the
one-dimensional case ([7], [8]): if, say, Ω = (0, 1), then u(0) = u(1) = 0 and u′(0) = u′(1) = 0 for such
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solutions u(x) > 0 in (0, 1). For N > 1 some partial results in the same direction are given in [20], [9]
and [10]. Here the situation is complicated due to the results by Kaper and Kwong ([23], [24]) showing that
the supports of the compactly support solutions should be balls. We use here the symmetry properties of
the domain in order to show the convergence of ““classical” weak positive solutions to a flat (or compact
support) solution supported on an inscribed ball of the domain.

Let us show how can be obtained some domains of Strictly Starshaped class m. We start by considering
an initial bounded Lipschitz set Ω1 of RN such that:

Ω1 contains exactly one inscribed ball of radius R(Ω1). (2)

We also introduce the following notation: given a general open set G of RN we define S[G] as the set of
points y ∈ G such that G is strictly starshaped with respect to y. Then, the second condition we shall
require to Ω1 is

S[Ω1] is not empty. (3)

Then Ω belongs to the Strict Starshaped class 1 if there exists Ω1 satisfying (2) and (3) such that Ω = Ω1.
Now, let us show how we can obtain a domain of Strictly Starshaped class 2.

Let Ω1 be a domain of Strictly Starshaped class 1 and assume, additionally, that the set S[Ω1] contains
some other point different than x1, {x1}  S[Ω1], i.e.

there exists y1 ∈ S[Ω1] such that y1 6= x1.

Let now Ω2 := RH(y1)(Ω1) be the reflected set of Ω1 across some hyperplane H(y1) containing the point
y1 such that

Ω1 ∪ Ω2 contains exactly one inscribed ball of radius R(Ω) of center x2 6= x1.

Figure 1: Domain generating exactly three ground states

We now consider
Ω = Ω1 ∪ Ω2.

Notice that, obviously, Ω is Strictly Starshaped class 1 with respect to y1 (since y1 ∈ S[Ω1] and any ray
starting from y1 is reflected to a ray linking y1 with any other point of Ω2). Moreover, such a domain Ω
verifies

Ω contains exactly two inscribed balls of radius R(Ω),

with center at two different points xi ∈ Ω, i = 1, 2.
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Thus Ω is a set of Strictly Starshaped class 2. Evidently we can repeat this construction with a domain of
Strictly Starshaped class 2 and obtained a domain Ω of Strictly Starshaped class 3, etc.

We believe that we can iterate this process in a similar way until some number m := m(N) ≥ 3,
which maybe depends on the dimension N . However we don’t know how to prove this. Moreover we
rise the following conjecture: For a given dimension N , there exists a number m(N) such that for any
k = 1, 2, ...,m(N) there exists a domain of Strictly Starshaped class k whereas there is no domain in RN
of Strictly Starshaped class k with k > m(N).

We emphasize that by Theorems 1.1, 1.2,1.3 we obtain the complete bifurcation diagram for the ground
states of P (α, β, λ) for domains of Starshaped Class m. Indeed, the flat ground state uλ∗ corresponds to a
fold bifurcation point (or turning point) from which startm+1 different branches of weak solutions: on one
hand, the branch of ““classical” ground states uλ, forming a branch of stable equilibria, and, on the other
hand, m branches formed by unstable compactly supported weak solutions, of the form wσλ(x : x0,j) =

σ−
2

1−α · uλ∗((x − x0,j)/σ) with λ = σ−
2(β−α)
1−α (see Figure 1) and m different points x0,j , j = 1, ...,m.

Furthermore, we know a global information: the energy of uλ∗ is the maximum among all the possible
energies associated to any weak solution of P (α, β, λ) (due to the monotone dependence of Eλ with
respect to λ) and for λ > λ∗ there are several ground states uλ = wσλ with compact support and with an
energy less than the one of uλ∗ .

Figure 2: Union of the supports of the three radially symmetric ground states corresponding to the domain
given by Figure 1.

In the last part of the paper we consider the associate quasilinear parabolic problem of porous media
type

PP (m,α, β, λ, v0)


(
|v| 1m−1v

)
t
−∆v + |v|α−1v = λ|v|β−1v in (0,+∞)× Ω

v = 0 on (0,+∞)× ∂Ω
v(0, x) = v0(x) on Ω,

(4)

where m > 0 and always under the structural assumption 0 < α < β < 1. The parabolic semilinear case
m = 1 was treated in the previous paper by the authors [10] and many other references were collected there.
Notice that when m 6= 1 the problem usually appears in the literature formulated, equivalently, in terms of
w := |v| 1m−1v

PP (m, a, b, λ, w0)

 wt −∆|w|m−1w + |w|a−1w = λ|w|b−1w in (0,+∞)× Ω
w = 0 on (0,+∞)× ∂Ω
w(0, x) = w0(x) on Ω,

(5)

with a = αm, b = βm and w0 := |v0|
1
m−1v0. Notice that since the exponent b may become greater than

one, blow-up phenomena may occur depending on the initial datum and the balance between the exponents.
Moreover, flat solutions over Ω can be extended by zero to the whole space RN and so our treatment
has important intersections with the study of the parabolic equation over RN . The pionering work in that
direction was due, for the semilinear case m = 1 and without the absorption term |w|a−1w to Fujita who
proved that for b ∈ (0, 1) all the solutions are globally defined in time, for b ∈ (1, 1+2/N) all the solutions
blow up in a finite time, whereas for b ∈ (1 + 2/N,+∞) there exist both global solutions and blowing-up
solutions according to the initial datum w0. The quasilinear case m > 0 was considered by many other
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authors, but most of them without the absorption term |w|a−1w (see, e.g., the monographs [31], [14]):
in that case the Fujita exponent separating the three regimes is m + 2/N . The asymptotic behaviour for
t → +∞ in presence of some absorption term, for a bounded domain Ω, was also analyzed in the general
sense of their associate attractors when the absorption term is linear a = 1 ([12], [11], [27]).

Here we shall extend our previous results concerning the semilinear case and λ = λ∗ by proving that
the strong absorption term |w|a−1w modifies the above mentioned Fujita three regimes for exponent b in
the sense that, if N ≥ 3, the stability region Es(N) described before in terms of exponents (α, β) coincides
with the equivalent region in terms of the exponents (a, b): so we shall prove that if 0 < a < b < m and

2(m+ a)(m+ b)−N(m− a)(m− b) < 0,

then the stationary flat solutions of PP (m,α, β, λ∗, v0) are stable (see Theorem 7.1).
We end this final section by applying some local energy methods, for the two cases λ > λ∗ and λ = λ∗,

to give some information on the evolution and formation, respectively, of the free boundary given by the
boundary of the support of the solution v(t, .) when t increases. This provides a complementary information
since by Theorem 1.1 (and the asymptotic behaviour results for PP (m,α, β, λ, v0)) we know that, as
t→ +∞, the support of v(t, .) must converge to a ball of RN , in the case λ = λ∗, or to the whole domain
Ω, if λ > λ∗, (the supports of one of the corresponding stationary solutions).

