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Abstract

We obtain the homogenized problem associate to the Poisson equation in a domain perforated by
”tiny” balls (or in a domain defined as the exterior to a periodic set of very small particles) of radius
aε = C0ε

γ with γ = n
n−2

, C0 > 0 (the, so-called, ”critical case”). On the boundary of these balls
we assume a dynamic unilateral boundary condition (the so-called ”Signorini boundary condition”).
We prove that the homogenized problem consists of an elliptic equation coupled with an ordinary
differential unilateral problem: in contrast with the case of ”big perforations” (or ”big particles”)
for which the equation is a parabolic unilateral problem. In particular, we prove that the solution of
the homogenized problem may become regionally negative (at least in the interior of some subset of
QT = Ω×(0, T ) on which f(x, t) is negative). Nothing similar may happen for the case of big particles
since the corresponding homogenized problem implies that the solution is always non-negative, even
for very negative data f(x, t)

1 Introduction

We study the asymptotic behavior as ε → 0 of the solution uε of the Poisson equation, in a domain Ω
of Rn, n ≥ 3, perforated by balls Gε (or defined as the exterior to a set of particles Gε given by balls)
of radius aε ≪ ε, when on the boundary of these inclusions (or of these particles) we assume that an
unilateral dynamic Signorini boundary condition takes place containing a suitably large coefficient at the
time derivative. Although we will present the technical details on the domain in the next section, we
outline now that the problem under consideration can be simply formulated in the following terms:

−∆xuε = f(x, t),

uε(x, t) = 0,

(x, t) ∈ QT
ε ,

(x, t) ∈ ΓT ,

uε ≥ 0, ε−γ∂tuε + ∂νuε ≥ 0,

uε
(
ε−γ∂tuε + ∂νuε

)
= 0,

}
(x, t) ∈ ST

ε ,

uε(x, 0) = u0(x), x ∈ Sε,

(1)

for some given data f ∈ H1(0, T ;L2(Ω)) and, for simplicity, we assume, at least u0 ∈ H1
0 (Ω) (and thus

its trace over Sε, here labeled in the same way, satisfies u0 ∈ H1/2(Sε)) with u
0 ≥ 0 on Ω (see Remark 1).

Here Ωε = Ω \ Gε, Q
T
ε = Ωε × (0, T ), Sε = ∂Gε, S

T
ε = Sε × (0, T ) and ΓT = ∂Ω × (0, T ). As usual Hs

denotes the Sobolev spaces with values in L2, of order s, on the respective domains.
Dynamic boundary conditions arise in various physical and chemical processes (see, for instance, [6],

[20], and [4]). The homogenization of such problems attracted a wide research interest in the last years
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([30], [17], [1], [19] and [2] for a brief overview). On the other hand, the homogenization of a large class
of problems with unilateral constraints on the boundary were studied in many papers: here we refer only
some of them [3], [11], [23], [28], [29], [13], [22], and [14]. Our main interest in this paper deals with the
so called “critical case” in which the radius of the balls aε, the exponent in the intertia term γ and the
dimension of the space n are linked by the conditions

aε = C0ε
γ , γ =

n

n− 2
, C0 > 0. (2)

(see a general exposition on this type of problems in the monograph [16]).
We point out that in the case of “big particles” (aε = C0ε

γ , with γ = 1), some easy modifications of
the results of [30], [1], by using the arguments given in [10] (see also [16]), allow to see that uε → u (in
a certain sense) and that the homogenized problem can be formulated in terms of the parabolic obstacle
variational inequality for a modified diffusion operator

Cn
∂u

∂t
−

n∑
i,j=1

qi,j
∂2u

∂xi∂x,
− Ĉnf(x, t) ≥ 0, u ≥ 0,

u

Cn
∂u

∂t
−

n∑
i,j=1

qi,j
∂2u

∂xi∂x,
− Ĉnf(x, t)

 = 0


(x, t) ∈ Ω× (0, T ),

u = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

(3)

for some suitable positive constants Cn, Ĉn and a positive definite matrix (qi,j).
By the contrary, when the radius of the balls is critical as indicated in (2), we will show that the

homogenized problem is characterized in a completely different manner: we arrive to a system given by
an elliptic equation (with t as a parameter) coupled with an ordinary differential obstacle problem (with
x as a n−dimensional parameter) satisfied by a new nonlocal term called, usually, as an “strange term”
in the literature (see [9], [16])

−∆u+An(u−Hu,u0) = f(x, t), (x, t) ∈ QT ,

u = 0, (x, t) ∈ ΓT ,

Hu,u0 ≥ 0, ∂tHu,u0 + BnHu,u0 ≥ Bnu,

Hu,u0

(
∂tHu,u0 + Bn(Hu,u0 − u)

)
= 0,

}
(x, t) ∈ QT ,

Hu,u0(x, 0) = u0(x), x ∈ Ω,

(4)

where
An = (n− 2)Cn−2

0 ωn, ωn = |∂G0|, Bn = (n− 2)C−1
0 .

We will obtain several qualitative properties on this term Hu,u0 . We will use the general method of
“oscillating test functions”, suggested (to some standard formulations) by L. Tartar, but requiring quite
complicated adaptations to each problem under consideration (see the general exposition, and references,
presented in the monograph [16])).

We also should mention the difference of the limit problem (4) with the one obtained in the case of
standard (non-dynamic) unilateral boundary conditions of Robin type (see, [3], [11], [24] and [14]). In
that case, the homogenized problem also contains a “strange term” H which involves the negative part
of the limit solution u, but in this case H is a local function and this changes dramatically the approach.

One of the most important consequences of the different limit problem, in the critical case, is that,
in contrast with the case of big particles (in which the solution is always non-negative, even for very
negative data f(x, t)), as we will prove (see Theorem 3 below) the solution of (4) may become negative
in the interior of some subset of QT = Ω × (0, T ) on which f(x, t) is negative. This is an unexpected
property which can be useful for many different purposes (in the same spirit that the searching of new
materials in Nanotechnology: see some references in the monograph [16]) and that, as far as we know,
was not indicated in other papers dealing with the homogenization under unilateral boundary conditions
(see the mention made above) although this property also holds for non-dynamic boundary conditions.
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Another “strange term” arising in the limit problem (4) concerns the implicit initial value u(x, 0) of its
solution. We will show that u ∈ H1(0, T ;L2(Ω))∩ L2(0, T ;H1

0 (Ω)) and thus u(x, 0) is given as the unique
weak solution of the stationary problem{

−∆u(x, 0) +Anu(x, 0) = f(x, 0) +Anu
0(x), x ∈ Ω,

u(x, 0) = 0, x ∈ ∂Ω.
(5)

So that, the sequence of solutions uε, being non-negative on infinite points of Ω at t = 0, converges to
the function u, solution of (4), which satisfies initially the problem (5) and which may become negative
if f(x, 0) is suitably negative on some parts of Ω.

