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Abstract

We study the general family of nonlinear evolution equations of fractional diffu-
sive type ∂tu−div

(
|u|m1∇(−∆)−s[|u|m2−1u]

)
= f . Such type of nonlocal equations

are related to the porous medium equations with a fractional Laplacian pressure.
Our study concerns the case in which the flow takes place in the whole space. We
consider m1,m2 > 0, and s ∈ (0, 1), and prove existence of weak solutions. More-
over, when f ≡ 0 we obtain the Lp-L∞ decay estimates of solutions, for p ≥ 1.
Besides, we also investigate the finite time extinction of solution. Our results im-
prove the recent papers in the literature.
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1 Introduction

The main purpose of this paper is to study the following evolution equation of diffusive
type with nonlocal effects

(1.1)

{
∂tu− div (|u|m1∇(−∆)−s[|u|m2−1u]) = f in RN × (0, T ),

u(x, 0) = u0(x) in RN ,

with m1,m2 > 0, s ∈ (0, 1), and space dimension N ≥ 2. The symbol (−∆)−s denotes by
the inverse of the fractional Laplacian operator as usual (see, e.g. [28]).

Equation (1.1) corresponds to the well-known Porous Medium Equation ∂tu = div(um1∇u),
when one consider s = 0, and m2 = 1. This model arises, for instance, from considering
a compressible fluid, with a density distribution u(x, t) and with a Darcy’s law leading to
the equation

ut − div(u∇p) = 0,

where p denotes the pressure. Many other different relations between the density, the
velocity and the pressure arise in the applications. For example, the model, proposed by
Leibenzon and Muskat states a law in that p = g(u), where g is a nondecreasing scalar
function (see more examples in [31]). Such an equation of this type has been studied by
many authors (see, e.g. [3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 21, 26, 29, 32]). There
are many questions, addressed to the equation of this type, which are being the object of
active researches, such as the existence and uniqueness, the regularity, the behaviour of
solution in short time and in large time, the finite and infinite speed of propagation, and
so on.

Here, we would like to mention specially the recent results, being close to the ones in our
paper. It is known that equation (1.1) with m1 = m2 = 1 reads as: ut = div(u∇(−∆)−su)
was first introduced by Caffarelli and Vázquez, [11]. In [3], Biler et al. studied a particular
case of equation (1.1):

∂tu− div
(
|u|∇α−1(|u|m−2u)

)
= 0,

where α = 2(1−s) ∈ (0, 2),m1 = 1,m = m2+1, and f = 0. The authors constructed non-
negative self-similar solutions, the so called Barenblatt-Pattle-Zeldovich solutions. Fur-
thermore, they proved the existence of weak solutions for u0 ∈ L1(RN) ∩ L∞(RN), and
the decay estimate L1-Lp (see Theorem 6.1) as follows.

(1.2) ‖u(t)‖Lp ≤ Ct−
N(1− 1

p )

N(m−1)+α‖u0‖
N(m−1)/p+α
N(m−1)+α

L1 .
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Thanks to this decay, they also obtained an existence of solution for u0 ∈ L1(RN), under
the assumptions {

m > 1 + 1−α
N
, if α ∈ (0, 1),

m > 3− 2
α
, if α ∈ [1, 2).

Equation (1.1) with s ∈ (0, 1),m2 = 1,m1 = m − 1 > 0, and f = 0 was investigated by
Stan et al. in [27]. The authors studied the existence of nonnegative weak solutions for
all integrable initial data u0. In addition, they obtained the smoothing effect Lp-L∞, for
p ≥ 1:

(1.3) ‖u(t)‖L∞ ≤ Ct−
N

N(m−1)+2p(1−s)‖u0‖
2p(1−s)

N(m−1)+2p(1−s)
Lp ,

with C = C(N, s,m, p) > 0. In particular, by considering the case of p = 1, (1.3) allows
them to obtain the existence result for initial data with bounded measure. Moreover, the
finite and infinite speed of propagation have been also studied by the same authors, see
[26] ( see also [4] for a different equation of this type).

It is also interesting to note that the mean field equation

(1.4) ut = div(u∇(−∆)−1u),

could be considered as a limit of (1.1) with m1 = m2 = 1, and f = 0, as s→ 1−. In fact,
Serfaty and Vázquez [24] proved an existence of solution of (1.4) for all integrable initial
data, even for data measure. A uniqueness result was also given in the class of bounded
solutions. Furthermore, the solution, constructed in [24] satisfies a universal bound

‖u(t)‖L∞ ≤
C

t
,

with C = C(N) > 0.
Very recently, Nguyen and Vázquez [21] proved existence of weak solutions of (1.1) in a
bounded domain Ω ⊂ RN , with the homogeneous Dirichlet boundary condition. Besides,
they also obtained a universal bound

‖u(t)‖L∞ ≤ Ct
− 1
m1+m2−1 ,

with m1 +m2 > 1 and C = C(N, s, |Ω|,m1 +m2).

The main goal of this paper is to carry out a qualitative study of weak solutions of (1.1).
We first prove the existence of weak solutions with data u0 ∈ L1(RN) ∩ L∞(RN), and
f ∈ L1(QT ) ∩ L∞(QT ), where QT = RN × (0, T ). Moreover, when f = 0 we show Lp-L∞

decay estimates of solutions, for all p ≥ 1, see Theorem 2 below. We also emphasize that
our decay results below holds for m1 +m2 > 1− 2p(1−s)

N
. Thus, we improved the previous
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range of m = m1 +m2 > 1, described in (1.2) and (1.3). For the case m1 +m2 < 1− 2p(1−s)
N

and f = 0, we show that every weak solution vanishes in a finite time, see Theorem 3
below. In addition, we also obtain the regularity of

div
(
|u|m1∇(−∆)−s[|u|m2−1u]

)
∈ L2

(
0, T,H−1(BR)

)
,

for any R > 0, if provided that either s ∈ [1
2
, 1), or m2 > m1. And

div
(
|u|m1∇(−∆)−s[|u|m2−1u]

)
∈ Lp

(
0, T,W−2,p(RN)

)
if provided s ∈ (0, 1

2
), see Propositions 8 and 9 below. The ones improves the regularity

div Θ(u) ∈ L1(0, T, (W 2,∞
0 (BR))′) of Nguyen and Vázquez [21].

Our proof is self contained, and it is merely based on the Fourier analysis and the funda-
mental estimates of the Riesz potential. This enables us to avoid using the spectral theory
approach, which is useful in study the equation of this type on a bounded domain with
the homogeneous boundary condition (see e.g. [6, 21, 27]), or avoid using the character-
ization of Besov and Triebel-Lizorkin space in order to obtain some estimates involving
the fractional Sobolev spaces W s,p, see e.g. [3].

Definition and main results

Let us put Θ(u) = |u|m1∇(−∆)−s[|u|m2−1u]. Now, we introduce first the definition of a
weak solution that we are going to use in this paper.

Definition 1. Let u0 ∈ L1(RN) ∩ L∞(RN) and f ∈ L1(QT ) ∩ L∞(QT ). We say that
u is a weak solution of problem (1.1) if u ∈ L1(QT ) ∩ L∞(QT ) satisfies div Θ(u) ∈
L2 (0, T, Y (BR)), and

� T

0

�
RN

(−uϕt + Θ(u).∇ϕ− fϕ) dxdt = 0, ∀ϕ ∈ C∞c (QT ),

where

Y (BR) =

{
H−1(BR), if s ∈ [1

2
, 1),

W−2,p(BR), if s ∈ (0, 1
2
).

Note that H−1(BR) (resp. W−2,p(BR)) is the dual space of H1
0 (BR)

(
resp. W 2,p

0 (BR)
)
, and

BR is the ball in RN , with center at 0 and radius R.

Remark 1. It follows from the Definition 1 that u ∈ C ([0, T ];Y (BR)), for any R > 0.
Thus, u(t) possesses an initial trace u0 in this sense. Particularly, if either s ∈ [1

2
, 1) or

m2 > m1, then u ∈ C ([0, T ];H−1(BR)) for every R > 0.

Under this framework, our existence result is as follows.
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Theorem 1. Let m1,m2 > 0 and s ∈ (0, 1). Let u0 ∈ L1(RN) ∩ L∞(RN) and f ∈
L1(QT ) ∩ L∞(QT ). Then, there exists a weak solution u of (1.1). Moreover, u satisfies
the following properties:
i) Lq-estimate: For any 1 ≤ q ≤ ∞, we have

(1.5) ‖u(t)‖Lq ≤ ‖u0‖Lq + t
q−1
q ‖f‖Lq(Qt), for a.e. t ∈ (0, T ).

Here, we denote q−1
q

= 1 if q =∞.

ii) Energy estimates:
If m2 > m1, then there is a constant C = C(u0, f,m1,m2) > 0 such that

(1.6) ‖(−∆)
1−s
2 [|u|m2−1u]‖L2(QT ) ≤ C.

If m2 = m1, then there is a constant C = C(u0, f,m2) > 0 such that

(1.7) ‖(−∆)
1−s
2 [|u|m2p0−1u]‖L2(QT ) ≤ C,

with p0 = N+2(1−s)
N+2(1−2s)

.

If m2 < m1, then there is a constant C = C(u0, f,m1,m2) > 0 such that

(1.8) ‖(−∆)
1−s
2 [|u|m1−1u]‖L2(QT ) ≤ C.

Next, we provide a sharper decay result of solution of (1.1) for the case f = 0.

Theorem 2. Let p ≥ 1, and s ∈ (0, 1). Let m1,m2 > 0 be such that m1 +m2 > 1− 2p(1−s)
N

.
Assume that f = 0 and u0 ∈ Lp(RN). Then, there exists a constant C = C(N, s,m1 +
m2, p) > 0 such that

(1.9) ‖u(t)‖L∞ ≤ Ct
− 1
p(1−α0)+β0 ‖u0‖

p(1−α0)
p(1−α0)+β0
Lp ,

with α0 = N−2(1−s)
N

, and β0 = m1 +m2 − 1.

Remark 2. We emphasize that (1.9) holds for the case m1 + m2 > 1 − 2p(1−s)
N

. Thus,
we improve the decay result of the authors in [3, 27], where the authors assumed m =
m1 +m2 > 1.