Figure 3: Bifurcation diagram for the energy levels of ground states and compact support solutions.

2 Preliminaries
In this section we give some preliminary results. In what follows H1

0 := H1
0 (Ω) denotes the standard

vanishing on the boundary Sobolev space. We can assume that its norm is given by

||u||1 =

(∫
Ω

|∇u|2 dx
)1/2

.

Denote
Pλ(u) :=

1

2∗

∫
Ω

|∇u|2 dx+
1

α+ 1

∫
Ω

|u|α+1 dx− λ 1

β + 1

∫
Ω

|u|β+1 dx,

where
2∗ =

2N

N − 2
for N ≥ 3.

We will use the notation P ′λ(tu) = dPλ(tu)/dt, t > 0, u ∈ H1
0 . From now on we suppose that the boundary

∂Ω is a C2-manifold. As usual, we denote by dσ the surface measure on ∂Ω. We need the Pohozhaev’s
identity for a weak solution of P (α, β, λ).
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Lemma 2.1 Assume that ∂Ω is a C2-manifold, N ≥ 3. Let u ∈ C1(Ω) be a weak solution of P (α, β, λ).
Then there holds the Pohozaev identity

Pλ(u) = − 1

2N

∫
∂Ω

∣∣∣∣∂u∂ν
∣∣∣∣2 (x · ν(x))dσ(x).

For the proof see [10, 22]and [28], [34]. See also some related results in [28] and [34].
Notice that

Eλ(u) = Pλ(u) +
1

N

∫
Ω

|∇u|2dx, ∀u ∈ H1
0 (Ω). (6)

Assume Ω is strictly star-shaped with respect to a point x0 ∈ RN (which will be identified as the origin
of coordinates of RN ). Observe that if Ω is a star-shaped (strictly star-shaped) domain with respect to the
origin of RN , then x · ν ≥ 0 (x · ν > 0) for all x ∈ ∂Ω. This and Lemma 2.1 imply

Corollary 2.1 Let Ω be a bounded star-shaped domain in RN with a C2-manifold boundary ∂Ω. Then any
weak solution u ∈ C1(Ω) of P (α, β, λ) satisfies Pλ(u) ≤ 0. Moreover, if u is a flat solution or it has a
compact support then Pλ(u) = 0. Furthermore, in the case Ω is strictly star-shaped, the converse is also
true: if Pλ(u) = 0 and u ∈ C1(Ω) is a weak solution of P (α, β, λ), then u is flat or it has a compact
support.

The proof of the following result can be found in [10, 20].

Lemma 2.2 Assume N ≥ 3 and (α, β) ∈ Es(N).
(i) Let u ∈ C1(Ω) be a flat or compact support weak solution of P (α, β, λ). Then Eλ(u) > 0 and

E′′λ(u) > 0.
(ii) If E′λ(u) = 0, Pλ(u) ≤ 0 for some u ∈ H1

0 (Ω) \ 0, then

E′′λ(u) > 0.

Remark 2.1 When 0 < β < α < 1, a case which is not considered in this paper, we have E′′λ(u) > 0
and Pλ(u) < 0 for any weak solution u ∈ H1

0 \ 0 of P (α, β, λ). In particular, in this case, any solution of
P (α, β, λ) is a “classical” weak solution. The uniqueness of the solution was shown in [17].

In what follows we need also

Proposition 2.1 If E′λ(tu) = 0 for u 6= 0, then P ′λ(tu) < 0.

Proof Observe that,

P ′λ(tu) =
N − 2

N
t

∫
Ω

|∇u|2 dx− λtβ
∫

Ω

|u|β+1 dx+ tα
∫

Ω

|u|α+1 dx = E′λ(tu)− 2t

N

∫
Ω

|∇u|2 dx.

Thus E′λ(tu) = 0 entails P ′λ(tu) = −(2t/N)
∫
|∇u|2 dx < 0 2.

3 Auxiliary extremal values
In this section we introduce some extremal values which will play an important role in the following.

Some of these values, and the corresponding variational functionals, have been already introduced in [10,
20]. However, for our aims we shall introduce them using another approach which is more natural and easy.

Our approach will be based on using a nonlinear generalized Rayleigh quotient (see [21]). In fact,
we can associate to problem P (α, β, λ) several nonlinear generalized Rayleigh quotients which may give
useful information on the nature of the problem. In this paper we will deal with three of them.

First, let us consider the following Rayleigh’s quotient [21]

R0(u) =
1
2

∫
Ω
|∇u|2dx+ 1

α+1

∫
Ω
|u|α+1dx

1
β+1

∫
Ω
|u|β+1dx

, u 6= 0. (7)
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Following [21], we consider

r0
u(t) := R0(tu) =

t1−β

2

∫
Ω
|∇u|2dx+ tα−β

α+1

∫
Ω
|u|α+1dx

1
β+1

∫
Ω
|u|β+1dx

, t > 0, u 6= 0. (8)

Notice that for any u 6= 0, and λ ∈ R,

if R0(u) ≡ r0
u(t)|t=1 = λ, then Eλ(u) = 0. (9)

It is easy to see that ∂r0
u(t)/∂t = 0 if and only if

(1− β)
t−β

2

∫
Ω

|∇u|2dx+ (α− β)
tα−β−1

α+ 1

∫
Ω

|u|α+1dx = 0,

and that the only solution to this equation is

t0(u) =

(
2(β − α)

(α+ 1)(1− β)

∫
Ω
|u|α+1dx∫

Ω
|∇u|2dx

) 1
1−α

. (10)

Let us emphasize that t0(u) is a value where the function r0
u(t) attains its global minimum. Substituting

t0(u) into r0
u(t) we obtain the following nonlinear generalized Rayleigh quotient:

λ0(u) = r0
u(t0(u)) ≡ R0(tu)|t=t0(u) = cα,β0 λ(u), (11)

where

cα,β0 =
(1− α)(β + 1)

(1− β)(1 + α)

(
(1− β)(α+ 1)

2(β − α)

) β−α
1−α

, (12)

and

λ(u) =
(
∫

Ω
|u|α+1dx)

1−β
1−α (

∫
Ω
|∇u|2dx)

β−α
1−α∫

Ω
|u|β+1dx

.

See Figure 4.