In fact, this paper forms part of an attempt to extend previous homogenization results to the more
general class of nonlinear terms on the boundary conditions on the boundary of the particles. The case of
Robin type boundary conditions given by maximal monotone graphs (which include the case of Signorini
boundary conditions as a special case) was carried out in the paper [14]. For the case of dynamic
boundary conditions, as far as we know, the more general result in the available literature assumes a
Hölder continuity on the monotone function (see [19]). The present paper goes beyond this regularity
by considering one of the most relevant maximal monotone graphs which are not Hölder continuous: the
case of dynamic Signorini unilateral boundary conditions. Concerning the geometry of the particles, we
assume here the simpler case of radially symmetric particles. A separate study by the authors will be
presented concerning particles of arbitrary shape in a paper in preparation.

2 Statement of the problem and estimates of solution

Let Ω be a bounded domain in Rn, n ≥ 3, with Lipschitz boundary ∂Ω. We denote by Y = (−1/2, 1/2)n

the unit cube and by G0 = {x : |x| < 1} the unit ball. Define δB = {x : δ−1x ∈ B}, δ > 0. For ε > 0, let

Ω̃ε = {x ∈ Ω : ρ(x, ∂Ω) > 2ε}.

We denote by Zn the set of all vectors j = (j1, . . . , jn) with an integer coordinates ji, i = 1, . . . , n. We
consider the set

Gε =
⋃

j∈Υε

(aεG0 + εj) =
⋃

j∈Υε

Gj
ε,

where Υε = {j ∈ Zn : Gj
ε ⊂ Y j

ε = εY +εj, Gj
ε∩Ω̃ε ̸= ∅}. Note that |Υε| = dε−n, d is a positive constant.

We consider the critical balance between the parameters (see [16])

aε = C0ε
γ , γ =

n

n− 2
, C0 > 0. (6)

It is easy to see that Gj
ε ⊂ T j

ε/4 ⊂ Y j
ε , where T

j
r is a ball of Rn of the radius r centered at the center of

the cell Y j
ε which we denote by P j

ε = εj. We introduce the sets

Ωε = Ω \Gε, Sε = ∂Gε, ∂Ωε = Sε ∪ ∂Ω,

QT
ε = Ωε × (0, T ), ST

ε = Sε × (0, T ), ΓT = ∂Ω× (0, T ).

We consider the convex closed set

Kε = {v ∈ H1(Ωε, ∂Ω) : v ≥ 0 a.e. x ∈ Sε}.

As usual, we denote by H1(Ωε, ∂Ω) the completion with respect to the norm in H1(Ωε) of the set of
infinitely differentiable functions on Ωε vanishing in a neighborhood of the boundary ∂Ω. Along with Kε,
we consider the temporary convex set

Kε = {v ∈ L2
(
0, T ;H1(Ωε, ∂Ω)

)
: v(·, t) ∈ Kε for a.e. t ∈ (0, T )}.
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The starting problem consists in searching uε ∈ Kε ∩ C
(
[0, T ];L2(Sε)

)
with ∂tuε ∈ L2

(
0, T ;L2(Sε)

)
and

uε(x, 0) = u0(x), such that uε satisfies the variational inequality

ε−γ

T∫
0

∫
Sε

∂tuε(ϕ− uε)dsdt+

T∫
0

∫
Ωε

∇uε∇(ϕ− uε)dxdt ≥
T∫

0

∫
Ωε

f(ϕ− uε)dxdt, (7)

for any ϕ ∈ Kε. Here, f ∈ H1(0, T ;L2(Ω)) and u0 ∈ H1
0 (Ω), u

0 ≥ 0. Note that (7) corresponds to the
weak formulation of the Signorini problem with a dynamic boundary condition on ST

ε
−∆xuε = f(x, t), (x, t) ∈ QT

ε ,
uε ≥ 0, ε−γ∂tuε + ∂νuε ≥ 0,
uε
(
ε−γ∂tuε + ∂νuε

)
= 0,

}
(x, t) ∈ ST

ε ,

uε(x, t) = 0, (x, t) ∈ ΓT ,
uε(x, 0) = u0(x), x ∈ Sε.

(8)

The existence and uniqueness of solutions to (7) can be obtained through different techniques.

Remark 1 The existence and uniqueness of solutions to (7) can be obtained under very general assump-
tions: for instance, by applying semigroups theory (see, e.g. [6]) the initial datum u0 can be taken merely
in H1(Ω) instead H1

0 (Ω). Nevertheless, here we will present a different proof (which requires u0 ∈ H1
0 (Ω))

but which allows to get some a priori estimates which will be very useful for different purposes.

Theorem 1 Given f ∈ H1
(
0, T ;L2(Ω)

)
and u0 ∈ H1

0 (Ω), u
0 ≥ 0, for any ε > 0 the problem (8) has a

unique solution uε and the following estimates hold
∥uε∥L2(0,T ;H1(Ωε)) + ε−γ/2∥uε∥C([0,T ];L2(Sε)) ≤ K(∥f∥L2(QT ) +

∥∥u0∥∥
H1(Ω)

),

ε−γ∥∂tuε∥L2(0,T ;L2(Sε)) +maxt∈[0,T ]∥∇uε∥L2(Ωε)) ≤ K

(
∥f∥H1(0,T ;L2(Ω)) +

∥∥u0∥∥
H1(Ω)

)
,

(9)

where K is a positive constant independent of ε, f and u0.

Proof. We start by considering the approximate problem corresponding to the application of the penal-
ization method (see [25] for a general exposition). Given any positive number δ we consider the auxiliary
problem 

−∆xu
δ
ε = f(x, t), (x, t) ∈ QT

ε ,

ε−γ∂tu
δ
ε + ∂νu

δ
ε + δ−1(uδε)

− = 0, (x, t) ∈ ST
ε ,

uδε(x, t) = 0, (x, t) ∈ ΓT ,

uδε(x, 0) = u0(x), x ∈ Sε,

(10)

where u+ = sup(0, u), u− = u− u+. Note that σ(u) = u− is a monotone Lipschitz continuous function

|u− − v−| ≤ |u− v| ∀u, v ∈ R.