Finally, we study the finite time extinction of solution.

Theorem 3. Let s ∈ (0, 1), and m1,m2 > 0 be such that m1 + m2 < α0. Assume that
f = 0 and u0 ∈ L1(RN) ∩ L∞(RN). Then, there is a finite time τ0 > 0 such that

u(x, t) = 0, for (x, t) ∈ RN × (τ0,∞).
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Our paper is organized as follows: The next section is devoted to review the fractional
Sobolev spaces, and the approximation of the fractional Laplacian (−∆)s. Moreover, we
prove some functional inequalities, which will be useful later. In Section 3, we would like
to study the existence of solution to a regularized equation to (1.1), and we justify the
passing to the limit in order to obtain existence of solution of (1.1). The last section is
devoted to investigate some decay estimates, and the extinction in a finite time of weak
solutions.
Through this paper, the constant C may change step by step. Moreover, C = C(α, β, γ)
means that the constant C merely depends on the parameters α, β, γ.
We denote ‖.‖X(RN ) = ‖.‖X , and

�
RN f(x)dx =

�
f(x)dx for short. Finally, the notation

A . B means that there exists a positive constant c > 0, being independent of data such
that A ≤ cB.

2 Functional setting

Let p ≥ 1, and s ∈ (0, 1). For a given domain Ω ⊂ RN , we define the fractional Sobolev
space

W s,p(Ω) =

{
u ∈ Lp(Ω) :

�
Ω

�
Ω

|u(x)− u(y)|p

|x− y|N+sp
dxdy <∞

}
,

endowed with the norm

‖u‖W s,p(Ω) =

(
‖u‖pLp(Ω) +

�
Ω

�
Ω

|u(x)− u(y)|p

|x− y|N+sp
dxdy

)1/p

.

Moreover, we also denote the homogeneous fractional Sobolev space by Ẇ s,p(Ω), endowed
with the seminorm

‖u‖Ẇ s,p(Ω) =

(�
Ω

�
Ω

|u(x)− u(y)|p

|x− y|N+sp
dxdy

)1/p

.

In particular, we denote W s,2(RN) by Hs(RN), which turns out to be a Hilbert space. It
is well-known that we have the equivalent characterization

Hs(RN) =

{
u ∈ L2(RN) :

�
(1 + |ξ|2s)|F{u}(ξ)|2dξ <∞

}
,

where F denotes the Fourier transform, and that we have

‖u‖Hs(RN ) =

(�
(1 + |ξ|2s)|F{u}(ξ)|2dξ

)1/2

.

In addition, for u ∈ Hs(RN), the fractional Laplacian is defined by

(2.1) (−∆)su(x) = C(N, s)P.V.

�
u(x)− u(y)

|x− y|N+2s
dy = F−1{|ξ|2sF(u)(ξ)}.

6



Then,
‖u‖2

Hs(RN ) = ‖u‖2
L2 + C‖(−∆)

s
2u‖2

L2 .

We emphasize that if s > 0, then (−∆)−s = I2s, the Riesz potential, (see, e.g. [28]).
Moreover, the fractional gradient ∇s can be written as ∇I1−s. And for any smooth
bounded function v : RN → R, we have

∇sv = C(N, s)

�
RN

(v(x)− v(x+ z))
z

|z|N+1+s
dz,

with a suitable constant C(N, s), see [3].

Approximation of the fractional Laplacian (−∆)s

For fixed s ∈ (0, 1), and each ε > 0, let us define the operator

Lsε[f ](x) := C(N, s)

�
f(x)− f(y)

(|x− y|2 + ε2)
N+2s

2

dy,(2.2)

for x ∈ RN , and for f ∈ S(RN) (the Schwartz space). It is known that the operator Lsε
can be considered as a regularization of the fractional Laplacian (−∆)s, see [9].
Next, we recall some properties of the operator Lsε.

• Square root: By the symmetry, we observe that

〈Lsε[f ], f〉L2 =
C

2

� �
|f(x)− f(y)|2

(|x− y|2 + ε2)
N+2s

2

dxdy.

Then, we denote L
s
2
ε [f ] as a square root of Lsε[f ] in the Fourier transform sense, and

‖L
s
2
ε [f ]‖2

L2 = 〈Lsε[f ], f〉L2 .

Lemma 1. Let f ∈ H1(RN), and s ∈ (1
2
, 1). Then, there holds

(2.3) sup
ε>0
‖(−∆)−

1
2Lsε[f ]‖L2 ≤ C‖f‖H1 ,

where the constant C = C(N, s) > 0.

Proof. It follows from the Plancherel theorem that

‖(−∆)−
1
2Lsε[f ]‖2

L2 = ‖F{(−∆)−
1
2Lsε[f ]}‖2

L2

= ‖F{(−∆)−
1
2}F{Lsε}F{f}‖2

L2 .
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On the other hand, we have

0 ≤ F{Lsε} ≤ F{(−∆)s} = C(N, s)|ξ|2s.

We skip the proof of this inequality, and refer to Lemma 10. Thus, we obtain

(2.4) ‖(−∆)−
1
2Lsε[f ]‖2

L2 ≤ C

�
|ξ|2(2s−1)|f̂(ξ)|2dξ.

By Hölder’s inequality, we have

�
|ξ|2(2s−1)|f̂(ξ)|2dξ ≤

(�
|ξ|2|f̂(ξ)|2dξ

)2s−1(�
|f̂(ξ)|2dξ

)2−2s

≤ ‖f‖2
H1 .(2.5)

From (2.4) and (2.5), we get the result.

Lemma 2. Let {fε}ε>0 be a sequence in L2(RN) such that fε → f in L2(RN) as ε → 0.
Then, for any s ∈ (0, 1), there holds

(2.6) ‖(−∆)−sLsε[fε]− f‖L2 → 0.

Proof. From the triangle inequality, we have

‖(−∆)−sLsε[fε]− f‖2
L2 ≤ ‖(−∆)−sLsε[fε − f ]‖L2 + ‖(−∆)−sLsε[f ]− f‖L2

= ‖F{(−∆)−sLsε[fε − f ]}‖2
L2 + ‖F

{
(−∆)−sLsε[f ]− f

}
‖L2 .(2.7)

By applying Lemma 10 in the Appendix, we have

|F{Lsε}(ξ)| ≤ |F{(−∆)s}(ξ)| = C|ξ|2s.

Then, we obtain

‖F{(−∆)−sLsε[fε − f ]}‖2
L2 = ‖F{(−∆)−s}F{Lsε}F{fε − f}‖2

L2

≤ ‖f̂ε − f̂‖2
L2 .(2.8)

Similarly, we also get∣∣F {(−∆)−sLsε[f ]− f
}∣∣2 ≤ (1 + |F{(−∆)−s}F{Lsε}|

)2 |f̂ |2 ≤ 4|f̂ |2.

Moreover, we observe that F {(−∆)−sLsε[f ]− f} (ξ) → 0, for every ξ ∈ RN . Thanks to
the Dominated Convergence Theorem, we conclude

(2.9) ‖F
{

(−∆)−sLsε[f ]− f
}
‖L2 → 0,

as ε→ 0.
A combination of (2.7), (2.8) and (2.9) yields the proof of Lemma 2.
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Next, we prove a generalized version of Stroock-Varopoulos’s inequality.

Lemma 3 (Generalized Stroock-Varopoulos Inequality for Lsε). Let s ∈ (0, 1), and let
ψ, φ ∈ C1(R) be such that ψ′, φ′ ≥ 0. Then,

(2.10)

�
ψ(f)Lsε [φ(f)] dx ≥ 0.

If we take ψ(f) = f , then we obtain

(2.11)

�
fLsε [φ(f)] dx ≥

�
|L

s
2
ε Φ(f)|2dx,

where φ′ = (Φ′)2.

Proof. We have

�
ψ(f)Lsε [φ(f)] dx = CN,s

� �
ψ(f(x))

φ(f(x))− φ(f(y))

(|x− y|2 + ε2)
N+2s

2

dxdy

=
C

2

� �
[ψ(f(x))− ψ(f(y))] [φ(f(x))− φ(f(y))]

(|x− y|2 + ε2)
N+2s

2

dxdy.

Since ψ′, φ′ ≥ 0, we have

[ψ(f(x))− ψ(f(y))] [φ(f(x))− φ(f(y))] ≥ 0.

Hence, we get (2.10).
Finally, (2.11) is proved in Theorem 3.2, [27].

To end this part, we point out some well-known fundamental inequalities, used several
times in this paper.

Lemma 4. For any α > 0 and β ∈ (0, 1), there holds∣∣|a|αβ−1a− |b|αβ−1b
∣∣ ≤ 21−β ∣∣|a|α−1a− |b|α−1b

∣∣β , ∀a, b ∈ R.

Lemma 5. Let α, β > 0, and θ = α+β
2

. Then, there is a constant C > 0 such that

(2.12)
∣∣|a|θ−1a− |b|θ−1b

∣∣2 ≤ C
∣∣|a|α−1a− |b|α−1b

∣∣ ∣∣|a|β−1a− |b|β−1b
∣∣ , ∀a, b ∈ R.
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3 A regularized problem

In this section, we study the solutions of the following problem.

(3.1)

{
∂tu− δ1∆u+ δ2Ls0ε [Jκ(u)]− div Θε,ν(u) = f, in RN × (0, T ),

u(0) = u0, in RN ,

where s0 = (1− 2s)+, Θε,ν(u) = Hν(u)∇(−∆)−1L1−s
ε [Gν(u)], and

Hν(u) =
|u|m1+2

ν2 + u2
, Gν(u) =

|u|m2+1u

ν2 + u2
, Jκ(u) =

|u|m0+1u

u2 + κ2
,

with m0 = 1
2

min{m1,
m2(N − 2s0)

N
}, and for every δ1, δ2, ε, κ, ν ∈ (0, 1). Note that (3.1)

is a regularization of (1.1). We shall prove the existence of solutions of (3.1) in a suitable
functional space by using the fixed-point theorem, and derive some energy estimates.
Let us put

X = L1(RN) ∩ L∞(RN).