0 t0(u) t

λ

r

λ0(u)

r0u(t)

Eλ(t1u) = 0

t1

Figure 4:

0 t1(u) t

λ1P (u)

r

r1u(t)

t1P (u) tP (u)

rPu (t)

Figure 5:

It is not hard to prove (see, e.g., page 400 of [36]) that

Proposition 3.1 The map λ(·) : H1
0 (Ω) \ 0→ R is a C1-functional.

Consider the following extremal value of λ0(u)

Λ0 = inf
u∈H1

0 (Ω)\0
λ0(u). (13)
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Using Sobolev’s and Hölder’s inequalities (see, e.g., [20]) it can be shown that

0 < Λ0 < +∞. (14)

By the above construction and using (9) it is not hard to prove the following

Proposition 3.2 (i) If λ < Λ0, then Eλ(u) > 0 for any u 6= 0,

(ii) For any λ > Λ0 there is u ∈ H1
0 (Ω) \ 0 such that Eλ(u) < 0, E′λ(u) = 0.

In what follows we shall use the following result:

Proposition 3.3 Let u be a critical point of λ0(u) at some critical value λ̄, i.e. Duλ0(u) = 0, λ̄ = λ0(u).
Then DuEλ̄(u) = 0 and Eλ̄(u) = 0.

Proof Observe that

Duλ0(u)(φ) = Dur
0
u(t0(u))(φ) +

∂

∂t
r0
u(t0(u))(Dut0(u)(φ)) = 0, ∀φ ∈ C∞0 (Ω).

Hence, since ∂r0
u(t)/∂t|t=t0(u) = 0, we get

Dur
0
u(t0(u))(φ) = t0(u) ·DwR

0(w)|w=t0(u)u(φ) = 0, ∀φ ∈ C∞0 (Ω).

Now taking into account that the equality λ̄ = λ0(u) implies Eλ̄(u) = 0, we obtain

0 = DwR
0(w)|w=t0(u)u =

1∫
Ω
|w|β+1dx

·DwEλ̄(w)|w=t0(u)u,

which yields the proof. 2

We shall need also the following Rayleigh’s quotients:

RP (u) =
1
2∗

∫
Ω
|∇u|2 dx+ 1

α+1

∫
Ω
|u|α+1dx

1
β+1

∫
Ω
|u|β+1dx

, (15)

R1(u) =

∫
Ω
|∇u|2 dx+

∫
Ω
|u|α+1dx∫

Ω
|u|β+1dx

, u 6= 0. (16)

Notice that for any u 6= 0 and λ ∈ R,

RP (u) = λ⇔ Pλ(u) = 0 and R1(u) = λ⇔ E′λ(u) = 0. (17)

Let u 6= 0. Consider rPu (t) := RP (tu), r1
u(t) := R1(tu), t > 0. Then, arguing as above for r0

u(t), it can be
shown that each of these functions attains its global minimum at some point, tP (u) and t1(u), respectively.
Moreover, it is easily seen that the following equation

rPu (t) = r1
u(t), t > 0, (18)

has a unique solution

t1P (u) =

(
2∗(β − α)

(2∗ − β − 1)(α+ 1)

∫
Ω
|u|α+1dx∫

Ω
|∇u|2dx

) 1
1−α

. (19)

Thus, we have the next nonlinear generalized Rayleigh quotient

λ1P (u) := rPu (t1P (u)) = r1
u(t1P (u)).

It is easily to seen that λ1P (u) = cα,β1P λ(u), where

cα,β1P =
(β + 1)(2∗ − α+ 1)

(β − α)2∗

(
2∗(β − α)

(2∗ − β − 1)(α+ 1)

) β−α
1−α

. (20)
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Notice that
Pλ1P (u)(t1P (u)u) = 0, E′λ1P (u)(t1P (u)u) = 0, ∀u 6= 0. (21)

Consider
Λ1P = inf

u 6=0
λ1P (u). (22)

Using Sobolev’s and Hölder’s inequalities it can be shown (see, e.g., [20]) that

0 < Λ1P < +∞. (23)

Moreover we have (see Figure 5):

Proposition 3.4 For any u 6= 0,

(i) rPu (t) > r1
u(t) if t ∈ (0, t1P (u)) and rPu (t) < r1

u(t) if t ∈ (t1P (u),+∞);

(ii) t1(u) < t1P (u) < tP (u).

Proof Observe that rPu (t)/r1
u(t)→ β+1

α+1 > 1 as t→ 0. Hence, from the uniqueness of t1P (u) we obtain
(i).
By (17) we have E′λ1P (u)(t1P (u)u) = 0. Therefore Proposition 2.1 implies d

dtPλ1P (u)(t1P (u)u) < 0.
Hence and since

d

dt
rPu (t)|t=t1P (u) =

β + 1∫
|tu|β+1dx

· d
dt
Pλ1P (u)(tu)|t=t1P (u),

we conclude that d
dtr

P
u (t)|t=t1P (u) < 0. Now taking into account that tP (u) is a point of global minimum

of rPu (t) we obtain that t1P (u) < tP (u). To prove of t1(u) < t1P (u), first observe that

d

dt
r1
u(t)|t=t1P (u) =

1∫
Ω
|tu|β+1dx

· E′′λ1P (u)(tu)|t=t1P (u),

and that by Lemma 2.2 the equalitiesE′λ1P (u)(t1P (u)u) = 0, Pλ1P (u)(t1P (u)u) = 0 implyE′′λ1P (u)(t1P (u)u) >

0. Thus d
dtr

1
u(t1P (u)) > 0 and the proof follows. 2

Corollary 3.1 (i) If λ < Λ1P and E′λ(u) = 0, then Pλ(u) > 0.

(ii) For any λ > Λ1P , there exists u ∈ H1
0 \ 0 such that E′λ(u) = 0 and Pλ(u) ≤ 0

Proof (i). Let u ∈ H1
0 \ 0. Assume λ < λ1P (u) such that E′λ(u) = 0. Then in view of (17) we have

R1(u) = λ < λ1P (u). If Ω is starshaped we know that Pλ(u) ≤ 0 and then E′λ(u) 6= 0. Thus (ii),
Proposition 3.4 yields 1 ≡ t1(u) < t1P (u) and therefore by (i), Proposition 3.4 we have rPu (1) > r1

u(1) =
λ. Thus by (7) we get Pλ(u) > 0.

The proof of (ii) is similar to (i). 2

Corollary 3.2 Λ1P < Λ0.