We say that a function uδε ∈ C
(
[0, T ];L2(Sε)

)
is a solution to the problem (10) if uδε ∈ L2

(
0, T ;H1(Ωε, ∂Ω)

)
,

∂tu
δ
ε ∈ L2

(
0, T ;L2(Sε)

)
, we have

ε−γ

T∫
0

∫
Sε

∂tu
δ
εvdsdt+

T∫
0

∫
Ωε

∇uδε∇vdxdt+ δ−1

T∫
0

∫
Sε

(uδε)
−vdsdt =

∫
QT

ε

fvdxdt, (11)

for any v ∈ L2
(
0, T ;H1(Ωε, ∂Ω)

)
, and the initial condition uδε(x, 0) = u0(x) holds for x ∈ Sε.

After some easy modifications, we can apply, for instance, the results from [19] (there stated for u0 ≡ 0)
to conclude that for any δ > 0 the problem (10) has a unique solution and that the following estimates
hold

∥uδε∥L2(0,T ;H1(Ωε)) + ε−γ/2∥uδε∥C([0,T ];L2(Sε)) ≤ K
(
∥f∥L2(QT ) +

∥∥u0∥∥
H1(Ω)

)
,

ε−γ/2∥(uδε)−∥L2(0,T ;L2(Sε)) ≤ K
√
δ
(
∥f∥L2(QT ) +

∥∥u0∥∥
H1/2(Sε)

)
,

ε−γ/2∥∂tuδε∥L2(0,T ;L2(Sε)) +maxt∈[0,T ] ∥∇uδε∥L2(Ωε) ≤ K(∥f∥H1(0,T ;L2(Ω)) +
∥∥u0∥∥

H1(Ω)
).

(12)
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Note that the last estimate can be also obtained through the application of Thèoreme 3.6 of [8] and
Remark 3.1 of [6]. From (12), and some results of functional analysis (see, e.g., [25] and [6]) we derive
that there exist a subsequence (still labeled as uδε) such that

uδε ⇀ uε weakly in L2(0, T ;H1(Ωε, ∂Ω)),

∂tu
δ
ε ⇀ ∂tuε weakly in L2(0, T ;L2(Sε)),

uδε → uε strongly in C([0, T ];L2(Sε)),

(uδε)
− → 0 strongly in L2(0, T ;L2(Sε)),

as δ → 0. This shows that u satisfies the estimates (9). Let us show that u is a solution of the variational
inequality (7). Indeed, setting in (11) v = ϕ− uδε, where ϕ ∈ Kε, we get

ε−γ

T∫
0

∫
Sε

∂tu
δ
ε(ϕ− uδε)dsdt+

T∫
0

∫
Ωε

∇uδε∇(ϕ− uδε)dxdt++δ−1

T∫
0

∫
Sε

(uδε)
−(ϕ− uδε)dsdt

=

T∫
0

∫
Ωε

f(ϕ− uδε)dxdt.

Applying that
∥∇uε∥L2(QT

ε ) ≤ lim
δ→0

∥∇uδε∥L2(QT
ε ),

we obtain

lim
δ→0

T∫
0

∫
Ωε

∇uδε∇(ϕ− uδε)dxdt ≤
T∫

0

∫
Ω

∇uε∇(ϕ− uε)dxdt.

Next, we have
∥uε(x, t)∥2L2(Sε)

≤ lim
δ→0

∥uδε(x, t)∥2L2(Sε)
for any t ∈ [0, T ],

which implies

ε−γ lim
δ→0

T∫
0

∫
Sε

∂tu
δ
ε(ϕ− uδε)dsdt ≤ ε−γ

T∫
0

∫
Sε

∂tuε(ϕ− uε)dsdt.

Taking into account that ϕ ≥ 0 on Sε a.e t ∈ [0, T ] we get

T∫
0

∫
Sε

(uδε)
−ϕdsdt−

T∫
0

∫
Sε

|(uδε)−|2dsdt ≤ 0,

and we conclude that uε satisfies the inequality (7) ■

We recall that by [26], it is well-known the existence of a linear extension operator Pε : H
1(Ωε, ∂Ω) →

H1
0 (Ω), such that

∥∇(Pεu)∥L2(Ω) ≤ K∥∇u∥L2(Ωε), ∥Pεu∥H1
0 (Ω) ≤ K∥u∥H1(Ωε),

where K > 0 is a constant independent of ε. Then, by using the estimates in Theorem 1, we conclude
that

∥Pεuε∥L2(0,T ;H1
0 (Ω)) ≤ K.

Therefore, for some subsequence (that we still we denote by ε) we have that, as ε→ 0,

Pεuε ⇀ u weakly in L2(0, T ;H1
0 (Ω)). (13)
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Remark 2 Under some additional conditions on f and u0 it is possible to show that u ∈ L∞(0, T ;L∞(Ω)
)
,

since uε is uniformly bounded (independently of ε) in the space L∞(0, T ;L∞(Ωε)
)
= L∞(QT

ε

)
. This is

the case, for instance, if we assume f ∈ W 1,∞(0, T ;L∞(Ω)
)
∩ C0,α(QT ) and u0 ∈ W 1,∞(Ω), u0 ≥ 0.

Indeed, if we define uf (x, t) as the unique solution of the problem{
−∆uf = f(x, t), (x, t) ∈ QT ,

uf = 0, (x, t) ∈ ΓT ,

then, by classical results, we know that uf ∈W 1,∞(QT ). Thus, the function U δ
ε(x, t) = uδε(x, t)−uf (x, t)

satisfies the problem
−∆xU

δ
ε = 0, (x, t) ∈ QT

ε ,

∂tU
δ
ε + εγ∂νU

δ
ε + εγδ−1(Uδ

ε + uf )
− = −∂tuf − εγ∂νuf , (x, t) ∈ ST

ε ,

Uδ
ε (x, t) = 0, (x, t) ∈ ΓT ,

Uδ
ε (x, 0) = u0(x)− uf (x, 0), x ∈ Sε.

(14)

Then, the right hand side of the dynamic boundary condition is uniformly bounded (independently of
ε and δ) and the nonlinear term is monotone non-decreasing in Uδ

ε . Thus we can apply the arguments
of the papers [20] and [21] to get an uniform bound in L∞(QT

ε

)
. Clearly, this estimate remains valid

also for uε, and since, by construction, the linear extension operator Pε : H1(Ωε, ∂Ω) → H1
0 (Ω), is such

that Pε

(
L∞(Ωε)

)
⊂ L∞(Ω), then we get that u ∈ L∞(0, T ;L∞(Ω)

)
. In fact, it can be proved (by the

arguments appearing in [18], [6]) that if f(x, t) = f(x), problem (14) can be formulated as the Cauchy
problem associated to the subdifferential of a convex function on L2(Sε) and that this operator is also
accretive in L∞(Sε).

One of the main results of this paper is to characterize the limit function u as the unique solution of
a suitable homogenized problem.