The associated norm ‖.‖X is ‖.‖L1(RN ) + ‖.‖L∞(RN ). Then, we have

Theorem 4. Let u0 ∈ X and f ∈ L1(QT ) ∩ L∞(QT ). Then, there exists a weak solution
u ∈ C([0, T ];X) satisfying problem (3.1) in the weak sense, i.e:

� T

0

�
(−uϕt + δ1∇u.∇ϕ+ δ2Ls0ε [Jκ(u)]ϕ−Θε,ν(u).∇ϕ− fϕ) dxdt = 0,

for all ϕ ∈ C∞c (QT ).

Proof. To prove Theorem 4, we first look for a mild solution u ∈ C([0, T ];X) as a fixed
point of the map

T : u 7→ etδ1∆u0 +

� t

0

∇e(t−τ)δ1∆Θε,ν(u)dτ +

� t

0

e(t−τ)δ1∆ (−δ2Ls0ε [Jκ(u)] + f(x, τ)) dτ,

where et∆ is the semigroup corresponding to the heat kernel (4πt)−
N
2 exp(− |x|

2

4t
). Further-

more, we have a fundamental estimate for the heat semigroup et∆ (see Proposition 1.2,
Ch. 15, [30]).

Proposition 1. For every 1 ≤ q ≤ r ≤ ∞, there holds

‖∇ketδ∆u‖Lr ≤ Ct−
N
2

( 1
q
− 1
r

)− k
2 ‖u‖Lq , ∀t > 0,

where the constant C > 0 depends on the parameters involved.
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Proof. The proof of Proposition 1 is quite easy. It follows from Young’s inequality for
convolution, so we skips the detail and leave it to the reader.

Next, the following lemma shows that the operator T is a local contraction:

Lemma 6. For any T ∈ (0, 1), the operator T maps C([0, T ];X) into itself. Moreover,
there is a real number γ ∈ (0, 1) such that for all u, v ∈ B(0, R) ⊂ C([0, T ];X),

(3.2) ‖T (u)− T (v)‖C([0,T ];X) ≤ C(R)T γ‖u− v‖C([0,T ];X),

where C(R) depends on R and the parameters involved.

Proof of Lemma 6. Let us drop the dependence on the parameters ε, ν, κ of the terms
Θε,ν , Hν , Gν , Jκ for short. Then, we have

T (u)− T (v) =

� t

0

∇e(t−τ)δ1∆ (Θ(u)−Θ(v)) dτ + δ2

� t

0

e(t−τ)δ1∆(Ls0ε [J(u)− J(v)])dτ.

(3.3)

By applying Proposition (1), we obtain

‖T (u)(t)− T (v)(t)‖Lr ≤C
� t

0

(t− τ)−
N
2

( 1
q
− 1
r

)− 1
2‖Θ(u)−Θ(v)‖Lqdτ

+ C

� t

0

(t− τ)−
N
2

( 1
q
− 1
r

)‖Ls0ε [J(u)− J(v)]‖Lqdτ.
(3.4)

Obviously, we will consider r = 1 and r =∞ alternatively in the following.
We now consider the first term on the right hand side of (3.4). Let us write

A = Θ(u)−Θ(v) = (H(u)−H(v))∇(−∆)−1L1−s
ε [G(u)]

+H(v)∇(−∆)−1L1−s
ε [G(u)−G(v)] .

Let us fix q > N
N−1

, and put q′ = q
q−1

, q? = Nq
N+q

. Then,

‖A‖L1 ≤ ‖H(u)−H(v)‖Lq′‖I1[L1−s
ε [G(u)]]‖Lq + ‖H(v)‖Lq′‖I1[L1−s

ε [G(u)−G(v)]]‖Lq
. sup
|z|≤2R

{|H ′(z)|}‖u− v‖Lq′‖L1−s
ε [G(u)]‖Lq? + sup

|z|≤R
{|H ′(z)|}‖v‖Lq′‖L1−s

ε [G(u)−G(v)]‖Lq?

. sup
|z|≤2R

{|H ′(z)|}‖u− v‖Lq′‖G(u)‖Lq? + sup
|z|≤R
{|H ′(z)|}‖v‖Lq′‖G(u)−G(v)‖Lq?

. sup
|z|≤2R

{|H ′(z)G′(z)|}‖u− v‖X‖u‖X + sup
|z|≤2R

{|H ′(z)G′(z)|}‖v‖X‖u− v‖X .

Thus,

(3.5) ‖A‖L1 ≤ C(R, ε)‖u− v‖X .
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Note that the second inequality is obtained by using the well known property of Riesz
potential I1, and the fourth inequality follows from the interpolation inequality that

‖u‖Lr ≤ ‖u‖X , for r ≥ 1.

Similarly, we also get

‖Ls0ε [J(u)− J(v)]‖L1 ≤ C‖J(u)− J(v)‖L1

≤ C sup
|z|≤2R

{|J ′(z)|}‖u− v‖L1

≤ C1(R)‖u− v‖X .(3.6)

By choosing r = q = 1 in (3.4), and by (3.5), (3.6), we obtain

‖T (u)− T (v)‖L1 ≤ C(R, ε)

� t

0

(t− τ)−
1
2‖u− v‖Xdτ + C1(R)

� t

0

‖u− v‖Xdτ

≤ C2(R, ε)
√
T‖u− v‖C([0,T ];X),(3.7)

for any t ∈ (0, T ), with C2(R, ε) = max{C1(R), C(R, ε)}.

Next, we estimate ‖A‖Lq for every q > N . In a similar way to the proof of (3.5), we have

‖A‖Lq ≤ ‖H(u)−H(v)‖L∞‖I1L1−s
ε [G(u)]‖Lq + ‖H(v)‖L∞‖I1L1−s

ε [G(u)−G(v)]‖Lq
. sup
|z|≤2R

{|H ′(z)|}‖u− v‖L∞‖G(u)‖Lq? + sup
|z|≤R
{|H ′(z)|}‖v‖L∞‖G(u)−G(v)‖Lq?

. sup
|z|≤2R

{|H ′(z)G′(z)|}‖u− v‖X‖u‖X + sup
|z|≤2R

{|H ′(z)G′(z)|}‖v‖X‖u− v‖X

≤ C3(R, ε)‖u− v‖X .(3.8)

By the same argument as in (3.6), we also obtain

(3.9) ‖Ls0ε [J(u)− J(v)]‖Lq ≤ C4(R)‖u− v‖X .

Now, let us take r =∞ in (3.4). By (3.8) and (3.9), we obtain

‖T (u)− T (v)‖L∞ ≤ C3(R, ε)

� t

0

(t− τ)−
N
2q
− 1

2‖u− v‖Xdτ

+ C4(R)

� t

0

(t− τ)−
N
2q ‖u− v‖Xdτ.

Thus,

(3.10) ‖T (u)(t)− T (v)(t)‖L∞ ≤ C5(R, ε)T
1
2
−N

2q ‖u− v‖C([0,T ];X).
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From (3.10) and (3.7), we get (3.2) with γ = 1
2
− N

2q
.

Finally, it remains to show that T maps B(0, R) into B(0, R), with

R = 2C(δ1)
(
‖u0‖X + ‖f‖L∞(QT ) + ‖f‖L1(QT )

)
.

Indeed, let us take v = 0 in (3.2). Then,

(3.11) ‖T (u)‖C([0,T ];X) ≤ ‖T (0)‖C([0,T ];X) + C6(R, ε)T γ‖u‖C([0,T ];X),

with

T (0)(t) = etδ1∆u0 +

� t

0

e(t−τ)δ1∆f(., τ)dτ.

Now, for every ‖u‖C([0,T ];X) < R, let T ∈ (0, 1) be small enough such that C6(R, ε)T γ < 1
2
.

Therefore, (3.11) implies

(3.12) ‖T (u)‖C([0,T ];X) ≤ ‖T (0)‖C([0,T ];X) +
R

2
.

On the other hand, it is not difficult to show that

(3.13) ‖T (0)(t)‖L1 ≤ C(δ1)
(
‖u0‖L1 + ‖f‖L1(QT )

)
.

And

(3.14) ‖T (0)(t)‖L∞ ≤ C(δ1)
(
‖u0‖L∞ + t‖f‖L∞(QT )

)
.

A combination of (3.13) and (3.14) implies

‖T (0)‖C([0,T ];X) ≤ C(δ1)
(
‖u0‖X + ‖f‖L1(QT ) + T‖f‖L∞(QT )

)
≤ R

2
.

This inequality and (3.12) implies that T maps B(0, R) into B(0, R). Thus, we obtain
Lemma 6.

Now, by applying Lemma 6, there is a unique mild solution uε,ν,κ ∈ C([0, T ];X) (denoted
as u for short) satisfying the equation T (u) = u. This yields Theorem 4.

Remark 3. By the standard regularity, if u0 and f are smooth then so is u. Thanks to
this point, in what follows, we can use a smoothing effect to the data by assuming that
u0 ∈ C∞c (RN) and f ∈ C∞c (QT ).

Next, we derive some estimates for solution u of (3.1). The first estimate is the Lq-
estimate.
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Proposition 2. Let u be a solution of (3.1) in QT . Then, for every q ∈ [1,∞) we have

(3.15) ‖u(t)‖Lq(RN ) ≤ ‖u0‖Lq(RN ) + t
q−1
q ‖f‖Lq(Qt), ∀t ∈ (0, T ).

In particular, if q =∞ then

(3.16) ‖u(t)‖L∞(RN ) ≤ t‖f‖L∞(Qt) + ‖u0‖L∞(RN ).

Moreover, there is a positive constant C, depending only T, u0, f such that

(3.17) δ1‖u‖2
L2((0,T );H1(RN )) ≤ C.