Proof Suppose that Λ0 < Λ1P . From Proposition 3.2 for any λ ∈ (Λ0,Λ1P ), there exists u 6= 0 such
that Eλ(u) < 0 and E′λ(u) = 0. By Corollary 3.1, the equality E′λ(u) = 0 entails Pλ(u) > 0. Hence by
(6) we have Eλ(u) > Pλ(u) > 0, i.e., we get a contradiction. The equality Λ0 = Λ1P is impossible since
cα,β1P 6= cα,β0 . 2

Corollary 3.3 Let Ω be a bounded star-shaped domain in RN with C2-manifold boundary ∂Ω. Then for
any λ < Λ1P equation P (α, β, λ) cannot have weak solutions.

Proof Let λ < Λ1P . Assume conversely that there exists a weak solution u. By the regularity of solutions
of elliptic equations, u ∈ C1(Ω). Then sinceE′λ(u) = 0, by Corollary 3.1 we have Pλ(u) > 0. However by
Corollary 2.1, any weak solution u ∈ C1(Ω) ofP (α, β, λ) satisfiesPλ(u) ≤ 0. Thus we get a contradiction.

2
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4 Main constrained minimization problem
Consider the constrained minimization problem:

Êλ := min
u∈Mλ

Eλ(u). (24)

where
Mλ := {u ∈ H1

0 \ 0 : E′λ(u) = 0, Pλ(u) ≤ 0}.

Observe that any weak solution of P (α, β, λ) belongs to Mλ, such as it follows from Corollary 2.1. Hence
if Êλ = Eλ(uλ), in (24), for some solution uλ of P (α, β, λ), then uλ is a ground state.

Proposition 4.1 Mλ 6= ∅ for any λ > Λ1P .

Proof Let λ > Λ1P . Consider the function λ1P (·) : H1
0 \ 0 → R. By Proposition 3.1 this is a con-

tinuous functional. Hence there is u ∈ H1
0 \ 0 such that Λ1P < λ1P (u) < λ. Since by (21) we have

Pλ1P (u)(t1P (u)u) = 0, E′λ1P (u)(t1P (u)u) = 0, it follows Pλ(t1P (u)u) < 0, E′λ(t1P (u)u) < 0. Hence
there is tmin(u) > t1P (u) such that E′λ(tmin(u)u) = 0. In view that P ′λ(tu) = E′λ(tu)− (2t/N)

∫
|∇u|2

for any t > 0 we have P ′λ(tmin(u)u) < 0 which implies that Pλ(tmin(u)u) < 0. Thus tmin(u)u ∈Mλ. 2

Lemma 4.1 For any λ > Λ1P there exists a minimizer uλ of problem (24), i.e., Eλ(uλ) = Êλ and uλ ∈
Mλ.

Proof Let λ > Λ1P . Then Mλ is bounded. Indeed, if u ∈Mλ, then

1

2∗

∫
Ω

|∇u|2 dx+
1

α+ 1

∫
Ω

|u|α+1 dx ≤ λ 1

β + 1

∫
Ω

|u|β+1 dx ≤ cλ 1

β + 1
‖u‖β+1

1

From here ‖u‖1 ≤ C < +∞, ∀u ∈Mλ. Now, if (um) is a minimizing sequence of (24), then it is bounded
and there exists a subsequence, denoted again (um), which converges um ⇀ u0 weakly in H1

0 and strongly
um → u0 in Lq , 1 < q < 2∗. We claim that um → u0 strongly inH1

0 . If not, ‖u0‖1 < lim infm→∞ ‖um‖1
and this implies∫

Ω

|∇u0|2 dx+

∫
Ω

|u0|α+1 dx− λ
∫

Ω

|u0|β+1 dx <

lim inf
m→∞

(∫
Ω

|∇um|2 dx+

∫
Ω

|um|α+1 dx− λ
∫

Ω

|um|β+1 dx

)
= 0

since E′λ(um) = 0, m = 1, 2, .... Hence u0 6= 0 and E′λ(u0) < 0. Then there exists γ > 1 such that
E′λ(γu0) = 0 and Eλ(γu0) < Eλ(u0) < Êλ. By Proposition 2.1, E′λ(γu0) = 0 implies P ′λ(γu0) < 0.
From this and since

Pλ(u0) < lim inf
m→∞

Pλ(um) ≤ 0,

we conclude that Pλ(γu0) < 0. Thus γu0 ∈Mλ and Eλ(γu0) < Êλ, which is a contradiction. 2

4.1 Existence of a flat or compact support ground state uλ∗

Let λ > Λ1P , then by Lemma 4.1 there exists a minimizer uλ of (24). Notice since min{α, β} > 0,
Eλ(u) and E′λ(u), Pλ(u) are C1-functionals on H1

0 (Ω) . Hence we may apply Lagrange multipliers rule
(see, e.g., page 417 of [36]) and thereby there exist Lagrange multipliers µ0, µ1 µ2 such that |µ0|+ |µ1|+
|µ2| 6= 0, µ2 ≥ 0 (since the unilateral constraint) and

µ0DuEλ(uλ) + µ1DuE
′
λ(uλ) + µ2DuPλ(uλ) = 0, (25)

µ2Pλ(uλ) = 0. (26)

Proposition 4.2 Assume (α, β) ∈ Es(N). Let λ > Λ1P and uλ ∈ H1
0 be a minimizer in (24) such that

Pλ(uλ) < 0. Then uλ is a weak solution to P (α, β, λ).
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Proof Since Pλ(uλ) < 0, equality (26) implies µ2 = 0. Moreover, since (α, β) ∈ Es(N), (ii), Lemma
2.2 implies that E′′λ(uλ) > 0. Testing (25) by uλ we get 0 = µ0E

′
λ(uλ) = µ1E

′′
λ(uλ). But E′′λ(uλ) 6= 0

and therefore µ1 = 0. Thus, DuEλ(uλ) = 0, that is uλ weakly satisfies P (α, β, λ). This completes the
proof. 2

Introduce
Z := {λ ∈ (Λ1P ,+∞) : Pλ(uλ) < 0, uλ ∈Mλ s.t. Eλ(uλ) = Êλ}. (27)

Proposition 4.3 Z is a non-empty open subset of (Λ1P ,+∞).