3 Formulation of the main results and some properties on the
strange term

We start by introducing a nonlocal operator which will play a crucial role in the rest of the paper. This
corresponds to a term which it is called as ”strange term” in the literature on homogenization with
critical sizes (see the exposition made in [16]). Given ϕ ∈ L2(0, T ), u0 ≥ 0 and a positive constant Bn,
we introduce the function Hϕ,u0 ∈ H1(0, T ) as the unique solution to the following evolution unilateral
problem: 

∂tHϕ,u0 + BnHϕ,u0 ≥ Bnϕ, Hϕ,u0 ≥ 0,

Hϕ,u0

(
∂tHϕ,u0 + BnHϕ,u0 − Bnϕ

)
= 0,

}
t ∈ (0, T ),

Hϕ,u0(0) = u0.

(15)

We will prove later that there is existence and uniqueness of solutions of this problem, but before to
do it we are already in conditions to state our first main result:

Theorem 2 Let n ≥ 3, f ∈ H1
(
0, T ;L2(Ω)

)
, u0 ∈ H1

0 (Ω), u
0 ≥ 0, and let uε be the solution of (8)

when γ = n
n−2 . Then, the function u defined in (13) is the unique solution to the problem

−∆u+An(u−Hu,u0) = f(x, t), (x, t) ∈ QT = Ω× (0, T ),

u = 0, (x, t) ∈ ΓT ,

Hu,u0 ≥ 0, ∂tHu,u0 + BnHu,u0 ≥ Bnu,

Hu,u0

(
∂tHu,u0 + Bn(Hu,u0 − u)

)
= 0,

}
(x, t) ∈ QT ,

Hu,u0(x, 0) = u0(x), x ∈ Ω,

(16)
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where An = (n − 2)Cn−2
0 ωn, ωn = |∂G0|, Bn = (n − 2)C−1

0 . In addition, u ∈ H1
(
0, T ;L2(Ω)

)
∩

L2
(
0, T ;H1

0 (Ω)
)
and u(x, 0) is given as the unique solution of the stationary problem{

−∆u(x, 0) +Anu(x, 0) = f(x, 0) +Anu
0(x), x ∈ Ω,

u(x, 0) = 0, x ∈ ∂Ω.
(17)

The second of our main results will prove that the above solution may become negative if f(x, t) is
suitably negative due to the structure of the homogenized problem under the critical size assumption.
Something that, as indicated in the Introduction, can not occur if the balance between the sizes is not
critical. More precisely, we have

Theorem 3 Let f ∈ H1
(
0, T ;L2(Ω)

)
, u0 ∈ H1

0 (Ω)∩L∞(Ω), u0 ≥ 0, and assume that the unique solution
of (16) is such that u ∈ L∞(QT ). Assume that there exists an interval [t0, t1] ⊂ [0, T ], such that the set
Qf,Λ := {(x, t) ∈ Ω× [t0, t1] : f(x, t) ≤ Λ < 0} is not empty for some Λ < 0 and δ > 0 such that

−Λ > Anδ +An

(
e−Bnt0

∥∥u0∥∥
L∞(Ω)

+
∥u∥L∞(QT )

(
eBnt1 − 1

)
Bn

)
. (18)

Then, u(x, t) ≤ −δ for a.e. (x, t) ∈ Qf,Λ and for any t ∈ [t0, t1] such that d((x, t), ∂Qf,Λ) ≥ R with
R =

(
∥u∥L∞(QT ) + δ

C

) 1
2

,

C =

−Λ−An

(
δ + e−Bnt0

∥∥u0∥∥
L∞(Ω)

+
∥u∥L∞(QT )

(
eBnt1−1

)
Bn

)
2n

.

(19)

Finally, let t0 = t1 = 0. Assume f ∈ H1(0, T ;L2(Ω)), with f(., 0) ∈ L∞(Ω), and that the set Ωf(.,0),Λ :=
{x ∈ Ω : f(x, 0) ≤ Λ < 0} is not empty for some Λ < 0 and δ > 0 such that

−Λ > An(δ +
∥∥u0∥∥

L∞(Ω)
). (20)

Then, u(x, 0) ≤ −δ for a.e. x ∈ Ωf(.,0),Λ such that d(x, ∂Ωf(.,0),Λ) ≥ R, with
R =

(
∥f(·, 0)∥L∞(Ω) +A2

nδ +An

∥∥u0∥∥
L∞(Ω)

AnC

) 1
2

,

C =

−Λ−An

(
δ +

∥∥u0∥∥
L∞(Ω)

)
2n

.

(21)

The proofs of the two main results will be given in the next section. We point out that some suffi-
cient conditions on the data implying the boundedness of the unique solution of (16) were indicated in
Remark 2.

Now, we shall study the nonlocal operator Hu,u0 since it will simplify the details of the proofs in the
next section.

Proposition 1 Given ϕ ∈ L2(0, T ), u0 ≥ 0 and a positive constant Bn, there exists a unique solution
Hϕ,u0 ∈ H1(0, T ) of the problem (15) and the following estimates hold:
i) We have

∥Hϕ,u0∥C([0,T ]) ≤ u0 + Bn∥ϕ∥L2(0,T ), (22)

Moreover, if ϕ ∈ Lp(0, T ), for some p ∈ (2,+∞], then Hϕ,u0 ∈W 1,p(0, T ).

7



ii) Given ϕ1, ϕ2 ∈ L2(0, T ) and u01, u
0
2 ≥ 0 we have

∥
[
Hϕ1,u0

1
−Hϕ2,u0

2

]±∥C([0,T ]) ≤
[
u01 − u02

]±
+ Bn∥ [ϕ1 − ϕ2]

± ∥L2(0,T ), (23)

(i.e., the inequality holds for the positive and negative parts of the corresponding expressions). In partic-
ular

∥Hϕ1,u0
1
−Hϕ2,u0

2
∥C([0,T ]) ≤

∣∣u01 − u02
∣∣+ Bn∥ϕ1 − ϕ2∥L2(0,T ). (24)

iii) Under the assumptions of ii) we also have

1

2

∣∣u01 − u02
∣∣2 + Bn

T∫
0

(Hϕ1,u0
1
(t)−Hϕ2,u0

2
(t))(ϕ1(t)− ϕ2(t))dt

≥ 1

2

∣∣∣(Hϕ1,u0
1
(T )−Hϕ2,u0

2
(T ))

∣∣∣2 + Bn

T∫
0

(Hϕ1,u0
1
(t)−Hϕ2,u0

2
(t))2dt.