Proof. For every q > 1 and for t ∈ (0, T ), we use |u|q−2u as a test function to (3.1) and
integrate on RN in order to obtain

1

q

d

dt

�
|u(t)|qdx+ (q − 1)

�
|u|q−2Hν(u)∇(−∆)−1L1−s

ε [Gν(u)].∇u dx

+ δ1(q − 1)

�
|u|q−2|∇u|2 dx+ δ2

�
Ls0ε [Jκ(u)]|u|q−2u dx

=

�
f(x, t)|u|q−2u dx.(3.18)

Thanks to Lemma 3, we get

(3.19)

�
|u|q−2uLs0ε [Jκ(u)] dx ≥ 0,

with ψ(u) = |u|q−2u, and φ(u) = Jκ(u).
On the other hand, we observe that�

|u|q−2Hν(u)∇(−∆)−1L1−s
ε [Gν(u)].∇u dx

=

�
∇(−∆)−1L1−s

ε [Gν(u)].∇H̃ν(u) dx

=

�
H̃ν(u)(−∆)(−∆)−1L1−s

ε [Gν(u)] dx

=

�
H̃ν(u)L1−s

ε [Gν(u)] dx ≥ 0,(3.20)

with

H̃ν(u) =

� u

0

|s|q−2Hν(s)ds.

Note that the inequality in (3.20) is also obtained by applying Lemma 3.
A combination of (3.18), (3.19) and (3.20) implies

1

q

d

dt

�
|u(t)|qdx ≤

�
f(x, t)|u|q−2u dx.
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Using Hölder’s inequality yields

1

q

d

dt

�
|u(t)|qdx ≤

(�
|f(t)|qdx

)1/q (�
|u(t)|qdx

)(q−1)/q

.

This leads to
1

q
[y(t)]

(1−q)
q y′(t) ≤ ‖f(t)‖Lq ,

with y(t) =

�
|u(t)|qdx. By solving the above OD inequality, we obtain

[y(t)]1/q ≤ [y(0)]1/q +

� t

0

‖f(t)‖Lq(RN ).

Again, applying Hölder’s inequality yields (3.15).
Passing to the limit as q →∞, we deduce (3.16).

Next, we prove L1-estimate for u.
For any η > 0, let us put

χη(r) =

{
sign(r), if |r| > η,

1
η
r, if |r| ≤ η,

By multiplying (3.1) with χη(u), and integrating on RN , we get
�

(utχη(u) + δ1∇u.∇χη(u) + δ2Ls0ε [Jκ(u)]χη(u) + Θ(u).∇χη(u)) dx =
�
fχη(u)dx.(3.21)

Since χ′η(u) ≥ 0, it is clear that

�
∇u.∇χη(u)dx =

�
|∇u|2χ′η(u)dx ≥ 0,

and �
Ls0ε [Jκ(u)]χη(u)dx,

�
Θ(u).∇χη(u)dx ≥ 0

by using Lemma 3.
Thus, it follows from (3.21) after integrating on (0, t) that

�
Sη(u(t))dx ≤

�
Sη(u0)dx+ ‖f‖L1(Qt),

with

Sη(u) =

� u

0

χη(r)dr =
u2

2η
χ{|u|<η} + (|u| − η

2
)χ{|u|≥η}.
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Note that χA is the characteristic function of the set A.
It is not difficult to verify that

lim
η→0

�
Sη(u(t))dx =

�
|u(t)|dx.

So, (3.15) follows with q = 1.

It remains to prove (3.17). By the same above argument, we obtain from (3.18) with
q = 2

1

2
‖u(t)‖2

L2 + δ1

� t

0

�
|∇u|2dxds ≤ 1

2
‖u0‖2

L2 +

� t

0

�
fudxds.

Applying Hölder’s inequality yields

(3.22)
1

2
‖u(t)‖2

L2 + δ1

� t

0

�
|∇u|2dxds ≤ 1

2
‖u0‖2

L2 + ‖f‖L2(Qt)‖u‖L2(Qt).

Moreover, we have from (3.15) with q = 2

(3.23) ‖u(t)‖L2 ≤ ‖u0‖L2 +
√
t‖f‖L2(Qt).

A combination of (3.22) and (3.23) implies (3.17). Then, we obtain Proposition 2.

Proposition 3. Let u as in Proposition 2. Then, there is a constant C = C(m0, u0, f) > 0
such that for every κ, ε > 0

(3.24) δ2‖L
s0
2
ε [Jκ(uε)]‖L2(QT ) ≤ C.

Proof. Let us denote u = uε for short. Now, by using Jκ(u) as a test function to equation
(3.1) and integrating both sides on QT , we obtain

�
J̃κ(u(T ))dx+ δ1

� T

0

� (
J ′κ(u)|∇u|2 +Hν(u)∇(−∆)−1L1−s

ε [Gν(u)]J ′κ(u).∇u
)
dxdt

+ δ2

� T

0

�
Ls0ε [Jκ(u)]Jκ(u)dxdt =

�
J̃κ(u0)dx+

� T

0

�
fJκ(u)dxdt,(3.25)

with

J̃κ(u) =

� u

0

Jκ(s)ds.

By a simple calculation, we have

(3.26) 0 ≤ J̃κ(s) ≤
|s|m0+1

m0 + 1
, ∀s ∈ R.
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Note that J ′(s) ≥ 0, so

(3.27)

� T

0

�
J ′κ(u)|∇u|2dxdt ≥ 0,

and

� T

0

�
Hν(u)∇(−∆)−1L1−s

ε [Gν(u)]J ′κ(u).∇udxdt

=

� T

0

�
W (u)L1−s

ε [Gν(u)]dxdt ≥ 0,(3.28)

with

W (u) =

� u

0

Hν(s)J
′
κ(s)ds.

We observe that W ′(s) ≥ 0, so inequality (3.28) is obtained by using the Stroock-
Varopoulos’s inequality as (3.20).
Thus, it follows from (3.25), (3.26), (3.27) and (3.28) that

δ2‖L
s0
2
ε [Jκ(u)]‖2

L2(QT ) ≤
1

m0 + 1

�
|u0|m0+1dx+ ‖f‖L1(QT )‖Jκ(u)‖L∞(QT ).(3.29)

Furthermore, thanks to Proposition 2, we have

(3.30) ‖Jκ(u)‖L∞(QT ) ≤ ‖u‖m0

L∞(QT ) ≤ C(u0, f,m0).

Combining (3.29) and (3.30) yields (3.24). This completes the proof of Proposition 3.

Remark 4. As a consequence of (3.16), the norm ‖u(t)‖L∞(RN ) cannot be explosive for
t < T . Furthermore, we get the global existence of solution u provided that f ∈ L∞(Q∞)∩
L1(Q∞). In particular, if f ≡ 0 the norm ‖u(t)‖Lq(RN ) is nonincreasing with respect to t
for any q ≥ 1.

Remark 5. We emphasize that for any given δ1, δ2 > 0 the right hand side of the esti-
mates in Proposition 2 and Proposition 3 are independent of ε, ν, κ. Moreover, the two
perturbation terms −δ1∆u and δ2(−∆)s0 [|u|m0−1u] are positive and play a role in absorb-
ing div (|u|m1∇(−∆)−s[|u|m2−1u]). This observation will enable us to pass to the limit as
ε, ν, κ→ 0 in the following.

3.1 Limit as ε→ 0

Next, we shall pass to the limit as ε→ 0.
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Proposition 4. Let uε be the solution of problem (3.1), obtained from Lemma 6. Then,
there exists a subsequence of {uε}ε>0 (still denoted as {uε}ε>0 ) such that for any R > 0

uε → u, in L2 (BR × (0, T )) .

Furthermore, u ∈ L1(QT ) ∩ L∞(QT ) ∩ L2(0, T ;H1(RN)) is a solution of the following
problem

(3.31) ut − δ1∆u− div
(
Hν(u)∇(−∆)−s[Gν(u)]

)
+ δ2(−∆)s0Jκ(u) = f, in QT .

In addition, there exists a positive constant C = C(u0, f0,m0) such that

(3.32) δ2‖(−∆)
s0
2 Jκ(u)‖2

L2(QT ) ≤ C.

Proof. The main idea of the proof is to pass to the limit as ε→ 0 in the equation satisfied
by uε

(3.33)

� T

0

�
(−uεϕt + δ1∇uε.∇ϕ+ δ2Ls0ε [Jκ(uε)]ϕ+ Θε,ν(uε) · ∇ϕ− fϕ) dxdt = 0,

for all ϕ ∈ C∞c (QT ). Here, we denote

Θε,ν(uε) = Hν(uε)∇(−∆)−s[Gν(uε)].

At the beginning, let us fix a test function ϕ ∈ C∞c (QT ) such that Supp(ϕ) ⊂ BR, for
R > 0. Now, we recall a compactness result of Simon, [25], used several times in the
following.

Lemma 7. Assume that the spaces V1 ⊂ V2 ⊂ V3 with compact embedding V1 ⊂ V2 . Let
{un}n≥1 be a bounded sequence in Lp(0, T ;V1) and let {∂tun}n≥1 be bounded in L1(0, T ;V3).
Then {un}n≥1 is relatively compact in Lp(0, T ;V2).

Next, we have the following uniform estimates:

Lemma 8. div (Θε,ν(uε)) and Ls0ε [Jκ(uε)] are uniformly bounded in L2(0, T ;H−1(BR))
with respect to ε, κ > 0, where H−1(BR) is the dual space of H1

0 (BR).

Proof of Lemma 8. In fact, we have

‖Ls0ε [Jκ(uε)]‖H−1(BR) = sup
{‖ψ‖

H1
0(BR)

≤1}

∣∣∣∣�
BR

Ls0ε [Jκ(uε)]ψ(x)dx

∣∣∣∣
= sup
{‖ψ‖

H1
0(BR)

≤1}

∣∣∣∣�
RN
Ls0ε [Jκ(uε)]ψ(x)dx

∣∣∣∣
= sup
{‖ψ‖

H1
0(BR)

≤1}

∣∣∣∣�
RN
L
s0
2
ε [Jκ(uε)]L

s0
2
ε [ψ](x)dx

∣∣∣∣(3.34)
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The equality in (3.34) is obtained by using the Plancherel theorem. By Hölder’s inequality,
we get

(3.35) ‖Ls0ε [Jκ(uε)]‖H−1(BR) ≤ sup
{‖ψ‖

H1
0(BR)

≤1}
‖L

s0
2
ε [Jκ(uε)]‖L2(RN )‖L

s0
2
ε [ψ]‖L2(RN ).

Moreover, applying Hölder’s inequality and Young’s inequality yields

‖L
s0
2
ε [ψ]‖L2(RN ) .