Proof Notice that by Lemma 4.1, for any λ > Λ1P there exists uλ ∈ Mλ such that Eλ(uλ) = Êλ. To
prove that Z 6= ∅, we show that [Λ0,+∞) ⊂ Z. Take λ ≥ Λ0. Then in view of (ii), Proposition 3.2 we
have Êλ ≤ 0. Thus Eλ(uλ) ≤ 0, for any uλ ∈ Mλ such that Eλ(uλ) = Êλ. In view of (6) we have
Eλ(uλ) > Pλ(uλ) and therefore Pλ(uλ) < 0, ∀uλ ∈Mλ such that Eλ(uλ) = Êλ. Thus λ ∈ Z.
Let us show that Z is an open subset of (Λ1P ,+∞). Notice that if Z = (Λ1P ,+∞), then Z is an open
subset of (Λ1P ,+∞) by the definition.
Assume Z 6= (Λ1P ,+∞). Let λ ∈ Z. Suppose, contrary to our claim, that there is a sequence (λm) ⊂
(Λ1P ,+∞) \ Z such that λm → λ as m → ∞. Then there is a sequence of solutions (uλm) of (24) such
that Pλm(uλm) = 0. Then by Lemma 8.1 (see Appendix I), there exists a minimizer uλ of (24) and a
subsequence, still denoted by (uλm), such that uλm → uλ strongly in H1

0 as m → +∞. However, then
Pλ(uλ) = 0, which contradicts the assumption λ ∈ Z. 2

Set
λ∗ := inf Z.

Lemma 4.2 There exists a minimizer uλ∗ of (24) which is a flat or a compact support non-negative ground
state of P (α, β, λ∗). Furthermore, Λ1P < λ∗ and there exists a set of “classical” non-negative ground
states (uλn)∞n=1 of P (α, β, λn), with λn ↓ λ∗ as n→∞, such that uλn → uλ∗ strongly in H1

0 as n→∞.

Proof Since Z is an open set, we can find a sequence λn ∈ Z, n = 1, 2, ... such that λn → λ∗ as
n → ∞. By the definition of Z for any n = 1, 2, ... we can find a minimizer uλn of (24) such that
Pλn(uλn) < 0. Then Proposition 4.2 yields that uλn weakly satisfies P (α, β, λn), n = 1, 2, .... Moreover
by Corollary 2.1, uλn is a “classical” weak solution of P (α, β, λn), n = 1, 2, .... Since Eλ(|u|) = Eλ(u),
E′λ(|u|) = E′λ(u) = 0, Pλ(|u|) = Pλ(u) for any u ∈ H1

0 we may assume that uλn ≥ 0, n = 1, 2, ....
Furthermore, since Êλn = Eλn(uλn), uλn is a ground state of P (α, β, λn), n = 1, 2, .... Thus we have a
set of “classical” non-negative ground states (uλn)∞n=1 of P (α, β, λn), n = 1, 2, ....
By Lemma 8.1 (see Appendix I), there exists a minimizer uλ∗ of (24) and the subsequence, still denoted by
(uλn), such that uλn → uλ∗ strongly in H1

0 as λn → λ∗. This implies that uλ∗ is a non-negative solution
of P (α, β, λ∗) and Pλ∗(uλ∗) ≤ 0. Furthermore, since uλ∗ is a minimizer of (24), it is a ground state of
P (α, β, λ∗).
Let us show that Λ1P < λ∗. To obtain a contradiction suppose, that Λ1P = λ∗. Then Λ1P = λ1P (uλ∗) and
uλ∗ is a minimizer of (22). Since λ1P (u) = cα,βλ0(u), where cα,β = cα,β1P /c

α,β
0 , uλ∗ is also a critical point

of λ0(u) with value Λ0. Then by Proposition 3.3, uλ∗ satisfies P (α, β,Λ0). However, by the construction
uλ∗ satisfies P (α, β, λ∗). Notice that by Corollary 3.2, Λ0 > Λ1P = λ∗. Thus we get a contradiction.
Observe that Pλ∗(uλ∗) = 0. Indeed, if Pλ∗(uλ∗) < 0, then λ∗ ∈ Z. But this is impossible since Z is an
open subset of (Λ1P ,+∞).
A global (up to the boundary) regularity result (see [25]) yields that uλ ∈ C1,β(Ω), λ ∈ [λ∗,+∞) for some
β ∈ (0, 1). Thus we may apply Corollary 2.1 which yields that uλ∗ is flat or compactly supported in Ω. 2

5 On the radially symmetric property
We need the following result that has been proved in [23, 24, 32].

Lemma 5.1 Assume 0 < α < β < 1. Let u be a non-negative C1 distribution solution of

−∆u+ uα = uβ in RN Eq(α, β, 1)
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with connected support. Then the support of u is a ball and u is radially symmetric about the center .
Furthermore, equation Eq(α, β, 1) admits at most one radially symmetric compact support solution.

We denote by R∗ the radius of the supporting ball BR∗ of the unique (up to translation in RN ) compact
support solution of Eq(α, β, 1), i.e., it is the unique flat solution of P (α, β, 1) for Ω = BR∗ .

It is easy to see, from Lemma 5.1, that the function u∗λ(x) := σ−
2

1−α ·u∗(x/σ) is the unique flat solution

of P (α, β, λ) with λ = σ−
2(β−α)
1−α and Ω = BσR∗ .

Proposition 5.1 Assume uλ ∈ C1(Ω) is a non-negative ground state of P (α, β, λ) which has compact
support in Ω. Then uλ is radially symmetric about some origin 0 ∈ Ω, and supp(uλ)=BR(Ω) is a inscribed
ball in Ω.

Proof Observe that any compact support function uλ from C1(Ω) can be extended to RN as{
ũλ = uλ in Ω,
ũλ = 0 in RN \ Ω.

(28)

Then ũλ ∈ C1(RN ) is a distribution solution of P (α, β, λ) on RN . Since uλ is a ground state, it is not hard
to show that uλ has a connected support. Thus by Lemma 5.1, ũλ is a radially symmetric function with
respect to the centre of some ball BRλ with a radius Rλ > 0, so that supp(uλ) = BRλ .
Let us show that BRλ is an inscribed ball in Ω. Consider BσRλ := {x ∈ RN : x/σ ∈ BRλ} where σ > 0.
Notice that BσRλ ⊂ Ω if σ ≤ 1. Suppose, contrary to our claim, that there is σ0 > 1 such that BσRλ ⊂ Ω
for any σ ∈ (1, σ0). Let σ ∈ (1, σ0). Introduce uσλ(x) = uλ(x/σ), x ∈ BσRλ and set uσλ(x) = 0 in
Ω \BσRλ . Observe that

Eλ(uσλ) =
σN−2

2

∫
Ω

|∇uλ|2 dx− σN (
λ

β + 1

∫
Ω

|uλ|β+1 dx− 1

α+ 1

∫
Ω

|uλ|α+1 dx).

From this dEλ(uσλ)/dσ|σ=1 = Pλ(uλ) = 0, and thus σ = 1 is a maximizing point of the function
ψu(σ) := Eλ(uσλ). Then Eλ(uσλ) < Eλ(uλ) = Êλ and Pλ(uσλ) < 0 for σ ∈ (1, σ0). From this it follows
that for σ sufficiently close to 1 we have Eλ(tmin(uσλ)uσλ) < Eλ(uλ) = Êλ and Pλ(tmin(uσλ)uσλ) < 0,
E′λ(tmin(uσλ)uσλ) = 0, which is a contradiction. 2

From this and Lemma 4.2 we have

Corollary 5.1 uλ∗ is radially symmetric about some point of Ω, and supp(uλ∗)=BR(Ω) is an inscribed ball
in Ω.

