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Abstract

We study some linear eigenvalue problems for the Laplacian operator with singu-
lar absorption or/and source coe¢ cients arising in the linearization around positive
solutions to some quasilinear degenerate parabolic equations and singular semilinear
parabolic problems as well. We show that the linearization process applies even if
the coe¢ cients behave singularly with the distance to the boundary to the exponent
two. This improves previous references in the literature. Applications to the above
mentioned nonlinear problems are also presented.

Dedicated to Ioan I. Vrabie: a great mathematician and a great person

AMS Classi�cation: 35P05, 35P30, 35K55.
Keywords: linearization, linear eigenvalue problems with singular coe¢ cients, quasilin-
ear degenerate parabolic equations, singular semilinear parabolic problems.

1 Introduction

In this paper we study some linear eigenvalue problems with singular coe¢ cients aris-
ing in the linearization around positive solutions to some quasilinear degenerate parabolic
equations and singular semilinear parabolic problems as well.
More precisely, we consider problems of the form�

��w + c(x)w = �b(x)w in 
;
w = 0 on @
;

(1)
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where 
 is a smooth bounded domain in RN and b(x) and c(x) are unbounded coe¢ cients
going to in�nity close to the boundary. As we will explain in what follows, the interesting
examples arising when linearizing singular problems are (modulo positive constants)

(P�) �
�
��w � kw

d(x)�
= �w

d(x)
in 


w = 0 on @
;
(2)

where 0 � �;  � 2, k > 0 and d(x) = d(x; @
): In fact, the exact value of the coe¢ cient
k is not too relevant except for the limit case  = 2, so in the other cases we shall assume
k = 1.
These problems were studied by many authors in the last thirty years and many

references will be indicated below. In particular, the motivation to study problem (1),
in the paper by Bertsch and Rostamian [10], was to obtain linearized stability results for
positive solutions to the degenerate quasilinear parabolic problem8<:

�(u)t ��u = f(u) in 
� (0;+1);
u = 0 on @
� (0;+1);
u(x; 0) = u0(x) on 
:

(3)

Here �(s) is smooth with �(s) � 0 for s > 0, �(0) = 0, �0(0) = +1 and �0(s) > 0 for
s > 0. Moreover f(s) can be either a smooth function, with f(0) = 0 and such that
f � ��1 is locally Lipschitz continuous for s � 0, as for instance �(s) = s1=m, m > 1
and f(s) = sp=m with 1 < p < m already considered in [10], or a singular function as for
instance �(s) = s1=m, m > 1 and f(s) = sp=m with �m < p < m already considered in
the literature (see references in Remark 4.1 below). We point out that the results in [10]
are obtained for classical solutions (at least C2;�(
), 0 < � < 1) such that not only u > 0
in 
 but also

@u

@n
< 0 on @
; (4)

where n denotes the outward normal unit vector (i.e., that are interior points of the
positive cone in C10(
)). Solutions u > 0 in 
 such that

@u

@n
= 0 on @
; (5)

or with compact support in 
 raise interesting problems (see section 5 in [10] and below).
Among the many improvements of the results of [10] we mention specially the papers by
Brezis and Marcus [14] and Brezis, Marcus and Shafrir [15].
In what follows, we shall call ��at solution� to any solution of the corresponding

partial di¤erential equation such that u = @u
@n
= 0 on @
 and u > 0 in 
.

If u > 0 is a stationary solution to (3), the corresponding linearized parabolic problem
can be rewritten as

�0(u)wt ��w � f 0(u)w = 0

or equivalently as

wt �
1

�0(u)
(�w + f 0(u)w) = 0
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since �0 > 0. The associated linear eigenvalue problem is�
��w � f 0(u)w = ��0(u)w in 

w = 0 on @
;

(6)

which is a problem of type (1).
In [10] the authors obtained under suitable assumptions some interesting results con-

cerning existence and properties of eigenvalues for (1) by working in the usual Sobolev
space H1

0 (
) and the weighted Sobolev space H
1
0 (
; b). Then they are applied in order to

prove (in a nontrivial way) linearized stability for positive stationary solutions to (3) in
the sense that the sign of the �rst eigenvalue gives the asymptotic stability (or instability)
of the solution.
Linear eigenvalue problems as (1) also arise when studying linearized stability for

positive solutions to the semilinear singular equation8<:
ut ��u = f(u) in 
� (0;+1);
u = 0 on @
� (0;+1);
u(x; 0) = u0(x) on 
;

(7)

corresponding to �(s) = s but where now f : (0;1) ! R is a smooth function such
that f(s) !

s&0
+1. Two model problems are f(s) = s�� and f(s) = �s�� with � > 0

(see [58], [62], [63]). In the case of f(s) = �s�� with � > 0 it may arise solutions with
compact support and then the equation is only well-de�ned by replacing f(s) = �s��
by f(s) = �s���fs>0g; see [76], [29], [24] and their references. Moreover, since there is
global quenching in �nite time the stability question we shall consider in this paper is
only relevant for perturbations of the form f(s) = �s���fs>0g + s� for some � 2 R;
see, e.g., [28], [29], [63], [59] and [24]. One of the main goals of this paper is to see if
the linearization process is well de�ned for problems in which there are compact support
solutions or when the linearization is applied near a �at solution.
Problem (1) was studied in [63] for a much more general class of problems including

second order linear di¤erential operators not necessarily in divergence form and rather
general nonlinear terms f(x; u) but this time not in the framework of Sobolev spaces but
in Hölder continuous function spaces and C10(
). Most of the well-known theorems for
continuous (on 
) coe¢ cients b and c were extended to this more general situation and
then it was proved that linearized stability implies stability in the sense of Lyapunov
(something that we shall consider in a companion but separate paper [39]). Applications
to a variety of singular problems were given in [64] (see also [62]). All results in [63] are
restricted to the case 0 < � < 1 for the above model example and to solutions u > 0
satisfying (4) as well. This means that the case � � 1 (where stationary solutions to
(7) are not in C10(
) but only in C