(�
RN
|ξ|2s0|ψ̂(ξ)|2dξ

) 1
2

.

(�
RN
|ξ|2|ψ̂(ξ)|2dξ

) s0
2
(�

RN
|ψ̂(ξ)|2dξ

) 1−s0
2

. ‖ψ‖H1
0 (BR).(3.36)

A combination of (3.35) and (3.36) deduces

� T

0

‖Ls0ε [Jκ(uε)]‖2
H−1(BR)dt .

� T

0

‖L
s0
2
ε [Jκ(uε)]‖2

L2(RN )dt.

It follows from the last inequality and (3.24) that Ls0ε [Jκ(uε)] is bounded in L2(0, T ;H−1(BR))
by a constant, not depending on ε, κ.

Next, we claim that ‖ div Θε,ν(uε)‖L2(0,T ;H−1(BR)) is bounded by a constant, being inde-
pendent of ε. Due to some technical reasons, we divide our proof into the two following
cases:

i) If 1
2
≤ s < 1, for any t > 0 we apply the Plancherel theorem and Hölder’s inequality

in order to obtain

‖ div Θε,ν(uε, ν)(t)‖H−1(BR)

= sup
{‖ψ‖

H1
0(BR)

≤1}

∣∣∣∣�
RN
Hν(uε(t))∇(−∆)−1L1−s

ε [Gν(uε(t))]∇ψ(x)dx

∣∣∣∣
≤ sup
{‖ψ‖

H1
0(BR)

≤1}
‖Hν(uε(t))∇(−∆)−1L1−s

ε [Gν(uε(t))]‖Lqs (RN )‖∇ψ‖Lq′s (RN )

≤ sup
{‖ψ‖

H1
0(BR)

≤1}
‖Hν(uε)‖L∞(QT )‖∇(−∆)−1L1−s

ε [Gν(uε(t))]‖Lqs (RN )‖∇ψ‖L2(BR)|BR|1−
q′s
2

≤ |BR|1−
q′s
2 ‖uε‖m1

L∞(QT )‖∇(−∆)−1L1−s
ε [Gν(uε(t))]‖Lqs (RN ),

(3.37)

where qs = 2N
N−2(2s−1)

, and q′s = qs
qs−1

. Note that qs ≥ 2.

According to Proposition 2, ‖uε‖m1

L∞(QT ) is bounded by a constant, not depending on ε.
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Thus, it suffices to prove that ‖∇(−∆)−1L1−s
ε [Gν(uε(t))]‖Lqs (RN ) is uniformly bounded for

all ε > 0, and for t > 0. Indeed, it follows from the Riesz potential estimate that

‖∇(−∆)−1L1−s
ε [Gν(uε(t))]‖Lqs (RN ) = ‖∇1−2s(−∆)−(1−s)L1−s

ε [Gν(uε(t))]‖Lqs (RN )

= ‖I2s−1(−∆)−(1−s)L1−s
ε [Gν(uε(t))]‖Lqs (RN )

. ‖(−∆)−(1−s)L1−s
ε [Gν(uε(t))]‖L2(RN )

. ‖Gν(uε(t))‖L2(RN ).(3.38)

Morever, it is clear that

‖Gν(uε(t))‖L2(RN ) ≤
1

ν2
‖um2+2

ε (t)‖L2(RN ).

It follows from Proposition 2, and the Interpolation theorem that ‖um2+2
ε (t)‖L2(RN ) is uni-

formly bounded for all t > 0, and all ε > 0.
From (3.37), (3.38), and the last inequality, we get the claim for the case s ∈ [1

2
, 1).

In the following, we remove the dependence on time t of the terms in our estimates for
brief if no confusion.

ii) If 0 < s < 1
2
, we then have from the Plancherel theorem and Hölder’s inequality that

‖ div Θε(uε, ν)‖H−1(BR) = sup
{‖ψ‖

H1
0(BR)

≤1}

∣∣∣∣�
RN
Hν(uε)∇(−∆)−1L1−s

ε [Gν(uε)]∇ψ(x)dx

∣∣∣∣
≤ sup
{‖ψ‖

H1
0(BR)

≤1}
‖Hν(uε)∇(−∆)−1L1−s

ε [Gν(uε)]‖L2(RN )‖∇ψ‖L2(RN )

≤ ‖uε‖m1

L∞(QT )‖∇(−∆)−1L1−s
ε [Gν(uε)]‖L2(RN )(3.39)

On the other hand, using the Plancherel theorem yields

‖∇(−∆)−1L1−s
ε [Gν(uε)]‖2

L2(RN ) = ‖F
{
∇(−∆)−1L1−s

ε [Gν(uε)]
}
‖2
L2(RN )

.
�
|ξ|2(1−2s)|F {Gν(uε)} (ξ)|2dξ.(3.40)

Since 0 < s < 1
2
, we can apply Hölder’s inequality in order to obtain

�
|ξ|2(1−2s)|F {Gν(uε)} |2dξ ≤

(�
|ξ|2|F {Gν(uε)} |2dξ

)1−2s(�
|F {Gν(uε)} |2dξ

)2s

≤ ‖Gν(uε)‖2
H1(RN ).(3.41)

Combining (3.40) and (3.41) yields

(3.42)

� T

0

‖∇(−∆)−1L1−s
ε [Gν(uε)]‖2

L2(RN )dt .
� T

0

‖Gν(uε)‖2
H1(RN )dt.
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Since Gν is a Lipschitz function with Gν(0) = 0, and by (3.17), there exists a constant
C > 0, being independent of ε such that

(3.43) ‖Gν(uε)‖2
L2(0,T ;H1(RN )) ≤ C.

Thus, the claim follows from (3.42) and (3.43).
This puts an end to the proof of Lemma 8.

Now, thanks to Lemma 8, ∂tuε is bounded in L2(0, T ;H−1(BR)) by a constant not depend-
ing on ε. Moreover, it follows from Proposition 2 that uε is bounded in L2(0, T ;H1

0 (BR)).
Thus, applying Lemma 7 implies that there is a subsequence of {uε}ε>0 (still denoted as
{uε}ε>0) such that

(3.44) uε → u, in L2 (BR × (0, T )) .

Thanks to Proposition 2, we deduce

uε → u, in Lp (BR × (0, T )) , for 1 ≤ p <∞,

and
u ∈ L∞(QT ).

By (3.17), ∇uε converges weakly to ∇u in L2(BR × (0, T )) up to a subsequence. Thus,
we get

(3.45)

� T

0

�
(−uεϕt + δ1∇uε.∇ϕ) dxdt→

� T

0

�
(−uϕt + δ1∇u.∇ϕ) dxdt.

Next, we consider the difference between the two integrals as follows

� T

0

�
(Ls0ε [Jκ(uε)]− (−∆)s0 [Jκ(u)])ϕ dxdt

=

� T

0

�
F{Ls0ε [Jκ(uε)]− (−∆)s0 [Jκ(u)]}F{ϕ(t)}(ξ) dξdt

=

� T

0

� (
F{Ls0ε }F{Jκ(uε)} − |ξ|2s0F{Jκ(u)}

)
F{ϕ(t)}(ξ) dξdt.(3.46)

We claim that

(3.47)

�
QT

|Aε(ξ)|dξdt→ 0,

as ε→ 0, with

Aε =
(
F{Ls0ε }F{Jκ(uε)} − |ξ|2s0F{Jκ(u)}

)
F{ϕ(t)}(ξ).
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In fact, it is obvious that Aε(ξ)→ 0 a.e in QT .
Moreover, we have

�
|Aε(ξ)|dξ .

�
|F{Ls0ε }||F{Jκ(uε)}|+ |ξ|2s0|F{Jκ(u)}||F{ϕ(t)}| dξdt

.
�
|ξ|2s0 (|F{Jκ(uε)}|+ |F{Jκ(u)}|) |F{ϕ(t)}(ξ)|dξdt.

The last inequality is obtain by using the fact |F{Lsε}(ξ)| ≤ |F{(−∆)s(ξ)| = C|ξ|2s, for
every ξ ∈ RN , and for s ∈ (0, 1).
Furthermore, using the standard property of Fourier transform yields

|F{Jκ(u)}(ξ)| ≤ ‖Jκ(u)‖L1 ≤ 1

κ2

�
|u(t)|m0+2dx ≤ C(u0, f,m0, κ),

by (3.15). Similarly, we also obtain

|F{Jκ(uε)}(ξ)| ≤ C(u0, f,m0, κ).

Thus,
�
|Aε(ξ)| dξdt ≤ C

�
|ξ|2s0|F{ϕ(t)}(ξ)|dξ.

Since ϕ(t) ∈ S(RN), so is F{ϕ(t)}. This fact implies that |ξ|2s0 |F{ϕ(t)}(ξ)| is integrable
on QT . Thanks to the Dominated Convergence Theorem, we obtain (3.47).
This leads to

(3.48)

� T

0

�
(Ls0ε [Jκ(uε)]− (−∆)s0 [Jκ(u)])ϕ dxdt→ 0, as ε→ 0.

It remains to prove that

(3.49)

� T

0

� (
div Θε,ν(uε)− div

(
Hν(u)∇(−∆)−s[Gν(u)]

))
ϕdxdt→ 0,

as ε→ 0. By technical reasons, we divide our proof into the two following cases:

• If 1
2
≤ s < 1, we rewrite

� T

0

� (
div Θε,ν(uε)− div

(
Hν(u)∇(−∆)−s[Gν(u)]

))
ϕdxdt

=

� T

0

� (
Hν(uε)∇(−∆)−1L1−s

ε [Gν(uε)]−Hν(u)∇(−∆)−s[Gν(u)]
)
.∇ϕdxdt
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Put

A1 =

� T

0

�
|Hν(uε)−Hν(u)|

∣∣∇(−∆)−1L1−s
ε [Gν(uε)]

∣∣ |∇ϕ|dxdt,
and

A2 =

� T

0

�
|Hν(u)|

∣∣∇(−∆)−1L1−s
ε [Gν(uε)]−∇(−∆)−s[Gν(u)]

∣∣ |∇ϕ|dxdt.
To obtain (3.49), it suffices to show that A1, A2 → 0, as ε→ 0.