(25)

Proof. There are several equivalent formulations to problem (15). For instance, it can be reformulated
in terms of the following evolution variational inequality: find Hϕ,u0 ∈ H1(0, T ), Hϕ,u0 ≥ 0 on [0, T ],
Hϕ,u0(0) = u0 (we recall that H1(0, T ) ⊂ C([0, T ])) such that

T∫
0

(∂tHϕ,u0 + BnHϕ,u0 − Bnϕ)(v −Hϕ,u0)dt ≥ 0, (26)

for any v ∈ L2(0, T ), v ≥ 0 a.e. t ∈ (0, T ). Another equivalent formulation arises by using the notion of
subdifferential of a convex function on a Hilbert space H (in our case simply H = R). So, problem (15)
can be also reformulated as the Cauchy problem for the maximal monotone operator A : D(A) → P(R)
defined by 

D(A) = [0,+∞)

A(u) =

{
Bnu if u > 0,

(−∞, 0] if u = 0.

It is clear that A = ∂j, the subdifferential of the convex function j : D(j) → R given by
D(j) = [0,+∞)

j(u) =

{
Bnu

2

2 if u > 0

+∞ if u = 0.

This is an easy modification of Example 2.8.1 of [8]. Thus, problem (15) becomes
d

dt
Hϕ,u0(t) + ∂j(Hϕ,u0(t)) ∋ Bnϕ(t) t ∈ (0, T ),

Hϕ,u0(0) = u0.

Then, the proof of i) is a mere application of Théoreme 3.4 and Proposition 3.4 of [8]. Indeed, the
operator A satisfies that D(A) is closed and its minimal section A0(u) is given by

A0(u) = ProjA(u)0 =

{
Bnu if u > 0,

0 if u = 0,

where ProjA(u)0 means the Projection of 0 on the set A(u) (see, [8], page 26). In particular, A0(u) is
bounded on the compact subsets of D(A) and Proposition 3.4 of [8] can be applied.
The proof of ii) is a trivial consequence of the T−monotonicity of operator A (see, for instance, [8], [7]
and [5]). In our case, the T−monotonicity of our operator A is a simple exercise since we have
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(a− b) [u− v]
+ ≥ 0, for any (a, b) ∈ A(u)×A(v).

The final inequality is a simple consequence of the fact that |h| = h+ + h− and the previous inequalities
of ii) (a direct proof of this estimate is given in Lemma 3.1 of [8]).
The proof of iii) is again a simple consequence of the monotonicity of the operatorA (see, e.g. estimate (27)
of Lemma 3.1 of [8]). ■

Remark 3 It is not difficult to give a direct proof of Proposition 1 without passing by the abstract
theory of maximal monotone operators. For instance, the existence of solutions can be also obtained by
application of a penalization argument, i.e., by considering the approximate problem{

∂tHϕ,u0 + BnHϕ,u0 + δ−1
[
Hϕ,u0

]−
= Bnϕ, t ∈ (0, T ),

Hϕ,u0(0) = u0.
(27)

In fact, the above approximate operator coincides with the so called Yosida approximation of the op-
erator A (see, [8] Section 2.8). We also point out that when u01 = u02 then property (25) indicates the
monotone dependence of the strange term Hϕ,u0 with respect to the datum ϕ: something already found
for a different family of problems with Robin type dynamic boundary conditions (see [19]). Here we used
of the abstract theory for the proof of the above Proposition to point out that some similar results hold
for much more general frameworks.

The qualitative properties of the operator Hϕ,u0 indicated in Proposition 1 allow to get easily a proof
of the existence and uniqueness of solution to the homogenized problem (16) indicated in the statement
of Theorem 2. We say that the function u ∈ L2

(
0, T ;H1

0 (Ω)
)
is a weak solution to the problem (16) if

Hu,u0 ∈ H1
(
0, T ;L2(Ω)

)
and the following integral identity holds∫
QT

∇u∇vdxdt+An

∫
QT

(u−Hu,u0)vdxdt =

∫
QT

fvdxdt (28)

for any arbitrary function v ∈ L2(0, T ;H1
0 (Ω)).

Proposition 2 Let n ≥ 3, f ∈ H1
(
0, T ;L2(Ω)

)
, u0 ∈ H1

0 (Ω), u
0 ≥ 0. Then there exits a unique

u ∈ L2
(
0, T ;H1

0 (Ω)
)
weak solution to the problem (16). In addition, u ∈ H1

(
0, T ;L2(Ω)

)
and u(x, 0) is

given as the unique solution of the stationary problem (5).

Proof. Given u0 ∈ H1
0 (Ω), u

0 ≥ 0, we consider the operator A : V=L2
(
0, T ;H1

0 (Ω)
)
→ V′=L2

(
0, T ;H−1(Ω)

)
defined by the relation

⟨A(u), v⟩ =
T∫

0

∫
Ω

∇u∇vdxdt+An

T∫
0

∫
Ω

(u−Hu,u0)vdxdt.

Let us show that this operator is coercive, continuous and monotone. First, by iii) of Proposition 1 we
get the monotonicity of A since

⟨A(u)−A(v), u− v⟩ = ∥∇(u− v)∥2L2(QT ) +An

∫
QT

((u− v)− (Hu,u0 −Hv,u0))(u− v)dxdt

= ∥∇(u− v)∥2L2(QT ) +An∥u− v∥2L2(QT ) −An

∫
QT

(Hu,u0 −Hv,u0)(u− v)dxdt ≥ 0.

On the other hand, we have

⟨A(u), v⟩ ≤ ∥∇u∥L2(QT )∥∇v∥L2(QT ) +An∥u−Hu,u0∥L2(QT )∥v∥L2(QT )

≤ K∥u∥L2(0,T ;H1
0 (Ω))∥v∥L2(0,T ;H1

0 (Ω)),
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for some positive constant K and thus the boundedness of the operator A follows. Moreover, we have

⟨A(u)−A(v), w⟩ =

∫
QT

∇(u− v)∇wdx+An

∫
QT

(
(u− v)− (Hu,u0 −Hv,u0)

)
wdxdt

≤ ∥∇(u− v)∥L2(QT )∥∇w∥L2(QT ) +K∥u− v∥L2(QT )∥w∥L2(QT )

≤ K∥u− v∥L2(0,T ;H1
0 (Ω))∥w∥L2(0,T ;H1

0 (Ω)),

for some positive constant K, which leads to the continuity of A.
Finally, the coerciveness of A follows from the estimate

⟨A(u), u⟩ = ∥∇u∥2L2(QT ) +An

∫
QT

(u−Hu,u0)udxdt ≥ ∥u∥2L2(0,T ;H1
0 (Ω)).