(
) for some  2 (0; 1)) is excluded. We point out
that this low regularity of the gradient of solutions occurs in a large class of nonlinear
partial di¤erential equations (see, e.g., [22], [45] and [8]). But it is also useful to have
linearized stability results for 0 < � < 1 (and even �1 < � < 1) in the Hilbert space
H1
0 (
), now we have a sequence of eigenvalues. This is useful if we want to show that
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� = 0 is not an eigenvalue of the linearized operator, which allows to apply the Implicit
Function Theorem in [63] to functions at the interior of the positive cone in C10(
) (see
[40], [41]). The variational characterization is a useful tool when applying this kind of
results. Moreover, we emphasize that results in [10] are obtained for stationary solutions
u 2 C2;(
) with  2 [0; 1), a condition which is never satis�ed for stationary solutions
to (7) when f(u) is singular. In this sense, we improve all results in [10].
An interesting application of the linearization procedure along a singular solution of

an ODE associated to some singular BVP can be found in [13]. A nice application of the
results in [63] was considered in [30] in order to study the existence and smoothness of
the solution branch to some singular problems with super exponential growth in R2 by
bifurcation arguments.
Most of the results on the resulting linear problem after linearization in this paper

have been extended to the analogous quasilinear problem for the p-Laplacian in [50]. But
the linearization process, such as it is presented here, is not directly applicable to the
linearization of p-Laplacian type quasilinear equations since the di¤usion coe¢ cients are
extremely singular.
The general idea of linearization, or linear approximation, plays a fundamental role in

all what concerns di¤erential calculus and in many more places in mathematics. In the
�eld of ordinary di¤erential equations the basic results by Poincaré and Lyapunov are,
together with the use of Lyapunov functions, the main tool in order to study stability in the
�nite-dimensional case. These ideas were extended to the in�nite-dimensional situation
not only for nonlinear parabolic equations ([78], [73]) but also for other relevant nonlinear
evolution equations as, e.g., Navier-Stokes system [79], [72], and the classical bifurcation
problems of Bénard and Taylor in Fluid Mechanics [67], or very relevant problems arising
in magneto-hydrodynamics [70]. A general theory was elaborated by Henry [61], actually
the results in [63] (see [64]) are obtained as an application of [61]. We also mention that
the linearization process was also applied to several problems in combustion theory (see,
e.g., the many references presented in the monograph [52]). See [2], [65] for related results
concerning linearization of some other sublinear problems.
In this paper we shall only consider the linearization process in a formal way, paying

special attention to the singular linear problems originated in such process. So, we shall
use the expression that a stationary solution u(x) of a nonlinear parabolic equation con-
taining nonlinear terms as �(u(x; t))t and f(u(x; t)) is linearly stable if the �rst eigenvalue
�1 of the associated linear problem (containing now terms of the form �0(u) and f 0(u)) [as
explained by means of (6)] is positive. The techniques needed to prove that any linearly
stable solution u(x) is stable in the Lyapunov sense have a very di¤erent nature and will
be the object of a separate paper by the authors [39]. See also [40], [41], [42] for other
stability results concerning stationary ground solutions.
In section 2 we study the linear problem (1) giving a more complete and uni�ed version

of the results in [10]. Even the simple model example given above for singular problems
(f(s) = s�� with 0 < � < 1) does not fall under the scope of [10]. Our results allow to
deal with the case not considered before � > 1. We devote some attention to the "critical
case" � = 2 and / or  = 2 below corresponding to � > 1: The results concerning the
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boundary behaviour of positive eigenfunctions that are based in recent work by the �rst
author ([31], [32]: see also [35], [34] and [36]) are new. Section 3 deals with applications
to semilinear singular equations studied in [58], [62], [63], [64]). Section 4 is devoted to
applications to stationary solutions to degenerate quasilinear parabolic equations studied
in [10] and some linearized stability results are improved. Some remarks on the cases
of ��at�positive solutions and compact support solutions are developed. Finally, some
variants of methods used in section 2 are given in an Appendix at the end in order to show
the �exibility of this kind of arguments. In particular, we use a version of the Hardy�s
inequality in [66] to improve an argument used in [1].

2 The singular linearized eigenvalue problem

In this section we study the linear eigenvalue problem (1)�
��w � c(x)w = �b(x)w in 

w = 0 on @
;

(8)

where 
 is a smooth bounded domain in RN . This problem was studied in [10], where
the existence of an in�nite sequence of eigenvalues was proved under the assumptions

b; c 2 L1loc(
), b(x) � b0 > 0; (9)

jc(x)j � kb(x); k > 0 (10)

where
d(x) := d(x; @
): (11)

a function which plays an important role in all this theory. As a matter of fact, in some
results of [10] they assume the additional condition

b(x)d(x)2 !
d(x)!0

0; (12)

but, as we shall indicate below, this assumption is not needed in some cases. We point out
that our results could be also stated for the general formulation by assumming conditions
of the type �

0 < lim inf jc(x)j d(x)� � lim sup jc(x)j d(x)� < +1
0 < lim inf b(x)d(x) � lim sup b(x)d(x) < +1 (13)

for some 0 � �;  � 2, but we shall not follow this presentation. Concerning the constant
k in (10) we shall see that the exact value of the coe¢ cient k is not too relevant except
for the limit case  = 2 (see subsection 2.3), so in the other cases we shall assume k = 1.
It is claimed in [10] that the exponent 2 �is the critical growth condition for b and c�.

We can see immediately that assumption (10) is only satis�ed if � < . This means that
 < �, which is precisely the condition arising in our intended applications (in the model
example � = 1 + � > 0, 0 < � < 1, and  = 0) is not included in [10].
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2.1 Case 0 � � � 2 and  = 0

In order to illustrate the method of proof we start by showing that the case � = 2 in (P+)
is not actually "critical". We deal �rst with the case  = 0.
We �rst prove some auxiliary results. In all which follows we use the notation

kuk = kukH1
0 (
)

=

�Z



jruj2
�1=2

:

Lemma 2.1 . For any h 2 H�1(
), there is a unique solution w 2 H1
0 (
) of the linear

problem �
��w + w

d(x)�
= h 2 H�1(
)

w = 0 on @
;
(14)

for 0 < � � 2. Moreover, if h � 0, then w � 0.

Proof. For � = 2 the associated bilinear form in H1
0 (
) is well-de�ned, continuous and

coercive. Indeed, for

a(u; v) =

Z



ru � rv +
Z



uv

d(x)2

we have, by using Hardy�s inequality (see, e.g., [75])

a(u; v) � kuk kvk+
Z



���� u

d(x)

���� ���� v

d(x)

���� � (1 + C) kuk kvk ;
for some C > 0. Moreover, from the weak maximum principle it follows that w � 0 if
h � 0. The proof is similar if 0 < � < 2:�

Lemma 2.2 . The solution operator P : H�1(
) ! H1
0 (
) de�ned by w = Ph is

continuous, and Ph � 0 if h � 0. Then the linear operator T = i�P �j; where j : L2(
) ,!
H�1(
) is the standard embedding and i : H1

0 (
) ,! L2(
) is a compact injection, is a
self-adjoint compact linear operator T : L2(
)! L2(
).