Furthermore, we have

Corollary 5.2 For any λ > λ∗, problem P (α, β, λ) has no non-negative ground state with compact sup-
port.

Proof Suppose, conversely that there exists λa > λ∗ and a ground state uλa of P (α, β, λa) such that
uλa has a compact support. Then arguing as above one may infer that uλa is a radially symmetric function
with respect to a centre of inscribed ball BR(Ω) in Ω so that supp(uλa) = BR(Ω). Consider uσλ∗(x) =

uλ∗(x/σ) with σ = (λ∗/λa)(1−α)/2(β−α). Then uσλ∗ is compactly supported non-negative weak solution
of P (α, β, λa). By the uniqueness of radial compact support solution of P (α, β, λa) (see Lemma 5.1) this
is possible only if uσλ∗ = uλa . However supp(uσλ∗) = BσR(Ω) whereas supp(uλa) = BR(Ω) and σ < 1.
Thus we get a contradiction. 2

Corollary 5.3 Z = (λ∗,+∞).

Proof Suppose, contrary to our claim, that there is an another limit point λb of Z such that λb ∈
(λ∗,+∞) \ Z. Then arguing similarly to the proof of Lemma 4.2 one may conclude that there exists a
compactly supported non-negative ground state uλb of P (α, β, λb). However λb > λ∗ and therefore by
Corollary 5.2 this is impossible. 2
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6 Proofs of Theorems

6.1 Proof of Theorem 1.1

For λ = λ∗, the existence of non-negative ground state uλ∗ of P (α, β, λ∗) follows from Lemma 4.2.
Since Z = (λ∗,+∞), we see that for λ > λ∗, any minimizer uλ of (24) satisfies Pλ(uλ) < 0. From this by
Proposition 4.2 we derive that uλ is a weak solution of P (α, β, λ). Moreover, since Êλ = Eλ(uλ), uλ is a
ground state of P (α, β, λ) for all λ ∈ (λ∗,+∞). By the same arguments as in the proof of Lemma 4.2 we
may assume that uλ ≥ 0 in Ω for all λ > λ∗. In view of Lemma 2.2 we have E′′λ(uλ) > 0, and by global
(up to the boundary) regularity result for elliptic equations we have uλ ∈ C1,γ(Ω) for some γ ∈ (0, 1).

Let us prove that for λ < λ∗, problem P (α, β, λ) has no weak solution u ∈ H1
0 (Ω). Observe that

any weak solution of P (α, β, λ) (if it exists) by global (up to the boundary) regularity result for elliptic
equations belongs to C1(Ω). Notice that by Corollary 3.3 for any λ < Λ1P equation P (α, β, λ) has no
weak solution u ∈ C1(Ω). Thus since by Lemma 4.2, Λ1P < λ∗ it remains to prove nonexistence of weak
solutions in the case λ ∈ [Λ1P , λ

∗).
Let λ ∈ [Λ1P , λ

∗). Suppose, contrary to our claim, that there exists a weak solution uλ ∈ C1(Ω) of
P (α, β, λ). Then E′(uλ) = 0 and by Corollary 2.1 we have Pλ(uλ) ≤ 0. Hence uλ ∈Mλ.

Let us show that then there exists a ground state of P (α, β, λ) which belongs to C1(Ω). Notice that if
uλ is a unique solution of P (α, β, λ) then it is a ground state. Assume there exists a set of such solutions
M̃λ of P (α, β, λ). Notice that M̃λ ⊂Mλ. Consider

Ẽλ := min
u∈M̃λ

Eλ(u). (29)

Let (um) be a minimizing sequence of (29), i.e.,

Eλ(um)→ Ẽλ as n→∞ and um ∈ M̃λ, n = 1, 2, ... (30)

Using the same arguments as in the proof of Lemma 4.1 we may conclude that there exists a nonzero
limit point ũ0 such that (up to subsequence) um → ũ0 converges weakly in H1

0 and strongly in Lq for
1 < q < 2∗. Then we have

Eλ(ũ0) ≤ Ẽλ (31)

and

0 = DuEλ(um)(ψ)→ DuEλ(ũ0)(ψ) ∀ψ ∈ C∞0 (Ω).

Thus ũ0 is a nonzero weak solution of P (α, β, λ). Moreover by global (up to the boundary) regularity result
for elliptic equations we have ũ0 ∈ C1,γ(Ω) for some γ ∈ (0, 1). Thus ũ0 ∈ M̃λ and by (31) we conclude
that Eλ(ũ0) = Ẽλ. This implies that ũ0 is a ground state of P (α, β, λ) belonging to C1(Ω).

Thus we have proved that there exists a ground state uλ of P (α, β, λ) which belongs to C1(Ω). Then
there are two possibilities Pλ(uλ) < 0 or Pλ(uλ) = 0. In the first case, we get that λ ∈ Z. But in view
of Corollary 5.3 this is a contradiction. In the second case, Corollary 2.1 implies that uλ has a compact
support in Ω. However the same arguments as in the proof of Corollary 5.2 show that for λ 6= λ∗ this is
impossible.

This concludes the proof of Theorem 1.1.

6.2 Proof of Theorem 1.2

The existence of a non-negative ground state uλ∗ with compact support follows from Lemma 4.2 . By
Corollary 5.1, uλ∗ is radially symmetric about some point of Ω, and supp(uλ∗) = BR(Ω) is an inscribed
ball in Ω.

In view of Corollary 5.2, for all λ > λ∗, any ground state uλ of P (α, β, λ) is a “classical” non-negative
groun state.
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6.3 Proof of Theorem 1.3
We shall only prove the theorem, as an example, for the casem = 2, i.e., when Ω is a domain of Strictly

Starshaped Class 2.
Let λ∗ > 0 be a limit value obtained in Theorem 1.1. By Lemma 4.2 there exists a compactly supported

ground state u1
λ∗ of P (α, β, λ) and there exists a set of “classical” non-negative ground states (u1

λn
)∞n=1,

λn > λ∗, n = 1, 2, ... such that u1
λn
→ u1

λ∗ strongly in H1
0 as n → ∞. By Corollary 5.1, uλ∗ is radially

symmetric about some origin 0 ∈ Ω, and supp(u)=BR(Ω) is an inscribed ball in Ω. By the assumptions Ω
contains exactly 2 inscribed balls of radio R(Ω)

Set u2
λ∗(x) := u1

λ∗(RHx), u2
λn

(x) := u1
λn

(RHx), x ∈ Ω, n = 1, 2, ..., where RH : RN → RN is
the reflection map. By Theorem 1.1, the support of u1

λ∗ coincides with one of the balls B1 or B2. Assume
supp(u1

λ∗) = B1. Then since RHB1 = B2 for some hyperplane H , we have supp(u2
λ∗) = B2 and thus

u2
λ∗ 6= u1

λ∗ . Since u2
λn
→ u2

λ∗ strongly in H1
0 as n→∞, it follows that u1

λn
6= u2

λn
for sufficiently large n.