Therefore, we can apply the theory of monotone operators (see [25]) and we get the existence of a weak
solution to (16) for any arbitrary function v ∈ L2

(
0, T ;H−1(Ω)

)
. The uniqueness of solutions is a direct

consequence of the monotonicity of the operator A. Indeed, if two solutions u1, u2 exists, then we take
u2 as a test function in the integral identity for u1 and vice versa. Subtracting one identity from the
other, we get

0 =

∫
QT

|∇(u1 − u2)|2dxdt+An

∫
QT

((u1 − u2)− (Hu1,u0 −Hu2,u0))(u1 − u2)dxdt.

Taking into account the inequality contained in the formulation of (16) we conclude

T∫
0

∫
Ω

(u1 − u2)
2dxdt ≥

T∫
0

∫
Ω

(Hu1,u0 −Hu2,u0)(u1 − u2)dxdt

which implies that u1 = u2 in L2(0, T ;H1
0 (Ω)).

Since f ∈ H1
(
0, T ;L2(Ω)

)
and Hu,u0 ∈ H1

(
0, T ;L2(Ω)

)
we deduce that u ∈ H1

(
0, T ;L2(Ω)

)
. Using

that H1
(
0, T ;L2(Ω)

)
⊂ C

(
[0, T ];L2(Ω)

)
we conclude that u(x, 0) is, at least, a very weak solution (by

integrating twice by parts, after multiplying by a test function) of the stationary problem (5). In fact,
as f(·, 0) + Anu

0(·) ∈ L2(Ω), by the uniqueness of solutions, we deduce that u(·, 0) ∈ H1
0 (Ω) and thus

u(x, 0) satisfies (5) in a standard weak sense. ■

Remark 4 As mentioned in the Introduction, if we take β∂tuε, β > 0 in the boundary condition for
the problem (8), and, for simplicity we assume u0 = 0, then we will have β(Hϕ,0)

′
in the problem (15).

Passing to the limit as β → 0 we get the complementarity conditions for the stationary problem: Hϕ,0 ≥ ϕ,
Hϕ,0 ≥ 0, Hϕ,0(Hϕ,0 − ϕ) = 0. In that case, this problem has an obvious solution Hϕ,0 = ϕ+, hence,

the “strange” term was only dependent on u+ (although it was added to a different term An [u]
−
), such

as it was obtained in [3], [11], [13], [24], [14] and [15]. Here, in the case of dynamic unilateral boundary
conditions, the expression of the strange term Hu,u0 involves the own unknown u (i.e., the positive and
negative parts of u).

4 Proof of Theorems 2 and 3.

Proof of Theorem 2. First step. Let us assume, additionally that u0 ∈ H1
0 (Ω) ∩W 1,∞(Ω), u0 ≥ 0. From

the variational inequality (7), we conclude that uε also satisfies the following integral inequality in a
weaker form

T∫
0

∫
Ωε

∇v∇(v − uε)dxdt+ ε−γ

T∫
0

∫
Sε

∂tv(v − uε)dsdt ≥
T∫

0

∫
Ωε

f(v − uε)dxdt−
1

2
ε−γ∥u0(.)− v(., 0)∥2L2(Sε)

,

(29)
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where v is any arbitrary function in Kε with ∂tv ∈ L2(0, T ;L2(Sε)).
Let ϕ(x, t) = ψ(x)η(t), ψ ∈ C∞

0 (Ω), η ∈ C1([0, T ]). We define the function Hε,j
ϕ,u0(t), j ∈ Υε as the unique

solution to the problem
∂tH

ε,j
ϕ,u0 + BnH

ε,j
ϕ,u0 ≥ Bnϕ(P

j
ε , t), H

ε,j
ϕ,u0 ≥ 0,

Hε,j
ϕ,u0

ε

(
∂tH

ε,j
ϕ,u0

ε
+ Bn(H

ε,j
ϕ,u0 − ϕ(P j

ε , t))
)
= 0,

}
on (0, T ),

Hε,j
ϕ,u0(0) = u0(P j

ε ).

(30)

Note that Hε,j
ϕ,u0(t) = Hϕ,u0(P j

ε , t), with j ∈ Υε, where, in general, Hϕ,u0(x, t) denotes the unique solution
to the problem

∂tHϕ,u0(x, t) + BnHϕ,u0(x, t) ≥ Bnϕ(x, t), Hϕ,u0(x, t) ≥ 0,

Hϕ,u0(x, t)
(
∂tHϕ,u0(x, t) + Bn(Hϕ,u0(x, t)− ϕ(x, t

)
= 0,

}
t ∈ (0, T ),

Hϕ,u0(x, 0) = u0(x),

(31)

where x ∈ Ω is taken as a parameter.
We define an auxiliary function wj

ε(x), j ∈ Υε, as the unique solution to the capacity linear boundary
value problem 

∆wj
ε = 0, x ∈ T j

ε/4 \G
j
ε,

wj
ε(x) = 1, x ∈ ∂Gj

ε,

wj
ε(x) = 0, x ∈ ∂T j

ε/4.

(32)

Since the perforations (or particles) are balls, we can find the explicit form of the solution to this problem

wj
ε(x) =

|x− P j
ε |2−n − (ε/4)2−n

a2−n
ε − (ε/4)2−n

.

(this is the main reason of the assumption n ≥ 3: the case n = 2 needs suitable ad hoc arguments and this
result does not hold if n = 1 (see, e.g., the exposition made in Section 3.1.5 of [16] and its references)).
Now we introduce the auxiliary function

Wε,ϕ(x, t) =

 wj
ε(x)(ϕ(x, t)−Hε,j

ϕ,u0(t)), x ∈ T j
ε/4 \G

j
ε, j ∈ Υε,

0, x ∈ Rn \ ∪j∈ΥεT
j
ε/4.

(33)

Using the properties of the functions wj
ε(x) and H

ε,j
ϕ,u0(t), we conclude that Wε,ϕ ∈ H1(QT

ε ). It is easy to

see that PεWε,ϕ ⇀ 0 weakly in L2
(
0, T ;H1

0 (Ω)
)
and that ∂t(PεWε,ϕ) ⇀ 0 weakly in L2(0, T ;L2(Ω)) as

ε→ 0.
Finally we consider the ”oscillating test function” v = ϕ(x, t)−Wε,ϕ, in (29). Note also that this choice
of v does not coincide with the test function taken for Robin type dynamic boundary conditions ([17],
[19]). We have that v ∈ Kε. Indeed, for x ∈ ∂Gj

ε, t ∈ [0, T ], we have

v(x, t) = ϕ(x, t)− ϕ(x, t) +Hε,j
ϕ,u0(t) = Hε,j

ϕ,u0(t) ≥ 0.