Proof. The �rst part is contained in Lemma 2.1. The second one follows from the
continuity of j and Rellich�s theorem. It is very easy to show that T is self-adjoint.�

Theorem 2.1 . If 0 � � � 2 and  = 0 there is an in�nite sequence �1 � �2 � ::: �
�n �... of eigenvalues to (P+) such that lim�n = +1, with eigenfunctions 'n 2 H1

0 (
).
The �rst eigenvalue �1 > 0 has an associated eigenfunction '1 � 0.
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Proof. It is clear that � is an eigenvalue with eigenfunction u if and only if u = �Tu. The
existence of the in�nite sequence �n of eigenvalues such that limn!+1 �n = +1 follows
from the well-known spectral theory for compact self-adjoint linear operators in Hilbert
spaces. From the variational characterization

�1 = inf
w 6=0

R


jrwj2 +

R



w2

d(x)�R


w2

;

for 0 � � � 2, it follows �1 > 0. If u1 is an associated minimizing function for �1, ju1j is
also suitable and hence u1 � 0:�

Remark 2.1 Much more general existence results can be obtained outside of the energy
space H1

0 (
) when, for instance, it is merely assumed that h 2 L1(
; d) even for � > 2
(see e.g. [35], [34] and [36] and its many references).

2.2 Case 0 � � � 2 and 0 �  < 2

Next we deal with the case  > 0; more precisely we study the case 0 <  < � � 2. The
case 0 < � <  < 2 follows in a completely similar way, and the "critical" case  = 2 will
be considered at the end of the section.
We study the eigenvalue problem (corresponding to the problem (P+) in the formula-

tion (P�)) �
��w + w

d(x)�
= �w

d(x)
in 


w = 0 on @
;
(15)

where 0 <  < � < 2: The case 0 <  < � = 2 is, once again, very similar. The same for
0 < � <  < 2.
Now we should use the weighted L2(
; b) space of functions u such thatZ




u2(x)b(x)dx < +1:

We need an auxiliary result in [10], namely

Lemma 2.3 . If b(x) = 1
d(x)�

with 0 < � < 2, then the embedding i : H1
0 (
) ,! L2(
; b)

is compact.�

Now we "factorize" the operator T in a similar way:

L2(
; b)
F! H�1(
)

P! H1
0 (
)

i! L2(
; b)

where b(x) = 1
d(x)�

for some 0 < � < 2 and F (w) = w=d(x):
First we prove the
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Lemma 2.4 . The mapping F : L2(
; b) ! H�1(
), where b(x) = 1
d(x)

; de�ned as
F (w) = w

d(x)
; is linear continuous for any 0 <  < 2.

Proof. We should show �rst that F is well de�ned, i.e., that if w 2 L2(
; b) then w
d(x)

2
H�1(
). Indeed, if z 2 H1

0 (
) we have����� w

d(x)
; z

����� = ����Z



wz

d(x)

���� � Z



���� z

d(x)

���� ��wd(x)1���
and since we have

wd(x)1�2
L2(
)

=

Z



w2d(x)2(1�) =

Z



w2

d(x)
d(x)2� � C kwk2L2(
;b)

for some C > 0; by Hardy inequality����� w

d(x)
; z

����� � C kwkL2(
;b) kzk ;

which gives the result.�

As above, the linear operator T : L2(
; b)! L2(
; b) is compact (by Lemma 2.3) and
self-adjoint and we reason as for Theorem 2.1. We have then proved the following

Theorem 2.2 If 0 �  < 2 and � 2 [0; 2]; there is an in�nite sequence �1 � �2 � ::: �
�n �... of eigenvalues to (P+) such that lim�n = +1, with eigenfunctions 'n 2 H1

0 (
).
The �rst eigenvalue �1 > 0 has an associated eigenfunction '1 � 0.�

It is well known that if both the domain and the coe¢ cients b and c are smooth enough
then the �rst eigenvalue �1 is simple and has an eigenfunction '1 > 0 with @'1

@n
< 0 on

@
; moreover, �1 is the only eigenvalue with this property. These results follow in some
cases from the classical version of the Krein-Rutman theorem applied to the positive cone
in C10(
) by invoking the Strong Maximum Principle, now the eigenfunction '1 belongs
to the interior of this cone. When the positive cone of the corresponding space has an
empty interior (as for Lp(
), 1 < p < +1) an alternative version of the Krein-Rutman
theorem holds (see [23]) and can be applied: in this case '1 is a quasi-interior point of
the cone, i.e. '1 > 0 a.e. in 
 (see [55] for an application of this idea when b; c 2 Lr(
);
r > N=2).
In [10] the authors prove that if b; c 2 C�(
) for some 0 < � < 1;  = 1, � < 2, then

'n 2 C2;�(
) \ C1(
). Again, by using an extension of the Strong Maximum Principle,
they obtain that '1 > 0 in 
, @'1

@n
< 0 on @
. These questions remain open in [10] not

only for the �critical�case � = 2 but also for 1 <  � 2. We greatly improve all these
results here.
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The problem was settled for 0 � �;  < 2 in [63] in the framework of classical solutions
by showing that '1 2 C2(
) \ C1;�0 (
) for some 0 < � < 1, @'1

@n
< 0 on @
 and �1 is

a simple eigenvalue by applying an extension of the classical Strong Maximum Principle
(see also [80]) and Krein-Rutman theorem.
We can try to apply both versions of the Krein-Rutman theorem in our case if (some

suitable version of) the theorem holds (see [21] for this kind of results). However, we
prefer to follow a di¤erent approach. First we state that '1 2 L1(
) and this will allow
to show that '1 > 0 and its interior regularity.

Theorem 2.3 The eigenfunction '1 to (P�) (corresponding to the �rst eigenvalue �1)
is bounded for any 0 �  < 2 and � 2 [0; 2]. Moreover, for � = 2 and 0 �  < 2; any
eigenfunction 'n to (P+) is a �at solution of the equation.

Proof. The proof consists in a variant of the general iterative technique presented in [51]
(see also [49] for another application of these arguments). Actually this is a particular
version of more general results, namely Theorem 2.3 in [50] for the p-Laplacian. That the
eigenfunctions 'n to (P+) are �at solutions was shown in [32] for � = 2 and  = 0 but
the same method of proof applies if 0 �  < 2.�

Remark 2.2 If  = 2 the eigenfunction '1 to (P�) is unbounded (see [26]).

Corollary 2.4 Under the conditions of Theorem 2.2, if '1 � 0 is an eigenfunction
to (P�) corresponding to �1, then '1 > 0 and '1 2 W 2;p

loc (
) for any p 2 (1;1) and
'1 2 C1;�loc (
) for any 0 < � < 1:

Proof. Since '1 is bounded we can apply the interior Lp regularity (see [60]) and then the
conclusions follow from well-known embedding theorems and Bony�s Maximum Principle
[11].�

Theorem 2.5 Under the conditions of Theorem 2.2, the �rst eigenvalue �1 to (P�) is
simple and it is the only eigenvalue having positive eigenfunction.