A1 =

� T

0

�
|Hν(uε)−Hν(u)|

∣∣∇1−2s(−∆)−(1−s)L1−s
ε [Gν(uε)]

∣∣ |∇ϕ|dxdt
=

� T

0

�
|Hν(uε)−Hν(u)|

∣∣I2s−1

[
(−∆)−(1−s)L1−s

ε [Gν(uε)]
]∣∣ |∇ϕ|dxdt.

By the fundamental estimate for the Riesz potential and the Plancherel theorem, we get

‖I2s−1

[
(−∆)−(1−s)L1−s

ε [Gν(uε)]
]
‖Lqs . ‖(−∆)−(1−s)L1−s

ε [Gν(uε)]‖L2

. ‖Gν(uε)‖L2 ,

with qs = 2N
N−2(2s−1)

≥ 2.

Again, we observe that ‖Gν(uε)‖L2 is bounded by a constant not depending on ε. This
implies that the term I2s−1

[
(−∆)−(1−s)L1−s

ε [Gν(uε)]
]

is also bounded in Lqs . Moreover,
it is not difficult to prove that Hν(uε) → Hν(u) in Lp (BR × (0, T )), for any p ∈ [1,∞).
Thus, A1 → 0 as ε→ 0.

Similarly, we also have

‖I2s−1

[
(−∆)−(1−s)L1−s

ε [Gν(uε)]−Gν(u)
]
‖Lqs . ‖(−∆)−(1−s)L1−s

ε [Gν(uε)]−Gν(u)‖L2 .

Applying Lemma 2 yields

‖(−∆)−(1−s)L1−s
ε [Gν(uε)]−Gν(u)‖L2 → 0,

as ε→ 0. Thus

‖I2s−1

[
(−∆)−(1−s)L1−s

ε [Gν(uε)]−Gν(u)
]
‖Lqs → 0.

This implies A2 → 0.

• If s ∈ (0, 1
2
), we write

� T

0

�
div(Θε,ν(uε))ϕdxdt =

� T

0

�
div (Hν(uε)∇ϕ) (−∆)−1L1−s

ε [Gν(uε)]dxdt.(3.50)
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We will show that � T

0

�
div (Hν(uε)∇ϕ) (−∆)−1L1−s

ε [Gν(uε)]dxdt→
� T

0

�
div (Hν(u)∇ϕ) (−∆)−s[Gν(u)]dxdt

=

� T

0

�
div
(
Hν(u)∇(−∆)−s[Gν(u)]

)
ϕdxdt.(3.51)

One hand, we see that

‖ div (Hν(uε)∇ϕ) ‖L2 ≤ ‖H ′ν(uε)∇uε.∇ϕ‖L2 + ‖Hν(uε)∆ϕ‖L2 .(3.52)

It follows from Proposition 2 that H ′ν(uε) and Hν(uε) are bounded by a constant, being
independent of ε. This implies that the right hand side of (3.52) is also bounded, so is
‖ div (Hν(uε)∇ϕ) ‖L2 . Other hand, it is not difficult to verify that

div (Hν(uε)∇ϕ)→ div (Hν(u)∇ϕ) , in D′(QT ).

Then, div (Hν(uε)∇ϕ) converges weakly to div (Hν(u)∇ϕ) in L2(BR) (up to a subse-
quence).
Therefore, it is sufficient to prove that

(3.53) (−∆)−1L1−s
ε [Gν(uε)]→ (−∆)−s[Gν(u)], in L2

loc(QT ).

Indeed, we have

‖(−∆)−1L1−s
ε [Gν(uε)]− (−∆)−s[Gν(u)]‖Lq?s (RN )

= ‖(−∆)−s
(
(−∆)−(1−s)L1−s

ε [Gν(uε)]−Gν(u)
)
‖Lq?s (RN )

= ‖I2s

(
(−∆)−(1−s)L1−s

ε [Gν(uε)]−Gν(u)
)
‖Lq?s (RN )

. ‖(−∆)−(1−s)L1−s
ε [Gν(uε)]−Gν(u)‖L2(RN ),(3.54)

with q?s = 2N
N−4s

> 2.
Since Gν(uε)→ Gν(u) strongly in L2(QT ), then a modification of Lemma 2 implies

(3.55)
∥∥(−∆)−(1−s)L1−s

ε [Gν(uε)]−Gν(u)
∥∥
L2(QT )

→ 0.

By applying Hölder’s inequality and by (3.55), we obtain
� T

0

‖(−∆)−1L1−s
ε [Gν(uε)]− (−∆)−s[Gν(u)]‖2

L2(BR)dt

≤
� T

0

‖(−∆)−1L1−s
ε [Gν(uε)]− (−∆)−s[Gν(u)]‖2

Lq
?
s (BR)

|BR|2(1− 2
q?s

)
dt

≤ |BR|2(1− 2
q?s

)
� T

0

∥∥(−∆)−(1−s)L1−s
ε [Gν(uε)]−Gν(u)

∥∥2

L2(RN )
dt→ 0.
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This implies (3.53).
As a consequence, we obtain (3.51) and (3.49) alternatively.
A combination of (3.45), (3.48) and (3.49) ensures that u is a weak solution of (3.1).

Next, we prove (3.32). Indeed, we can mimic the proof of (3.47) to obtain

L
s0
2
ε [Jκ(uε)]→ (−∆)

s0
2 [Jκ(u)], in the sense of distribution D′(QT ),

as ε→ 0. Furthermore, it follows from (3.24) that

L
s0
2
ε [Jκ(uε)]→ (−∆)

s0
2 [Jκ(u)], weakly in L2(QT ).

Then,

lim inf
ε→0

‖L
s0
2
ε [Jκ(uε)]‖L2(QT ) ≥ ‖(−∆)

s0
2 [Jκ(u)]‖L2(QT ),

which implies (3.32).

To complete the proof of Proposition 4, it remains to show that u ∈ C([0, T ];Lp(RN)),
for all p ≥ 1. By (3.17), we observe that uε is bounded in L2(0, T ;H1

0 (BR)) by a constant,
not depending on ε. Moreover, ∂tuε is also bounded in L1(QT ) + L2(0, T ;H−1(BR)), for
any R > 0. Thanks to Theorem 1.1, [22], we obtain

u ∈ C
(
[0, T ];L2

loc(RN)
)
.

From this fact, we can mimic the argument, given in page 21 of [15] in order to get

u ∈ C
(
[0, T ];L1(RN)

)
.

By the boundedness of uε in QT , we have u ∈ C
(
[0, T ];Lp(RN)

)
, for every p ∈ [1,∞).

This ends to the proof of Proposition 4.

Remark 6. It is not difficult to verify that the solution u, obtained by passing to the limit
as ε→ 0 also satisfies Proposition 2. Moreover, the estimates in this part are independent
of κ. This observation will allow us to pass to the limit as κ→ 0 in the following.

3.2 Limit as κ→ 0

In this part, we shall pass to the limit as κ→ 0.

Proposition 5. Let uκ be the solution of problem (3.31), obtained in Proposition 2. Then,
there holds for any R > 0

uκ → u, in L2 (BR × (0, T ))
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up to a subsequence.
Furthermore, u ∈ L1(QT ) ∩ L∞(QT ) ∩ L2(0, T ;H1(RN)) is a solution of the following
problem

(3.56) ut − δ1∆u− div Θν(u) + δ2(−∆)s0(|u|m0−1u) = f, in QT ,

where we use the notation Θν(u) = Hν(u)∇(−∆)−s[Gν(u)].
In addition, we have

δ2‖(−∆)
s0
2 (|u|m0−1u)‖2

L2(QT ) ≤ C,(3.57)

where C > 0 depends only on m0, u0, f .

Proof. We first note that div Θν(uκ) and (−∆)s0 [Jκ(uκ)] are bounded in L2(0, T ;H−1(BR))
by a constant not depending on κ, see Remark 6. Thanks to the compactness result in
Lemma 7, there is a subsequence of {uκ}κ>0 such that

uκ → u, in L2 (BR × (0, T )) ,

as κ→ 0. It follows from Proposition 2 that

uκ → u, in Lp (BR × (0, T )) , for 1 ≤ p <∞,

and
u ∈ L∞(QT ).

Now, it suffices to show that u satisfies equation (3.56) in the weak sense.
Indeed, it is not difficult to verify that

� T

0

�
(−uκϕt + δ1∇uκ.∇ϕ−Θν(uκ) · ∇ϕ) dxdt→

� T

0

�
(−uϕt + δ1∇u.∇ϕ−Θν(u) · ∇ϕ) dxdt.

(3.58)

Thus, it remains to demonstrate that

(3.59)

� T

0

� (
(−∆)s0 [Jκ(uκ)]− (−∆)s0 [|u|m0−1u]

)
ϕdxdt→ 0.

Indeed, we have from the Plancherel’s theorem∣∣∣∣� T

0

� (
(−∆)s0 [Jκ(uκ)]− (−∆)s0 [|u|m0−1u]

)
ϕdxdt

∣∣∣∣
=

∣∣∣∣� T

0

� (
Jκ(uκ)− |u|m0−1u

)
(−∆)s0ϕdxdt

∣∣∣∣
≤

� T

0

� ∣∣Jκ(uκ)− |u|m0−1u
∣∣ |(−∆)s0ϕ|dxdt.
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By (3.16), we have∣∣(Jκ(uκ)− |u|m0−1u
)

(x, t)
∣∣ ≤ |Jκ(uκ)(x, t)|+ |u(x, t)|m0

≤ |uκ(x, t)|m0 + |u(x, t)|m0

≤ 2
(
‖u0‖L∞ + T‖f‖L∞(QT )

)m0 , ∀(x, t) ∈ QT .

Moreover, it is clear that Jκ(uκ)→ |u|m0−1u as κ→ 0, for a.e (x, t) ∈ QT .
Thus, applying the Dominated Convergence Theorem yields

� T

0

� ∣∣Jκ(uκ)− |u|m0−1u
∣∣ |(−∆)s0ϕ|dxdt→ 0,

when κ→ 0. This implies (3.59).
In conclusion, u is a weak solution of problem (3.56).
Finally, (3.57) follows from (3.32), and we obtain the proof of Proposition 5.