7 On the quasilinear parabolic problem
In this last section part we consider the associate quasilinear parabolic problem of porous media type

PP (m,α, β, λ, v0)


(
|v| 1m−1v

)
t
−∆v + |v|α−1v = λ|v|β−1v in (0,+∞)× Ω

v = 0 on (0,+∞)× ∂Ω
v(0, x) = v0(x) on Ω,

(32)

where m > 0 and always under the structural assumption 0 < α < β < 1. As mentioned before, when
m 6= 1 the problem usually appears in the literature formulated, equivalently, in terms of w := |v| 1m−1v

PP (m, a, b, λ, w0)

 wt −∆|w|m−1w + |w|a−1w = λ|w|b−1w in (0,+∞)× Ω
w = 0 on (0,+∞)× ∂Ω
w(0, x) = w0(x) on Ω,

(33)

with a = αm, b = βm and w0 := |v0|
1
m−1v0. The parabolic semilinear case m = 1 was treated in the

previous paper by the authors [10] and many other references where collected there. For the basic theory
for this problem, always under the structural assumption 0 < a < b < m, we send the reader to [4] and [10]
(for the case m = 1) and to [35] (for the case m 6= 1). We notice that some of the results presented in [10]
does not appear explicitely written in [35] but its adaptation to the quasilinear framework are today standard
(see also [12], [11] and [27]). So, in particular, we know that for any v0 ∈ L∞(Ω), v0 ≥ 0 there exists
a nonnegative weak solution of PP (m,α, β, λ, v0) with w ∈ C([0,+∞),L1(Ω))∩ L∞((0,+∞) × Ω),
v ∈ L∞((0,+∞) × Ω) ∩ L2

loc(δ, T : H1
0 (Ω)), for any 0 < δ < T . This solution is unique if v0 is non-

degenerate near its free boundary. The two next subsections collect our results concerning the parabolic
problem PP (m,α, β, λ, v0) under two different points of view.

7.1 On the stability of flat solution

Our main goal here is to prove the following result extending Theorem 1.1, part (2) of [10] (concerning
λ = λ∗) to the case m 6= 1.

Theorem 7.1 Assume 0 < a < b < m such that

2(m+ a)(m+ b)−N(m− a)(m− b) < 0, (34)

then, if α = a/m and β = b/m, the stationary ground state uλ∗ ∈ H1
0 (Ω) of problem P (α, β, λ∗) is a

H1
0 -stable solution of PP (m, a, b, λ∗, w0), i.e., given any ε > 0, there exists δ > 0 such that

||uλ∗ − |w|m−1w(t;w0)||1 < ε for any w0 s.t. ||uλ∗ − |w0|m−1w0||1 < δ, ∀t > 0, (35)

where w(t;w0) is the weak solution of PP (m, a, b, λ∗, w0).
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Proof. As in the proof of Theorem 1.1, part (2) of [10] there are two different kinds of arguments. On
one hand, we first prove that under the assumption (34) the ground state uλ∗ is H1

0 (Ω)-isolated. Indeed, it
is enough to use the uniqueness of the compact supported solution and that from the proof of Theorem 1.3.
we know that there exists a set of “classi cal” non-negative ground states (u1

λn
)∞n=1, λn > λ∗, n = 1, 2, ...

such that u1
λn
→ u1

λ∗ strongly inH1
0 (Ω) as n→∞. The second ingredient of the proof consists in showing

that the energy functional Eλ(u) (here λ > 0 is arbitrary) is a Lyapounov function in the sense that

∂

∂t
Eλ(v(t)) ≤ 0 in (0, T ). (36)

for any T > 0 and for any v(t) weak solution of PP (m,α, β, λ, v0). In the semilinear case, m = 1, that
was proved in Lemma 6.2 of [10]. The case m 6= 1 requires a slight modification since the control of the
time derivative of v(t) is more delicate. Nevertheless, it is easy to adapt the regularity results of [12] (see
also [27] and [3]) to prove that if v(t) is a weak solution of PP (m,α, β, λ, v0) with a smooth initial datum
then

(
|v(t)| 1m−1v(t)

)
t
∈ L2(Ω) for t > 0. Then we can use well-known regularizing arguments (so that

vt(t) ∈ L2(Ω)) and then passing to the limit to get, as in the Appendix of [10], that

∂

∂t
Eλ(v(t)) = DuEλ(v(t))(vt(t)) =

< −∆v(t)− λ|v|β−1v + |v|α−1v, vt(t) >=

− 1

mω2

∫
Ω

|(vω(t))t|
2
dx ≤ 0

with ω = (1 +m)/2m and thus we get the result.

7.2 On the free boundary
Our main goal in this Section is to give an idea of the time evolution of the support of the solution. We

recall that, as t → +∞, the support of v(t, .) must converge to a ball of RN , in the case λ = λ∗, or to the
whole domain Ω, if λ > λ∗ (since the shape of the support of the associated stationary solutions was given
in Theorem 1.1).

Our first result concerns the special case of v0 = uλ∗ (i.e. with support in the ball of RN of radioR(Ω))
and λ > λ∗. It is clear that any stationary solution uλ∗ is a subsolution to the problem PP (m,α, β, λ, v0).
Indeed,

(|uλ∗ | 1m−1uλ∗)t −∆uλ∗ + |uλ∗ |α−1uλ∗ = λ∗|uλ∗ |β−1uλ∗ < λ|uλ∗ |β−1uλ∗ .

So, if uλ∗ is nondegenerate near its free boundary, we get that uλ∗(x) ≤ v(t, x) for any t > 0 and a.e.
x ∈ Ω. As a matter of fact, it is easy to prove that under these assumptions vt ≥ 0 a.e. (0,+∞) × Ω.
Thus, a priori, the support of the solution v(t, .) is greater or equal to the support of uλ∗ for any t > 0. The
following result gives some indication about how the support of v(t, .) should increase slowly with time.
We shall apply the general local energy methods for the study of free boundary problems (see, e.g. [2]).
Notice that for our goal we only need to get some information on v(t, .) on the level sets where this function
is small enough. So, given θ > 0 and t ≥ 0 we introduce the notation

Ωv,θ(t) := {x ∈ Ω : v(t, x) ≤ θ}.