Proof. The second part follows immediately from the fact that eigenfunctions correspond-
ing to di¤erent eigenvalues of a self-adjoint operator are orthogonal. For the �rst one can
reason as in [5] following the ideas in [56]. We sketch the proof for the reader�s convenience.
The �rst eigenvalue is given by

�1 = infR



w2

d(x)
=1

Z



jrwj2 +
Z



w2

d(x)�
:

Assume that u; v > 0 are eigenfunctions associated to �1 such that
R



u2

d(x)
=
R



v2

d(x)
= 1:

Consider the function w = �1=2, where � = (u2 + v2)=2: Now w is a test function sinceZ



w2

d(x)
=
1

2
(

Z



u2

d(x)
+

Z



v2

d(x)
) = 1:
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We have, by convexity,

jrwj2 = ��1
��1
2
(urv + vru)

��2
= �

��t(x)ru
u
+ (1� t(x)rv

v

��2 � �
�
t(x)

��ru
u

��2 + (1� t(x)
��rv
v

��2)�
= 1

2

�
u2
��ru
u

��2 + v2
��rv
v

��2� = 1
2

�
jruj2 + jrvj2

�
;

where

t(x) =
u2

u2 + v2
:

Hence Z



jrwj2 � 1

2

�Z



jruj2 +
Z



jrvj2
�

and equality should follow since u and v are solutions. Then ru
u
= rv

v
and u = Cv for

some C > 0:�

Remark 2.3 The results in [5] and [56] are actually valid for the p-Laplacian operator
with p > 1: see [17] (for p = 2) and [46] for related ideas. The same argument is
applicable to �sublinear� problems for the p-Laplacian operator giving a simple proof of
the uniqueness of positive solutions: see [49] for previous results using the L1 estimate
as in Theorem 2.5.

Corollary 2.4 yields the best regularity of '1 if 0 < �;  < 2. Indeed, since �1 is
the only eigenvalue having an eigenfunction '1 > 0, it should coincide with the principal
eigenvalue obtained in [63] (see also [63] for more details on these points). The results in
[63] are only valid if � < 2: We have thus proved the

Corollary 2.6 Under the conditions of Theorem 2.2, if �1 is the �rst eigenvalue for (P�)
with eigenfunction '1 > 0 for 0 < �;  < 2; then @'1

@n
< 0 on @
 and '1 2 C2;�(
)\C1;�(
)

for some 0 < � < 1:

Now we study problem (P�), namely�
��w � w

d(x)�
= �w

d(x)
in 


w = 0 on @
:
(16)

We recall the well-known variational characterization of the above �rst eigenvalue for
(P+)

�1 = inf
w 6=0 w2L2(
;b)

R


jrwj2 +

R



w2

d(x)�R



w2

d(x)

:
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We consider the case 0 < ; � < 2:We use a �xed point argument and apply the above
result for (P+). To any � 2 R �xed, with � > 0, we associate the eigenvalue problem�

��w = �( w
d(x)�

+ �w
d(x)

) in 

w = 0 on @
:

(17)

i) We look for positive eigenvalues, � > 0 of (P�). We study (17) where � is a �xed
coe¢ cient and � plays the role of a eigenvalue parameter. By applying Theorem 2.5 to
(17) working in the "bigger" space L2(
; b), where b depends on � and  (it is very easy to
see that � >  implies L2(
; d��) � L2(
; d�)), we �nd a �rst eigenvalue �1 = r(�) > 0
of (17) with a positive eigenfunction  > 0 having the variational characterization

r(�) = inf
w 6=0 w2L2(
;b)

R


jrwj2R



w2

d(x)�
+ �

R



w2

d(x)

:

We know (and see) that r(�) is a continuous and monotone (decreasing) function of
�. Moreover we have

r(�) � 1

�
inf

w 6=0 w2L2(
;b)

R


jrwj2R



w2

d(x)�

which implies r(�) !
�!+1

0:

Hence the existence of a positive eigenvalue � to (16) is equivalent to the existence of
� > 0 such that r(�) = 1, and in turn this is equivalent to

r(0) = inf
w 6=0 w2L2(
;b)

R


jrwj2R



w2

d(x)�

> 1:

ii) Next, we treat the case � < 0 with the change of variable � ! �� and now we
have as associated eigenvalue problem�

��w + �w
d(x)

= � w
d(x)�

in 

w = 0 on @
;

(18)

where again � is a �xed coe¢ cient and � is an eigenvalue parameter, and look for positive
values � such that �(�) = 1, where �(�) > 0 is the �rst positive eigenvalue to (18)
provided by Theorem 2.5. Now the variational characterization is

�(�) = inf
w 6=0 w2L2(
;b)

R


jrwj2 + �

R



w2

d(x)R



w2

d(x)�

;

and �(�) is continuous and increasing in �: Moreover �(�) !
�!+1

+1: Hence there exists

� > 0 such that �(�) = 1 if and only if

�(0) = inf
w 6=0 w2L2(
;b)

R


jrwj2R



w2

d(x)�

< 1:
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Notice that �(0) = r(0):
We have then proved the following

Theorem 2.7 The problem (P�) for 0 < ; � < 2 has a �rst positive (resp. negative)
eigenvalue �1 > 0 (resp. �1 < 0) with an associated positive eigenfunction if and only if
r(0) > 1 (resp. r(0) < 1). If '1 is the associated eigenfunction, '1 > 0:

At the best of our knowledge this result is completely new.

Remark 2.4 Problem (P�) for � = 0 and  = 2 has received a great deal of attention in
the recent years: see, e.g. [26], [27], [52]) and their references. In that case, if c(x) = �

d(x)2

for some � � 1=4 and assuming for instance that 
 is convex, the similar statement to
Lemma 2.1 requires the de�nition of a special Hilbert space H of norm

kuk2H =
Z



(jruj2 dx� �u2

d(x)2
+Mu2)dx

for some suitable M > 0. The case of � � 0 was considered in [31], [32], [35], [34] and
[36] (see also their many references).