3.3 Limit as ν → 0

Proposition 6. Let uν be the solution, obtained in Proposition 5. Then, there exists a
subsequence of {uν}ν>0 converging to a function u in L2 (BR × (0, T )) for any R > 0.
Moreover, u ∈ L1(QT ) ∩ L∞(QT ) ∩ L2(0, T ;H1(RN)) is a solution of the equation

(3.60) ut − δ1∆u− div Θ(u) + δ2(−∆)s0(|u|m0−1u) = f, in QT .

Recall here that Θ(u) = H(u)∇(−∆)−s[G(u)], with H(u) = |u|m1 and G(u) = |u|m2−1u.

Proof. By (3.57) and the same argument as in Lemma 8, we obtain δ2(−∆)s0(|uν |m0−1uν)
is bounded in L2(0, T ;H−1(BR)) by a constant not depending on ν.
Now, we show that

(3.61) ‖ div
(
Hν(uν)∇(−∆)−s[Gν(uν)]

)
‖L2(0,T ;H−1(BR)) ≤ C,

with C > 0 is independent of ν.
The idea of the proof of (3.61) is most likely to the one of Lemma 8, but we need to
derive the estimates, not depending on the parameter ν. To do that, we have to use some
properties of the term (−∆)s0(|uν |m0−1uν). We divide our proof into the two following
cases:

i) If s ∈ [1
2
, 1), we mimic the proof of (3.37) and (3.38) to obtain

‖ div
(
Hν(uν)∇(−∆)−s[Gν(uν)]

)
‖H−1(BR) ≤ ‖uν‖m1

L∞(QT )‖I2s−1[Gν(uν)]‖L2(BR),(3.62)
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and

‖I2s−1[Gν(uν)]‖Lqs . ‖Gν(uν)‖L2 ≤
(�
|uν(x)|2m2dx

) 1
2

.(3.63)

From the Sobolev embedding, we have

‖|uν |m0−1uν‖Lq?s0 . ‖(−∆)
s0
2 (|uν |m0−1uν)‖L2 ,

with q?s0 = 2N
N−2s0

. It follows from (3.57) that there exists a constant C > 0 (not depending
on ν) such that

(3.64)

�
|uν(x)|m0q?s0dx ≤ C.

Since m0 ≤ m2(N−2s0)
2N

, then we have from (3.64)

(3.65)

�
|uν(x)|2m2dx ≤ ‖uν‖

2m2−m0q?s0
L∞(QT )

�
|uν(x)|m0q?s0dx ≤ C,

We also remind here that ‖uν‖L∞(QT ) is bounded by a constant C = C(u0, f).
A combination of (3.62), (3.63) and (3.65) deduces

‖ div
(
Hν(uν)∇(−∆)−s[Gν(uν)]

)
‖H−1(BR) ≤ C.

Or, we obtain (3.61).

ii) If s ∈ (0, 1
2
) then

‖ div
(
Hν(uν)∇(−∆)−s[Gν(uν)]

)
‖H−1(BR) = sup

‖ψ‖
H1
0(BR)

=1

∣∣∣∣�
BR

Θ(uν) · ∇ψdx
∣∣∣∣

= sup
‖ψ‖

H1
0(BR)

=1

∣∣∣∣�
RN

div(Hν(uν)∇ψ)(−∆)−s[Gν(uν)]dx

∣∣∣∣
= sup
‖ψ‖

H1
0(BR)

=1

∣∣∣∣�
RN

(−∆)−
1
2 div(Hν(uν)∇ψ)(−∆)

1
2
−s[Gν(uν)]dx

∣∣∣∣
≤ sup
‖ψ‖

H1
0(BR)

=1

‖(−∆)
1
2
−sGν(uν)‖L2(RN )‖(−∆)−

1
2 div(Hν(uν)∇ψ)‖L2(RN ).(3.66)

Thanks to Plancherel’s theorem, there is a constant C = C(N) > 0 such that

‖(−∆)−
1
2 div(Hν(uν)∇ψ)‖L2(RN ) ≤ C‖Hν(uν)∇ψ‖L2(RN ) ≤ C‖ψ‖H1

0 (BR).(3.67)
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By (3.66) and (3.67), we obtain
(3.68)� T

0

‖ div
(
Hν(u)∇(−∆)−s[Gν(u)]

)
‖2
H−1(BR)dt ≤ C

� T

0

‖(−∆)
1
2
−sGν(uν)‖2

L2(RN )dt.

On the other hand, we have

|Gν(a)−Gν(b)| ≤ C
∣∣|a|m0−1a− |b|m0−1b

∣∣ (|a|+ |b|)m2−m0 , ∀a, b ∈ R,

with C = C(m0,m2), for all ν ∈ (0, 1). Thus,

‖(−∆)
1
2
−sGν(uν)‖2

L2(QT ) =

� T

0

� �
|Gν(uν(x))−Gν(uν(y))|2

|x− y|N+2(1−2s)
dxdydt

≤ C‖uν‖m2−m0

L∞(QT )

� T

0

� �
||uν(x)|m0−1uν(x)− |uν(y)|m0−1uν(y)|2

|x− y|N+2(1−2s)
dxdydt

≤ C‖uν‖m2−m0

L∞(QT )‖(−∆)
s0
2

(
|uν |m0−1uν

)
‖2
L2(QT ).(3.69)

Note that s0 = 1 − 2s in this case. Thanks to (3.57) and Proposition 2, the right
hand side of the last inequality is bounded by a constant, being independent of ν, so is
‖(−∆)

1
2
−sGν(uν)‖2

L2(QT ).

Thus, (3.61) follows from (3.68) and the boundedness of ‖(−∆)
1
2
−sGν(uν)‖2

L2(QT ). Thanks

to Lemma 7, there is a subsequence of {uν}ν>0, converging to u in L2(BR × (0, T )) when
ν → 0.
By Proposition 2, we deduce

uν → u, in Lp(BR × (0, T )) , for 1 ≤ p <∞,

and
u ∈ L∞(QT ).

Now, we shall show that u is a weak solution of problem (3.60).
We claim that

(3.70) (−∆)−
1
2 div(Hν(uν)∇ϕ)→ (−∆)−

1
2 div(|u|m1∇ϕ),

strongly in L2(QT ).
It follows from Plancherel’s theorem that∥∥∥(−∆)−

1
2 div ((Hν(uν)− |u|m1))∇ϕ

∥∥∥
L2(RN )

. ‖(Hν(uν)− |u|m1)∇ϕ‖L2(RN ) .

Thus, ∥∥∥(−∆)−
1
2 div ((Hν(uν)− |u|m1))∇ϕ

∥∥∥
L2(QT )

. ‖(Hν(uν)− |u|m1)∇ϕ‖L2(QT ) .
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Since Hν(uν(x, t)) → |u(x, t)|m1 for a.e. (x, t) ∈ QT (up to a subsequence if necessary),
then we have

(Hν(uν)− |u|m1)∇ϕ→ 0, for a.e. (x, t) ∈ QT .

Furthermore, by Proposition 2 we have

|(Hν(uν(x, t))− |u(x, t)|m1)∇ϕ| ≤ C(u0, f, T )|∇ϕ|, ∀(x, t) ∈ QT .

Thanks to the Dominated Convergence Theorem, we obtain (3.70).
Next, we deduce from (3.69)

(−∆)
1
2
−sGν(uν)→ (−∆)

1
2
−s(|u|m2−1u),

weakly in L2(QT ) as ν → 0.
Thus, �

div
(
Hν(uν)∇(−∆)−s[Gν(uν)]

)
ϕdx→

�
div Θ(u)ϕdx.

On the other hand, it is not difficult to show that
� T

0

�
uνϕtdxdt→

� T
0

�
uϕtdxdt,� T

0

�
δ1∇uν .∇ϕdxdt→

� T
0

�
δ1∇u.∇ϕdxdt,� T

0

�
δ2(−∆)s0 [|uν |m0−1uν ]ϕdxdt→

� T
0

�
δ2(−∆)s0 [|u|m0−1u]ϕdxdt,

as ν → 0. Therefore, u is a weak solution of problem (3.60).
Or, we complete the proof of Proposition 6.

3.4 Limit as δ1, δ2 → 0

In this subsection, we will pass to the limit as δ2, δ1 → 0 alternatively. Then, we have
the following result.

Proposition 7. Let uδ2 be a solution of (3.60) above. Then, there exists a subsequence
of {uδ2}δ2>0, converging to a function u in L2 (BR × (0, T )) for any R > 0.
Moreover, u ∈ L1(QT ) ∩ L∞(QT ) is a weak solution of the following problem

(3.71) ut − δ1∆u− div Θ(u) = f, in QT ,

Proof. We rewrite equation (3.60), satisfied by uδ2 in the weak sense as follows

� T

0

�
RN

(
−uδ2ϕt − δ1uδ2∆ϕ+H(uδ2)∇(−∆)−s[G(uδ2)] · ∇ϕ

+δ2(−∆)s0 [|uδ2|m0−1uδ2 ]ϕ− fϕ
)
dxdt = 0, ∀ϕ ∈ C∞c (QT ).(3.72)
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Our purpose is to pass to the limit as δ2 → 0 in (3.72) in order to obtain

� T

0

�
RN

(
−uϕt − δ1u∆ϕ+H(u)∇(−∆)−s[G(u)] · ∇ϕ− fϕ

)
dxdt = 0, ∀ϕ ∈ C∞c (QT ),

(3.73)

which says that u is a weak solution of equation (3.71).
First, we claim that

(3.74) δ2(−∆)s0 [|uδ2|m0−1uδ2 ]→ 0, in D′(RN),

as δ2 → 0.
Indeed, for any ϕ ∈ D(RN × (0, T )), we apply Hölder’s inequality and (3.57) in order to
obtain

δ2

∣∣∣∣� T

0

�
RN

(−∆)s0 [|uδ2|m0−1uδ2 ]ϕdxdt

∣∣∣∣ = δ2

∣∣∣∣� T

0

�
RN

(−∆)
s0
2 [|uδ2|m0−1uδ2 ](−∆)

s0
2 ϕdxdt

∣∣∣∣
≤ δ2‖(−∆)

s0
2 [|uδ2|m0−1uδ2 ]‖L2(QT )‖(−∆)

s0
2 ϕ‖L2(QT )

≤ C ′
√
δ2‖(−∆)

s0
2 ϕ‖L2(QT ).