Theorem 7.2 Assume 0 < a < b < m, λ > λ∗, v0 = uλ∗ and let θ > 0 such that θβ−α < 1/λ. Let
x0 ∈ RN\ supp(v0) such that Bρ0(x0) ⊂ RN\supp(v0) for some ρ0 > 0. Then there exists t̂ > 0 and
a continuous decreasing function ρ : [0, t̂] → [0, ρ0] such that ρ(0) = ρ0, ρ(t̂) = 0 and Bρ(t)(x0) ⊂
(RN\supp(v(t, .)) ∩ Ωv,θ(t) for any t ∈ [0, t̂]. In particular, v(t, x) = 0 a.e. x ∈ Bρ(t)(x0) for any
t ∈ [0, t̂].

Proof It is enough to apply Theorem 2.2 of [2] to the special case of ψ(u) = |u| 1m−1u and

A(x, t, u,Du) = Du, B(x, t, u,Du) = 0, C(x, t, u,Du) = (1− λθβ−α)|u|α−1u,
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since we know that(
|v| 1m−1v

)
t
−∆v + (1− λθβ−α)|v|α−1v ≤ 0 on ∪t>0 {t} × Ωv,θ(t),

and all the assumptions of Theorem 2.2 of [2] hold. 2

When λ = λ∗ we can also give an idea how the support of v(t, .) corresponding to a strictly positive
initial datum decreases, after a finite time large enough (remember that in that case the support of v(t, .)
must decrease from Ω to the closed ball of RN of radius R(Ω) contained in Ω). In this case, we shall pay
attention to the special choice of v0 = uλ for some λ > λ∗. Notice that now uλ is a supersolution to
PP (m,α, β, λ∗, v0) since

(|uλ|
1
m−1uλ)t −∆uλ + |uλ|α−1uλ = λ|uλ|β−1uλ > λ∗|uλ∗ |β−1uλ∗ .

As above, if uλ is nondegenerate, we can even prove that vt ≤ 0 a.e. (0,+∞) × Ω. Concerning the
formation of the free boundary we have:

Theorem 7.3 Assume 0 < a < b < m, λ = λ∗, v0 = uλ for some λ > λ∗and let θ > 0 such that θβ−α <
1/λ∗. Then, for any time T > 0 large enough, there exist a finite time t# > 0 and a continuous increasing
function ρ : [t#, T ]→ [0,+∞) such that ρ(t#) = 0, and Bρ0(x0) ⊂ (RN\supp(v(t, .)) ∩ Ωv,θ(t) for any
t ∈ [t#, T ]. In particular, v(t, x) = 0 a.e. x ∈ Bρ(t)(x0) for any t ∈ [t#, T ].

Proof This time it is enough to apply Theorem 4.2 of [2] to the special case of ψ(u) = |u| 1m−1u,
A(x, t, u,Du) = Du, B(x, t, u,Du) = 0 and

C(x, t, u,Du) = (1− λ∗θβ−α)|u|α−1u.

Indeed, as above we know that(
|v| 1m−1v

)
t
−∆v + (1− λ∗θβ−α)|v|α−1v ≤ 0 on ∪t∈(0,T ) {t} × Ωv,θ(t).

and all the assumptions of Theorem 4.2 of [2] hold. 2

8 Appendix
Lemma 8.1 Assume λ ∈ [Λ1P ,+∞) and uλm is a sequence of solutions of (24), where λm → λ as
m → +∞. Then there exist a minimizer uλ of (24) and a subsequence, still denoted by (uλm), such that
uλm → uλ strongly in H1

0 as m→ +∞.

Proof Let λ ∈ [Λ1P ,+∞), λm → λ as m→ +∞ and uλm be a sequence of solutions of (24). As in the
proof of Lemma 4.1 it is derived that the set (uλm) is bounded in H1

0 . Hence by the Sobolev embedding
theorem there exists a subsequence, still denoted by (uλm), such that

uλm ⇀ ūλ weakly in H1
0 , uλm → ūλ strongly in Lq(Ω), (37)

where 0 < q < 2∗, for some limit point ūλ. As in the proof of Lemma 4.1 one derives that ūλ 6= 0 and

Eλ(ūλ) ≤ lim inf
m→∞

Eλm(uλm), E′λ(ūλ) ≤ 0, Pλ(ūλ) ≤ 0. (38)

Let λ > Λ1P . By Lemma 4.1 there exists a minimizer uλ of (24), i.e. uλ ∈Mλ and Êλ = Eλ(uλ). Then

|Eλ(uλ)− Eλm(uλ)| < C|λ− λm|,

where C < +∞ does not depend on m. Furthermore,

Eλm(uλ) ≥ Eλm(tmin(uλ)uλ) ≥ Eλm(uλm)
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provided that m is a sufficiently large number. Thus we have

Eλ(uλ) + C|λ− λm| > Eλm(uλ) ≥ Eλm(uλm),

and therefore Êλ := Eλ(uλ) ≥ lim infm→∞Eλm(uλm). Hence by (38) we have

Eλ(ūλ) ≤ Êλ.

Assume E′λ(ūλ) < 0. Then E′λ(tmin(ūλ)ūλ) = 0 and Eλ(tmin(ūλ)ūλ) < Eλ(ūλ) ≤ Êλ. In virtue of
Proposition 2.1, this implies thatPλ(tmin(ūλ)ūλ) < 0. Thus tmin(ūλ)ūλ ∈Mλ and sinceEλ(tmin(ūλ)ūλ) <
Êλ we get a contradiction. Hence Eλ(ūλ) = Êλ, E′λ(ūλ) = 0 and uλm → ūλ strongly inH1

0 asm→ +∞
.

Assume now that λ = Λ1P . Since E′λm(uλm) = 0, Pλm(uλm) ≤ 0, we have rPuλm (1) ≤ λm =

r1
uλm

(1). Then by Proposition 3.4 (see Figure 5), 1 ∈ [t1P (uλm),+∞) and therefore

λ1P (uλm) = r1
uλm

(t1P (uλm)) ≤ r1
uλm

(1) = λm, m = 1, 2, ....

Hence, since λm ↓ λ, we have λ1P (uλm) ↓ Λ1P as m → ∞. Thus, (uλm) is a minimizing sequence of
(22) and therefore by (37), λ1P (ūλ) ≤ Λ1P . Since the strict inequality λ1P (ūλ) < Λ1P is impossible, we
conclude that λ1P (ūλ) = Λ1P , which yields that uλm → ūλ strongly in H1

0 . 2
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