2.3 Case  = 2

It remains to deal with the critical case  = 2, with 0 � � � 2 and both signs in (2). It
is illustrative to start by recalling the results for the case  = 2 and � = 2 which then
(by an obvious change of notation in �) reduces the problem to the study of nontrivial
solutions of �

��w = � w
d(x)2

in 

w = 0 on @
:

(19)

That problem was considered previously by many authors in connection with the study of
the best constant in the Hardy�s inequality (see, e.g., [74], [14], [26], [27] and the exposition
made in [52]). It is well-known (see e.g. [74]) that if 
 is convex then if we de�ne

�(
) := inf
w2H1

0 (
)

R


jrwj2R



w2

d(x)2

(20)

then �(
) = 1=4, � = 1=4 is the in�mum of the essential spectrum and problem (20) has
no minimizer. Nevertheless, if �(
) < 1=4 then there exists a ��(
) 2 (0; 1=4) which is the
�rst eigenvalue of the problem (19), and so there is a positive solution w of such problem
(see Remark 3.2 of [14]).

Remark 2.5 In the one-dimensional case 
 = (0; 1); and by replacing d(x)2 by jxj2 in
problem (19), it is easy to see ([10]) that w(x) = �

p
x lg x if � = 1=4 and w(x) =p

x sin(!� lg x) with !� =
p
�� 1=4 if � > 1=4 are explicit solutions of the problem.
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These functions are not in H1
0 (0; 1) (they are bounded but their derivatives are not in

L2(0; 1)) and so they were called �generalized eigenfunctions" in [10] (see also a related
one-dimensional problem in [9]) . Nevertheless, it can be proved that by working with the
notion of very weak solution such functions are well de�ned and belong to the weigthed
space H1

0 ((0; 1); d(x)). See for this matter the study of L
1�eigenvalues made in [18].

From the above mentioned results, if  = 2 we cannot always expect the existence of
countably many eigenvalues �n of problem (P�) with �n ! +1 as n! +1: Nevertheless,
the existence of an eigenvalue � can be proved under suitable additional conditions: as
observed in [16], �lower order terms can reverse the situation�.
Let us start by considering the limit case of problem (P�), i.e.�

��u� ku
d(x)�

= �u
d(x)2

in 
;
u = 0 on @


(21)

for k > 0 and � 2 [0; 2): That problem was considered in the papers by Brezis and Marcus
[14] and Brezis, Marcus and Shafrir [15] in connection with the so called �improved Hardy
inequality�. Then the question of the best constant in such inequality becomes related to
the consideration of the quantity

J
k = inf
w 6=0 w2H1

0 (
)

R


jrwj2 � k

R



w2

d(x)�R



w2

d(x)2

; (22)

for any k 2 R: Notice that if b(x) = 1
d(x)2

and we de�ne H1
0 (
; b) as the Hilbert space with

norm

kuk2H1
0 (
;b)

=

Z



jruj2 dx+
Z



u2b(x)dx:

then, using once again Hardy�s inequality as above, we conclude that kukH1
0 (
;b)

and
kukH1

0 (
)
are equivalent for the space H1

0 (
; b) = H1
0 (
): In [14] it is shown that there

exists a k� = k�(
) such that
i) J
k = 1=4 for any k � k�

ii) J
k < 1=4 for any k > k�

iii) if k > k� the in�mum in (22) is achieved (by a positive function w 2 H1
0 (
)). The

main argument of their proof is, as in [10], the method introduced in [16] to overcome the
lack of compactness.
iv) if k < k� then the in�mum in (22) is not achieved.
The study of the borderline case k = k� was the main goal of the paper [15]. Their

main result can be particularized to our formulation and shows that, for any � 2 [0; 2),
the in�mum in (22) is not achieved. Moreover, as a consequence of the estimates obtained
in [14] and [15] the positive solution u of (21) is not a �at solution since @u

@n
< 0 on @
.

Remark 2.6 There are some important generalizations of most of the results in this
section concerning the case in which function d(x) is replaced by

d(x) = d(x;�k)
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where �k � 
 is a smooth compact manifold of co-dimension k, 0 � k � N � 1 (�0
corresponds to a single point and an example of �N�1 is @
). see. e.g. [52], [27], [53]
and their references.

3 Applications to nonlinear problems: I. Linearized
stability for singular semilinear parabolic problems

In this section we apply the results in the precedent one to obtain linearized stability
results for positive solutions (actually for positive solutions satisfying condition (4) as
well) of some semilinear elliptic singular problems. This problem was studied in [63]
working in the space C10(
), where the classical version of the Krein-Rutman theorem
was used to prove the existence of a �rst principal eigenvalue. Then it was proved that
linearized stability implies stability in the sense of Lyapunov (something which will be
considered in [39]). Applications were given also in [64] and [62].
But these results were applicable to the model problem example�

��u = 1
u�

in 

u = 0 on @
;

(23)

only for 0 < � < 1. And even in this case it is sometimes useful to have an in�nite
sequence of eigenvalues and the well-known variational characterization of the eigenvalues
involving the Rayleigh quotient. For example, this is very useful when applying the
Implicit Function Theorem at the interior of positive cone in C10(
) in [63] to show the
existence of smooth curves of solutions. See also [64], [62], [12], [40], [41]. We have the
following results for (23): see, e.g., [58], [62], [63], [22], and [8].

Theorem 3.1 If 0 < � < 1, there exists a unique solution u 2 C2(
) \ C1;1��0 (
) such
that u > 0 in 
; @u

@n
< 0 on @
: Moreover

c1d(x) � u(x) � c2d(x) (24)

for some c1; c2 > 0;

Theorem 3.2 i) if � > 1, there exists a unique solution u 2 C2(
)\C0;
2

1+�

0 (
) such that
u > 0 in 
 and

c1d(x)
2

1+� � u(x) � c2d(x)
2

1+� (25)

for some c1; c2 > 0; ii) if � = 1, there exists a unique solution u 2 C2(
) \ C0;0 (
) for
any  2 (0; 1):

In what follows we give some applications of the previous theorems in section 2. Similar
results working in C10(
) were obtained in [64] and the above references.
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We only deal with part i) in Theorem 3.2. Part ii) can be treated by using similar
arguments.

Example 1. We consider the model example (23). The eigenvalue problem for the
linearized operator at u can be written as�

��w + �w
u1+�

= �w in 

w = 0 on @
:

(26)

From (24) it follows immediately from the comparison results arising from the variational
characterization that for some k1 > 0

�1(��+
k1
d1+�

) � �1(��+
�

u1+�
):

It is enough to show that �1(�� + k1
d1+�

) > 0, a particular case in Theorem 2.1 for
� = 1 + � < 2:We have thus proved

Theorem 3.3 The unique solution u > 0 for (23) with 0 < � < 1 is linearly stable.�

If � > 1 we use (25) and reduce in the same way the problem to show that

�1(��+
k2
d2
) > 0

where k2 > 0: We apply again Theorem 2.1, this time with � = 2: We have thus proved

Theorem 3.4 The unique solution u > 0 for (23) with � > 1 is linearly stable.�

Remark 3.1 The spectrum of the operator �� + k1
d2
is very relevant for the study of

Schroedinger solution with singular potentials (see [31], [41], [35], [34]).