Thus, we get

ε−γ
∑
j∈Υε

T∫
0

∫
Sε

∂tH
ε,j
ϕ,u0(t)(H

ε,j
ϕ,u0(t)− uε(s, t))dsdt

+

T∫
0

∫
Ωε

∇(ϕ−Wε,ϕ)∇(ϕ−Wε,ϕ − uε)dxdt ≥
T∫

0

∫
Ωε

f(ϕ−Wε,ϕ − uε)dxdt.

(34)

Using the properties of Wφ,ε, we derive

lim
ε→0

T∫
0

∫
Ωε

f(ϕ−Wε,ϕ − uε)dxdt =

∫
QT

f(ϕ− u)dxdt, (35)
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and

lim
ε→0

T∫
0

∫
Ωε

∇ϕ∇(ϕ−Wε,ϕ − uε)dxdt =

∫
QT

∇ϕ∇(ϕ− u)dxdt. (36)

From the definition of Wε,ϕ, we get

−
T∫

0

∫
Ωε

∇Wε,ϕ∇(ϕ−Wε,ϕ − uε)dxdt = Jε + αε (37)

where

Jε ≡ −
∑
j∈Υε

T∫
0

∫
T j
ε/4

\Gj
ε

∇wj
ε(x)∇((ϕ(x, t)−Hε,j

ϕ,u0(t))(ϕ−Wε,ϕ − uε))dxdt

and αε → 0, as ε→ 0. Using Green’s formula, we obtain

Jε = −
∑
j∈Υε

T∫
0

∫
∂Gj

ε

∂νw
j
ε(ϕ(s, t)−Hε,j

ϕ,u0(t))(H
ε,j
ϕ,u0(t)− uε(s, t))dsdt−

−
∑
j∈Υε

T∫
0

∫
∂T j

ε/4

∂νw
j
ε(s)(ϕ(s, t)−Hε,j

ϕ,u0(t))(ϕ(s, t)− uε(s, t))dsdt.

(38)

Taking into account that ∂νw
j
ε|∂Gj

ε
= Bnε

−γ + βε, where βε → 0 as ε→ 0, we have

Jε = −ε−γ
∑
j∈Υε

T∫
0

∫
∂Gj

ε

Bn(ϕ(s, t)−Hε,j
ϕ,u0(t))(H

ε,j
ϕ,u0(t)− uε(s, t))dsdt−

−
∑
j∈Υε

T∫
0

∫
∂T j

ε/4

∂νw
j
ε(s)(ϕ(s, t)−Hε,j

ϕ,u0(t))(ϕ(s, t)− uε(s, t))dsdt+mε,

(39)

where mε → 0, as ε→ 0.
As in Remark 4.40 of [16], now the crucial argument consists in considering the total balance of the
integrals over Sε

ε−γ
∑
j∈Υε

T∫
0

∫
∂Gj

ε

((Hε,j
ϕ,u0)

′
+ Bn(H

ε,j
ϕ,u0(t)− ϕ(P j

ε , t))(H
ε,j
ϕ,u0(t)− uε(s, t))dsdt−

−Bnε
−γ
∑
j∈Υε

T∫
0

∫
∂Gj

ε

(ϕ(s, t)− ϕ(P j
ε , t))(H

ε,j
ϕ,u0(t)− uε(s, t))dsdt ≡ K1,ε +K2,ε.

(40)

Using that Hε,j
ϕ,u0(t) is a solution of the problem (30) and uε ≥ 0 on Sε, we conclude

K1,ε = ε−γ
∑
j∈Υε

T∫
0

∫
∂Gj

ε

((Hε,j
ϕ,u0)

′
+ Bn(H

ε,j
ϕ,u0 − ϕ(P j

ε , t)))(H
ε,j
ϕ,u0 − uε)dsdt ≤ 0. (41)

Additionally, we have
lim
ε→0

K2,ε = 0. (42)
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For the second term in (39), we can apply the ”from surface to volume averaging convergence principle”
(see Theorem 4.5 and the proof of Theorem 4.36 of [16]) and we get

lim
ε→0

∑
j∈Υε

T∫
0

∫
∂T j

ε/4

∂νw
j
ε(s)(ϕ(x, t)−Hϕ,u0(s, t))(ϕ(s, t)− uε(s, t))dsdt

= An

T∫
0

∫
Ω

(ϕ(x, t)−Hϕ,u0(x, t))(ϕ(x, t)− u(x, t))dxdt.

(43)

Then, we have to prove that

Iε =
∑
j∈Υε

T∫
0

∫
∂T j

ε/4

∂νw
j
ε(s)(H

ε,j
ϕ,u0(P

j
ε , t)−Hϕ,u0(s, t))(ϕ(s, t)− uε(s, t))dsdt→ 0.

Taking into account (24), since ∣∣∣∂νwj
ε|∂T j

ε/4

∣∣∣ ≤ Cε,

we conclude

|Iε| ≤ Cε
∑
j∈Υε

T∫
0

∫
∂T j

ε/4

∣∣u0(P j
ε )− u0(s)

∣∣ |ϕ(s, t)− uε(s, t)| dsdt+ κε

with κε → 0 as ε→ 0. Since u0 is Lipschitz continuous (remeber that u0 ∈W 1,∞(Ω) in this first step)∣∣u0(P j
ε )− u0(s)

∣∣ ≤ K
∣∣P j

ε − s
∣∣ ≤ Kε.

Then

|Iε| ≤ Kε ∥ϕ∥
L∞(QT )

+ Cε2
∑
j∈Υε

T∫
0

∫
∂T j

ε/4

|uε(s, t)| dsdt

≤ Kε ∥ϕ∥
L∞(QT )

+ Cε2

∣∣∣∣∣∣
∑
j∈Υε

εn−1

∣∣∣∣∣∣
1/2
∑

j∈Υε

T∫
0

∫
∂T j

ε/4

|uε(s, t)|2 dsdt


1/2

.

Using now the a priori estimate

∥uε∥2
L2

(
(0,T )×

(
∪

j∈Υε
∂T j

ε/4

)) ≤ Kε−1

(see, Remark 1 of [27] making there aε = Cε) we get that

|Iε| ≤ Cε.