Example 2. We study now positive solutions of the problem�
��u+ 1

u�
= �

u�
�fu>0g in 


u = 0 on @
;
(27)

where 0 < � < � < 1 (notice that due to the positivity of solutions the singular terms,
as e.g. �

u�
, do not need to be written otherwise, as �

u�
�fu>0g, which is needed for solutions

with compact support). It was proved in [64] that there is a unique positive solution to
(27) for any � > 0. The linearized eigenvalue problem is�

��w + ��w
u�+1

� �w
u1+�

= �w in 

w = 0 on @
;

(28)
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or �
��w + ( ��

u�+1
� �

u1+�
)w = �w in 


w = 0 on @
:
(29)

It is not di¢ cult to show, by using the estimate 0 < u � �
1

��� ([64]), that for the
coe¢ cient

(
��

u�+1
� �

u1+�
) =

�� � �u���

u�+1
> 0

and we apply Theorem 2.1. We have thus proved

Theorem 3.5 The unique solution u > 0 for (27) with 0 < � < � < 1 is linearly stable.�

In these examples there exists a unique positive solution which is linearly stable. A
more �exible way of using the above ideas which can be interesting when dealing with
multiple positive solutions is the following.

Assume that we consider the general semilinear elliptic problem�
��u = f(u) in 

u = 0 on @
;

(30)

with f smooth and let u > 0 (with @u
@n
< 0 on @
) be a solution. The associated linearized

problem is �
��w � f 0(u)w = �w in 

w = 0 on @
:

(31)

Assume that this linearized problem has a �rst eigenvalue �1 with positive (smooth)
eigenfunction  1 > 0, thus�

�� 1 � f 0(u) 1 = �1 1 in 

 1 = 0 on @
:

(32)

Multiplying (30) by  1, (32) by u and integrating by parts on 
 using Green�s formula
gives Z




ru�r 1 �
Z



f(u) 1 = 0 =

Z



ru�r 1 �
Z



f 0(u)u 1 � �1

Z



u 1;

and �nally

�1 =

R


[f(u)� f 0(u)u] 1R



u 1

:

If H(u) = [f(u)� f 0(u)u] > 0, �1 > 0 and u is linearly stable. For Example 1, H(u) =
(1 + �)u�� > 0: For Example 2, H(u) = u��[�(1 + �) � (1 + �)u���] > 0, using that
0 < u < �1=(���) for any solution.
Notice that H(u) > 0 is just the assumption in the uniqueness theorem in [64]. The

above computations are justi�ed using (24) and (25).
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Example 3. We consider again (27) but this time with 0 < � < � < 1: We have

H(u) = u��[�(1 + �)u��� � (1 + �)] � 0

if 0 < u �
�

1+�
�(1+�)

� 1
���

: This means that solutions satisfying this estimate are linearly un-

stable (if they exist !). Indeed, the situation is now more delicate. In the one-dimensional
case it was proved in [43] (extending the previous paper [37]: see also [44]) the existence
of an upper branch of positive solutions u� > 0 with @u�

@n
< 0 on @
. We shall prove in

[39] that the solutions of this branch are Lyapunov stable for � > �� > 0 for some �� > 0
and for � 2 (��; ���) there is a lower branch v� with @v�

@n
< 0 on @
, v� < u� possibly

unstable, which prolongates in continua of compact support solutions. But we do not
know if our result can be applied to v�. We recall that they do not apply to the solution
v��� such that

@v���
@n

= 0 on @
 nor to compact support solutions For this problem lin-
earization is not the only way of obtaining stability results. This has been done in [40],
[41] and [42] by using variational arguments. The situation is again more complicated for
a general domain if N > 1: Existence of a positive solution was proved in [64] by using a
continuation argument and some multiplicity results were obtained in [42] by combining
variational and continuation methods. For the case � > � > 0 see [3] (see also [6],[7]
concerning the multivalued case � = 0 and � = �1). The pseudo-linearization process
introduced in [20] can be applied to the multivalued case � = 0 and � 2 (�1; 0)). The
existence of solutions for the parabolic and elliptic equations were given in [47], [48], [81]
and [43] respectively. The study of the nonlinear eigenvalue type problems for variational
inequalities (such as it corresponds when we assume � = 0) is already quite classical in
the literature (see, e.g. [68] and [71]).

Example 4. If f(u) = �u � u�, with 0 < � < 1, we have H(u) = f(u) � f 0(u)u =
(� � 1)u� < 0. This implies the linearized instability for solutions in the interior of the
positive cone.
It was proved in [77], [40] and [33] that for any � > �1 there exists a non-negative

solution u� 2 H1
0 (
) for the problem�

��u+ u� = �u in 

u = 0 on @
:

(33)

Here �1 (and in what follows �2) is the �rst (repectively, the second) eigenvalue of the
problem ��w = �w in 
, w = 0 on @
: Moreover, bifurcation at in�nity arises from �1
(see [38], [40]) and this means that solutions with a large norm u� close to �1 are such
that u� > 0 with @u�

@n
< 0 on @
. Now the results in [63] allow to apply the Implicit

Function Theorem at the interior of the positive cone if the linearized operator is an
isomorphism. Since we have �1(����u��1� ��) < 0 the result would follow clearly from
0 < �2(��� �u��1� � �):
From the usual variational characterization

�2 = inf
w2['1]?

R



�
jrwj2 + �w2

u1���

� �w2
�
dxR



w2dx
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we obtain the estimate

�2 > �2 � �+ inf
w2['1]?

R


�w2

u1���

dxR


w2dx

:

Using that u� � c1d(x), for some c1(�) > 0, we getZ



w2

u1���

dx �
Z



w2

c1��1 d(x)1��
dx � 1

D1��c1��1

Z



w2dx

where D > 0 is such that d(x) � D for any x 2 
. Hence

�2 > �2 � �+
1

D1��c1��1

and the condition �2 > 0 is satis�ed for some � > �1 close to �1, and in particular for
�1 < � < �2:

4 Applications to nonlinear problems: II. Linearized
stability for degenerate quasilinear parabolic prob-
lems

We study in this section the quasilinear degenerate parabolic problem (3)8<:
�(u)t ��u = f(u) in 
� (0;+1);
u = 0 on @
� (0;+1);
u(x; 0) = u0(x) on 
;

(34)

where 
 � RN is again a smooth bounded domain, �(s) is smooth for s > 0, �(s) � 0
for s > 0, �(0) = 0, �0(0) = +1 and �0(s) > 0 for s > 0. Moreover f(s) is smooth for
s > 0 with f(0) = 0 and, in principle, as in [10], f � ��1 is locally Lipschitz continuous
for s � 0 (this includes s = 0 !). Under these assumptions it is proved in [10] that (3) has
a unique weak solution and an associate comparison principle which is useful in order to
prove results concerning asymptotic behaviour of solutions.
As it was shown above, the formally associated linearized problem around the positive

stationary solution u > 0 to (34) is�
�0(u)wt ��w � f 0(u)w = 0 in 
� (0;+1);
w = 0 on @
� (0;+1); (35)

which leads to the linear eigenvalue problem (6)�
��w � f 0(u)w = ��0(u)w in 

w = 0 on @
:

(36)
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We will consider problem (34) with

�(s) = s1=m; f(s) = sp=m

under the conditions
�1 < p

m
< 1 and m > 1: (37)

This corresponds to reaction-di¤usion phenomena with a balance between suitable slow
di¤usion and strong forcing (sometimes called as exothermic) reaction terms. Notice that
f � ��1(s) = sp and that it is locally Lipschitz continuous if p 2 [1;m) although it is not
the case for the function f(s) when �m < p < 1. The associated stationary problem�

��u = u
p
m in 


u = 0 on @
;
(38)

has a unique solution u > 0 to which the above results may be applied (the case
p 2 (�m; 0) corresponds to Theorem 3.1) and the case p 2 (0;m) is well-known in
the literature: see, e.g., the survey [62])). Problem (6) can be written as(

��w � pw

mu
m�p
m
= �w

mu
m�1
m

in 


w = 0 on @
:
(39)

Recalling that u � d(x) near @
 (see Theorem 3.1) if �1 < p
m
< 0 and applying the

strong maximum principle if 0 < p
m
< 1) the problem could be reduced (modulo some

positive constants) to problem (16) with

� =
m� p

m
= 1� p

m
< 2,  =

m� 1
m

< 1

and the results in section 2 apply.
If �1 is the �rst eigenvalue given by Theorem 2.1 and  1 > 0 the associated eigenfunc-

tion, we have �
�� 1 � f 0(u) 1 = ��0(u) 1 in 

 1 = 0 on @
:

(40)

The same computation as above yields

�1 =

R


[f(u)� f 0(u)u] 1R



�0(u) 1

> 0

since f(u) � f 0(u)u > 0: Then, the application of Theorem 2.7 and the above analysis
leads to the following conclusion:

Theorem 4.1 Assume that (37) holds. Then the quasilinear problem (34) has a unique
stationary strictly positive solution u > 0, u satis�es (38) and u is linearly stable.�
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As noticed in the introduction, we claim that linearized stability in this context implies
Lyapunov stability: we plan to settle this question in [39]. This was proved in the frame-
work of C1;0 (
); with  2 (0; 1), in [63] (see also [20] for the case of a delayed parabolic
problem).

Remark 4.1 This problem was studied in [10] under the assumption 1 � p < m. If
p 2 (0; 1) the uniqueness of solutions of the associate parabolic equation was proved in [19]
for suitable initial data. For the case p 2 (�m; 0), under suitable additional conditions,
the corresponding parabolic problem has a unique solution for smooth positive initial data
(this is a simple variation of the results of [25] [54]; see also [57] for the case of RN).

On the other side, if we assume now

p 2 (�1�m); and m > 1 (41)

there is still a unique positive solution to (38) but now its behaviour is u � d(x)
2m
m�p and

the behaviour of the coe¢ cients in the linearized equation is

u
m�p
m � d(x)2

and

u
m�1
m � d(x)

2(m�1)
m�p ;

with 2(m�1)
m�p < 2:

Again, we use the above results, now with � = 2; and  < 2 and prove

Theorem 4.2 Assume that (41) holds. Then the unique positive solution u > 0 of (38)
is linearly stable.�

Next we study the case of compactly supported solutions u, where the above results
for the linearized problem cannot be applied in a strict sense but we can analyze the
stability of �at solutions of the associate stationary problem. The following special case
was studied in [4]: consider the degenerate problem8<:

ut � (um)xx = f(u) = u(1� u)(u� �) in (�L;L)� (0;+1);
um(�L; t) = 0 on (0;+1);
u(x; 0) = u0(x) on (�L;L);

(42)

with m > 1 and some 0 < � < 1: It was shown in [4] that depending on the parameter
L > 0 the associated stationary problem�

�(um)xx = u(1� u)(u� �) in (�L;L);
um(�L) = 0 (43)
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may have compact support solutions such that 0 � u � 1 (this corresponds to the case L
large enough). Assume that 0 � u � 1 is a solution satisfying�

�(um)xx = u(1� u)(u� �) in (�L;L);
um(�L) = 0 (44)

with u > 0 on (a; b), �L < a < b < L and u � 0 on [�L; a] [ [b; L]: This corresponds to
formulation (34) with

�(s) = s1=m; f(s) = s1=m(1� s1=m)(s1=m � �):

With the change of variable v = um we get�
�vxx = v1=m(1� v1=m)(v1=m � �) in (�L;L);
v(�L) = 0: (45)

We know (by applying the study for more general one-dimensional semilinear equations
made in [31]) that for v � 0 then

v � d(x)
2

1� 1
m = d(x)

2m
m�1

where 2m
m�1 > 2 for any m > 0. Hence

u � v
1
m � d(x)

2
m�1 ;

and several boundary behaviours are possible:

2

m� 1 > 1() m < 3 =) u0(a) = u0(b) = 0,

2

m� 1 � 1() m � 3 =) u =2 C1([a; b]) (but v 2 C1([a; b])).

For the coe¢ cients of the �linearized problem�on (a; b) we obtain

�0(v) � v
1
m
�1 =

1

v
m�1
m

� 1

d(x)
2m
m�1

m�1
m

=
1

d(x)2

and in the same way

f 0(v) � �1
d(x)2

near x = a and x = b:

Again, we can apply the results in subsection 2.3 to the associate problem (36) corre-
sponding to  = 2; as in [10]. In any case, the linearized instability of the stationary
solution u, follows by the arguments used in [10]. Indeed, once that m > 1 we get that
v 2 C2([a; b]) and that v0(a) = v0(b) = 0: Thus z := v0 2 H1

0 (a; b) and since

�z00 = f 0(v)z in (a; b);
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(notice that there is a misprint in the corresponding formula of page 398 in [10]) we get
that

�1 = inf
w 6=0 w2H1

0 (a;b)

R b
a
jw0j2 �

R b
a
f 0(um)wR b

a
�0(um)w2

� 0:

Moreover, as indicated in [10], �1 6= 0 since, otherwise, the eigenfunction is changing
sign. So u is unstable (in fact, that was already proved in [4] by means of the comparison
principle and the use of suitable auxiliary super and subsolutions). See also Lemma 5.3
and the following remarks of [10].