Combining (34)-(43), and using a density argument we conclude that u satisfies the inequality∫
QT

∇ϕ∇(ϕ− u)dxdt+An

∫
QT

(ϕ−Hϕ,u0)(ϕ− u)dxdt ≥
∫
QT

f(ϕ− u)dxdt, (44)

where ϕ is an arbitrary test function in L2
(
0, T ;H1

0 (Ω)
)
. From here, using the hemicontinuity of the

operator ϕ → Hϕ,u0 (as in Théorem 2.2 of [25], and Proposition 2), we derive that u is the unique
solution to the problem (16).
Second step. We assume now that u0 ∈ H1

0 (Ω), u
0 ≥ 0. Let u0,m ∈ H1

0 (Ω)∩W 1,∞(Ω), u0,m ≥ 0 such that
u0,m → u0 in H1

0 (Ω). Then, by the first step, we know that there exists a sequence {um} of limit solutions
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of the corresponding sequence {umε } such that um satisfies the limit problem (4) and then, equivalently,
the variational inequality∫

QT

∇ϕ∇(ϕ− um)dxdt+An

∫
QT

(ϕ−Hϕ,u0,m)(ϕ− um)dxdt ≥
∫
QT

f(ϕ− um)dxdt, (45)

for any test function ϕ ∈ L2(0, T ;H1
0 (Ω)). Since u0,m(x) → u0(x) a.e. x ∈ Ω, by (24) we get that

Hϕ,u0,m → Hϕ,u0 in C([0, T ];L2(Ω)).
On the other hand, from equation (4) for um, by multiplying by um, we get that {um} is uniformly
bounded in L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;L2(Ω)). Then there exists u ∈ L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;L2(Ω))

such that um ⇀ u weakly in L2(0, T ;H1
0 (Ω)) ∩ H1(0, T ;L2(Ω)) with u satisfying (44) with the strange

term Hϕ,u0 , for any test function ϕ ∈ L2(0, T ;H1
0 (Ω)). In fact, we also know that u is the unique solution

of (4) corresponding to the initial datum u0.
Finally, let {uε,m} be the sequence of solutions of problem (8) corresponding to the sequence of initial
data {u0,m}. Then, for any test function ϕ ∈ L2(0, T ;H1

0 (Ω)), we can use the following diagonal argument∫
QT

(Pεuε − u)ϕdxdt =

∫
QT

{(Pεuε − Pεuε,m)ϕ+ (Pεuε,m − um)ϕ+ (um − u)ϕ} dxdt.

Then, using the monotonicity of the nonlinear term in the dynamic boundary condition we get the weak
convergence of Pεuε,m ⇀ Pεuε, for any ε > 0, as m → +∞, since u0,m → u0 in H1

0 (Ω). Moreover, by
applying the first step 1 we get the weak convergence Pεuε,m ⇀ um (which in fact is uniform in m: recall
the estimates given in Theorem 1), and then we get that Pεuε ⇀ u in L2(0, T ;H1

0 (Ω)), with u solution
of (4) and the proof of the result is complete.■

Proof of Theorem 3. Given t ∈ [t0, t1] and (x0, t) ∈ Qf,Λ we will use the local barrier function

u(x;x0) = C |x− x0|2 − δ,

with C > 0 to be chosen later. We have (see, e.g., Remark 2.7 of [12]) that

−∆u = −2nC.

On the other hand, we know that

0 ≤ Hu,u0(t) ≤ Hu+,u0(t) ≤ H∥u∥L∞(QT ),∥u0∥L∞(Ω)
(t),

for any t ∈ [0, T ]. Then, for any t ∈ [t0, t1]

H∥u∥L∞(QT ),∥u0∥L∞(Ω)
(t) = e−Bnt

∥∥u0∥∥
L∞(Ω)

+

∫ t

0

eBn(t−s) ∥u∥L∞(QT ) ds

≤ e−Bnt0
∥∥u0∥∥

L∞(Ω)
+

∥u∥L∞(QT ) (e
Bn(t1−t) − 1)

Bn
.

Thus we have

−∆u+An(u−Hu,u0(t)) ≥ −2nC −An

(
δ − e−Bnt0

∥∥u0∥∥
L∞(Ω)

−
∥u∥L∞(QT ) (e

Bn(t1−t0) − 1)

Bn

)
≥ Λ ≥ f(x, t) on Qf,Λ,

if we assume C given by (19), thanks to the assumption (18). Then, if BR(x0) × [t0, t1] ⊂ Qf,Λ we get
that u(x;x0) will be a local supersolution assumed that

CR2 − δ ≥ ∥u∥L∞(QT ) .

14



This is satisfied once we take R given by (19). Then, by the comparison principle for the operator
u→ −∆u+Anu on BR(x0), with Dirichlet conditions on ∂BR(x0), we get that

u(x, t) ≤ C |x− x0|2 − δ a.e. x ∈ BR(x0) and for any t ∈ [t0, t1], (46)

which implies the first part of the result.
Finally, if assume that t0 = t1 = 0, then we can use, directly that u(x, 0) is the weak solution of the
stationary problem (5). Thus we repeat the above arguments but in a more direct way. We assume that
the set Ωf(.,0),Λ := {x ∈ Ω : f(x, 0) ≤ Λ < 0} is not empty for some Λ < 0 small enough and consider
again the local barrier function

u(x;x0) = C |x− x0|2 − δ,

Thus we have

−∆u+Anu−Anu
0 ≥ −2nC −Anδ −An

∥∥u0∥∥
L∞(Ω)

≥ Λ ≥ f(x, t) on Qf,Λ,

if we assume (20). Then, if BR(x0) ⊂ Ωf(.,0),Λ, since we have the estimate

∥u(., 0)∥L∞(Ω) ≤
∥f(·, 0)∥L∞(Ω)

An
+
∥∥u0∥∥

L∞(Ω)
,

we get that u(x;x0) will be a local supersolution assumed that

CR2 −Anδ ≥
∥f(·, 0)∥L∞(Ω)

An
+
∥∥u0∥∥

L∞(Ω)
.

This is satisfied once we take R given by (21). Then, by the comparison principle for the operator
u→ −∆u+Anu on BR(x0), with Dirichlet conditions on ∂BR(x0), we get that

u(x, 0) ≤ C |x− x0|2 − δ a.e. x ∈ BR(x0), (47)

and thus, u(x, 0) ≤ −δ for a.e. x ∈ Ωf(.,0),Λ such that d(x, ∂Ωf(.,0),Λ) ≥ R, with R and C satisfy-
ing (21). ■

Remark 5 It seems possible to extend the results of this paper in several directions: the case of n = 2
can be also considered, the diffusion operator can be replaced by the quasilinear degenerate p-Laplacian
operator (see [2] and [16] for some related papers), it seems possible to add a nonhomogeneous forcing
term g(x, t) in the right hand side of the dynamic boundary condition (see, e.g. [17], [16] for some related
studies) and to improve the regularity on the initial datum, etc. The more delicate new aspect would be
the consideration of perforations (or particles) of arbitrary shape. The previous paper [19] was dealing
with the case of Robin type dynamic boundary conditions and the extension to the case of Signorini
nonlinear terms will require the correct definition of some auxiliary capacity problems. This will be the
object of a separated work by the authors.
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