Remark 4.2 Notice that the behavior of function f(s) = s1=m(1�s1=m)(s1=m��) is very
similar (near s = 0) of the nonlinear function considered in the papers [41] and [42],bf(s) = �u� � u�, with 0 < � < � < 1. In fact it seems possible to extend the results of
the above mentioned papers to the case of the function f(s) = s1=m(1 � s1=m)(s1=m � �):
So, as shown in [41] and [42], the �at solutions are unstable in the one-dimensional (and
also in two dimensional) space framework. But they are stable (as ground solutions) when

 is a smooth bounded domain strictly star-shaped with respect to the origin in Rn and
0 < � < � < 1 are such that 2(1+�)(1 + �)�N(1��)(1� �) < 0: Notice that if N � 3
this set of exponents (�; �) is not empty.

If, as in Remark 5.7 in [10], we replace f(s) by the non-Lipschitz function fp(s) =
sp=m(1� sp=m)(sp=m � �) with 1 < p < m, then there are still compact support solutions
to the associated stationary problem (36). The existence of local in time solutions for the
parabolic problem is an easy consequence of the compactness of the associate semigroup
(see [47], [48], [81]). Now some new facts arise since v � d(x)

2m
m�p and hence

u � d(x)
2

m�p ;

and we have in this case

2

m� p
> 1() m < 2 + p =) u0(a) = u0(b) = 0,

2

m� 1 � 1() m � 2 + p =) u =2 C1([a; b]) (but v 2 C1([a; b])).

Again, by the results of [31]) we get

f 0(v) � v
p
m
�1 = v

p�m
m � 1

d(x)
2m
m�p

m�p
m

=
1

d(x)2

and on the other side

�0(v) � v
1
m
�1 � 1

v
m�1
m

� 1

d(x)
2m
m�p

m�1
m

=
1

d(x)
2(m�1)
m�p

:
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We know (see, e.g., [15]) that in order to get existence of positive solutions of problem
(36) the coe¢ cient of the linear source term �0(v) must be at most as d(x)�2, so we get
that for p 2 (1;m) there is not any positive solution of (36) since

2(m� 1)
m� p

> 2() p > 1:

Any solution of the parabolic problem blows-up in a �nite time (see [57]). The situation
radically changes if besides to assume p 2 (1;m) we perturb the parabolic equation with
an absorption term of the form uq and we assume q < p < m (see [42]). We mention also
here that the study of linear equations with a very singular absorption coe¢ cient of the
type d(x)�� with � > 2 was considered in the paper [35].

5 Appendix

As it was claimed in the introduction, we collect here several variants and di¤erent simple
proofs of the existence of a �rst eigenvalue with positive eigenfunction. Some of them use
a non-standard version of the Hardy-Sobolev inequality (see [66], [69] and [75]).
Example 1. We consider the eigenvalue problem�

��u = � u
d(x)�

in 

u = 0 on @
;

(46)

with 0 � � < 1. Here we use again a di¤erent Hardy-Sobolev inequality (see [66]): if
u 2 W 1;q

0 (
) with q > N , u
d(x)�

2 Lr(
), where r = q
r
and we have u

d(x)�


Lr(
)

� C kukW 1;q
0 (
) :

Hence, if u 2 C10(
), u 2 W
1;q
0 (
) for any q > N and then u

d(x)�
2 Lr(
) for any r > N:

This implies that the linear equation�
��w = � u

d(x)�
in 
;

w = 0 on @
;
(47)

has a unique solution w = Tu 2 W 2;r(
)\W 1;r
0 (
) for any r > N and then Tu 2 C1;�0 (
)

for all � 2 (0; 1), in particular Tu 2 C10(
): It follows from the Strong Maximum Principle
that if u � 0, u 6= 0 then w = Tu > 0 in 
 and @Tu

@n
< 0 on @
: Moreover, T : C10(
) !

C10(
) is compact (the embedding C
1;�
0 (
) ,! C10(
) is compact for any � 2 (0; 1)) and

the classical Krein-Rutman theorem gives the existence of a positive eigenvalue �1 > 0,
which is simple with an eigenfunction '1 > 0 on 
 and

@'1
@n

< 0 on @
:
In order to apply this result to the problem�

��u = �uq in 
;
u = 0 on @
;

(48)
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with 0 < q < 1 (see [1]) we consider the corresponding linearized problem�
��w � �quq�1� w = �w in 

w = 0 on @
:

(49)

Reproducing the ��xed point�argument in section 2 it is possible to show that �1 > 0
(resp. �1 < 0) if and only if r(0) < 1 (resp. r(0) > 1), where

r(0) = inf
w 6=0

R


jrwj2 �

R


�quq�1� w2R



w2

:

But we can reason more directly by using a comparison argument following from the
variational characterization for the eigenvalues, namely

0 = �1(��� �uq�1� ) < �1(��� �quq�1� ) = �1,

and u� is linearly stable.

Example 2. The case � = 2,  = 0 in section 2 can be treated with the di¤erent
approach which follows. The cases 0 � � < 2 and 0 <  < 2 are rather similar. We have
the eigenvalue problem �

��w + w
d(x)2

= �w in 

w = 0 on @
:

(50)

We de�ne

�1 = inf
kwkL2=1

Z



jrwj2 +
Z



w2

d(x)2
:

Let (wn) be a minimizing sequence, thenZ



jrwnj2 +
Z



w2n
d(x)2

! �1, as n! +1, kwnkL2(
) = 1:

Then we have
kwnkH1

0 (
)
� C, kwnkL2(
; 1

d(x)2
) � C;

where C is independent of n. Then there exists a subsequence wn such that

wn * w weakly in H1
0 (
);

wn * w weakly in L2(
;
1

d(x)2
);

wn ! w strongly in L2(
):

Hence kwkL2 = lim kwnkL2 = 1 and w 6= 0: From the l.s.c. of norms it follows thatZ



jrwj2 +
Z



w2

d(x)2
� lim inf

�Z



jrwnj2 +
Z



w2n
d(x)2

�
= �1:
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We also have wn ! w strongly in H1
0 (
): Indeed, if notZ




jrwj2 +
Z



w2

d(x)2
< lim inf

�Z



jrwnj2 +
Z



w2n
d(x)2

�
= �1

and since kwnkL2 = 1 we get a contradiction.
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