This yields the claim.
Next, we prove that there is a subsequence of {uδ2}δ2>0, (still denoted as {uδ2}δ2>0) such
that

(3.75) uδ2 → u, in Lq (BR × (0, T )) ,

for any R > 0, and for any q ∈ [1,∞). Thus, up to a subsequence, we have

(3.76) uδ2(x, t)→ u(x, t), for a.e (x, t) ∈ RN × (0, T ),

so
u ∈ L∞(QT ).

In fact, using |u|q−2u as a test function to equation (3.60), we obtain as in (3.18)
(3.77)� T

0

�
RN

�
RN

(G(uδ2(x))−G(uδ2(y))) (|uδ2|m1+q−2uδ2(x)− |uδ2|m1+q−2uδ2(y))

|x− y|N+2(1−s) dxdydt ≤ C,

Let us fix q > 1 in (3.77) such that γ = m1+m2+q−1
2

≥ 1 . It follows from Lemma 5 and
(3.77) that

(3.78)

� T

0

�
RN

�
RN

||uδ2(x)|γ−1uδ2(x)− |uδ2(y)|γ−1uδ2(y)|2

|x− y|N+2(1−s) dxdydt ≤ C,

where C > 0 is independent of δ2, δ1.
This implies that vδ2 = |uδ2 |γ−1uδ2 is uniformly bounded in L2(0, T ;H1−s(RN)) for all
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δ2 > 0.
Moreover, since γ ≥ 1, it follows then from Proposition 2 and the Interpolation theorem
that

lim
|E|→0,E⊂(0,T )

sup
δ2>0

�
E

�
RN
|vδ2(x, t)|2dxdt = 0,

and ‖vδ2‖L2(RN×(0,T )) is bounded by a constant, being independent of δ1, δ2. Thus, there
is a subsequence of {vδ2}δ2>0 (still denoted as {vδ2}δ2>0) such that

vδ2 ⇀ v, weakly in L2
(
RN × (0, T )

)
.

Thanks to a result of Rakotoson and Temam, [23], we obtain for any R > 0

(3.79) vδ2 → v, in L2 (BR × (0, T )) .

Now, applying Lemma 4 and Hölder’s inequality yields
� T

0

�
BR

|uδ2 − u| dxdt ≤
� T

0

�
BR

∣∣|uδ2|γ−1uδ2 − |u|γ−1u
∣∣ 1γ dxdt

≤
(� T

0

�
BR

∣∣|uδ2|γ−1uδ2 − |u|γ−1u
∣∣2 dxdt) 1

2γ

(T |BR|)1− 1
2γ

= (T |BR|)1− 1
2γ ‖vδ2 − v‖

1
γ

L2(BR×(0,T )).

A combination of the last inequality, (3.79), and the uniform boundedness of uδ2 implies
(3.75).
It remains to show the convergence of ∇(−∆)−s[G(uδ2)] → ∇(−∆)−s[G(u)] in D′(QT ).
We divide our proof into the two following cases.

i) The case s ∈ (0, 1
2
). We show that

(3.80) ∇(−∆)−s[G(uδ2)] ⇀ ∇(−∆)−s[G(u)], in Lp
(
0, T ;W−1,p(RN)

)
up to a subsequence, for p > 1 such that m2p

′ ≥ 1, 1
p

+ 1
p′

= 1, and W−1,p(RN) is the dual

space of W 1,p(RN).
We emphasize that it is enough to consider the case 0 < m2 < 1 in the following because
the case m2 ≥ 1 is much easier.
By using Hölder’s inequality and Plancherel’s theorem, we get

‖∇(−∆)−s[G(uδ2)]‖W−1,p(RN ) = sup
‖ψ‖

W1,p(RN )
=1

∣∣∣∣�
RN
∇(−∆)−s[G(uδ2)]ψdx

∣∣∣∣
= sup
‖ψ‖

W1,p(RN )
=1

∣∣∣∣�
RN
G(uδ2)∇(−∆)−sψdx

∣∣∣∣
≤ sup
‖ψ‖

W1,p(RN )
=1

‖G(uδ2)‖Lp′ (RN )‖∇1−2sψ‖Lp(RN ).
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Now, we apply Lemma 11 in order to obtain

‖∇1−2sψ‖Lp(RN ) ≤ C‖∇ψ‖1−2s
Lp(RN )

‖ψ‖2s
Lp(RN ).

Combining the two last inequalities yields

(3.81) ‖∇(−∆)−s[G(uδ2)]‖W−1,p(RN ) . ‖G(uδ2)‖Lp′ (RN ) = ‖uδ2‖m2

Lm2p
′
(RN )

.

Thanks to Proposition 2 and the fact m2p
′ ≥ 1, it follows from (3.81) that

(3.82) ‖∇(−∆)−s[G(uδ2)]‖Lp(0,T ;W−1,p(RN )) ≤ C(u0, f, p,m2, T ).

Thus, ∇(−∆)−s[G(uδ2)] is uniformly bounded in Lp
(
0, T ;W−1,p(RN)

)
for all δ2 > 0.

Then, there exists a function w such that

∇(−∆)−s[G(uδ2)] ⇀ w, in Lp
(
0, T ;W−1,p(RN)

)
,

up to a subsequence.
On the other hands, we also have

G(uδ2) ⇀ G(u), in Lp
′
(QT ) .

This implies (3.80).

ii) The case s ∈ (1
2
, 1). We prove that for any R > 0

(3.83) ∇(−∆)−s[G(uδ2)] ⇀ ∇(−∆)−s[G(u)], in L2 (BR × (0, T )) .

To do that, we first show that

(3.84)

� T

0

‖∇(−∆)−s[G(uδ2)]‖2
L2(BR)dt ≤ C,

where C > 0 is independent of δ1, δ2.
Let us fix q > 1 in (3.77) such that γ ≥ 1 in (3.78). For any β ∈ (s, 1+s

2
), we apply

Hölder’s inequality and the Plancherel theorem to get

‖∇(−∆)−s[G(uδ2)]‖Lr(RN ) = sup
‖ψ‖

Lr
′
(RN )

=1

∣∣∣∣�
RN

(−∆)β−s[G(uδ2)]∇(−∆)−βψdx

∣∣∣∣
≤ sup
‖ψ‖

Lr
′
(RN )

=1

‖(−∆)β−s[G(uδ2)]‖Lp′ (RN )‖I2β−1(ψ)‖Lp(RN )

. sup
‖ψ‖

Lr
′
(RN )

=1

‖(−∆)β−s[G(uδ2)]‖Lp′ (RN )‖ψ‖
L

Np
N+p(2β−1) (RN )

,
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if provided that

(3.85)
Np

N + p(2β − 1)
> 1⇔ N

p′
> (2β − 1).

Now, we take r′ = Np
N+p(2β−1)

in the last inequality in order to get

(3.86) ‖∇(−∆)−s[G(uδ2)]‖Lr(RN ) . ‖(−∆)β−s[G(uδ2)]‖Lp′ (RN ).

Next, let us put γ0 = m2

γ
∈ (0, 1), and let β be such that β − s < γ0(1− s).

Applying Lemma 12 with v = |uδ2|γsign(uδ2), and Γ(v) = |v|γ0sign(v) yields

‖(−∆)β−s[G(uδ2)]‖Lp′ (RN ) ≤ C‖|uδ2|γ−1uδ2‖Ḣ1−s(RN ),

with

(3.87)
β − s
γ0

+
N

2
=
N

p′
+ 1− s.

Since N ≥ 2, γ0 ∈ (0, 1), and β ∈ (s, 1+s
2

), then it is not difficult to verify that there exists
a real number p′ ∈ (2, N

2β−1
) so that (3.85) and (3.87) hold.

Combining the last inequalities and (3.86) yields

‖∇(−∆)−s[G(uδ2)]‖Lr(RN ) ≤ C‖|uδ2|γ−1uδ2‖Ḣ1−s(RN ).

Here, we note that r > 2 since β is close enough to s. Then, for any ball BR in RN , it
follows from Hölder’s inequality that

� T

0

‖∇(−∆)−s[G(uδ2)]‖2
L2(BR)dt ≤ |BR|2(1− 2

r
)

� T

0

‖∇(−∆)−s[G(uδ2)]‖2
Lr(BR)dt

. |BR|2(1− 2
r

)

� T

0

‖|uδ2|γ−1uδ2‖2
Ḣ1−s(RN )

dt.(3.88)

By (3.78) and (3.88), we obtain (3.84).
This implies that ∇(−∆)−s[G(uδ2)] converges weakly to a function w in L2 (BR × (0, T ))
as δ2 → 0, up to a subsequence.
Moreover, since G(uδ2)→ G(u) for a.e (x, t) ∈ RN × (0, T ), then we obtain (3.83).

iii) The case s = 1
2
. This case is quite simple.

Indeed, since ∇0 = ∇(−∆)−1/2 = ∇I1u (the Riesz transform of u), then we have

‖∇(−∆)−1/2[G(uδ2)]‖
q
Lq(QT ) . ‖G(uδ2)‖

q
Lq(QT )

for any q > 1 such that m2q ≥ 1. Thanks to Proposition 2, we obtain

‖G(uδ2)‖
q
Lq(QT ) ≤ C,
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where C > 0 is independent of δ1, δ2. As a result, there is a subsequence of {∇(−∆)−1/2[G(uδ2)]}δ2>0

such that

(3.89) ∇(−∆)−1/2[G(uδ2)] ⇀ ∇(−∆)−1/2[G(u)], in L2 (QT ) .

Thanks to (3.74), (3.75), (3.80), (3.83), and (3.89), we can pass to the limit as δ2 → 0 in
equation (3.72) in order to obtain equation (3.73). In other words, u is a weak solution
of (3.71).
Hence, we get the proof of Proposition 7.

Remark 7. We emphasize that the estimates in the proof of Proposition 7 are also inde-
pendent of δ1.

Next, we will pass to the limit as δ1 → 0 in (3.71).

Proposition 8. Let uδ1 be a solution of (3.71). Then, there exists a subsequence of
{uδ1}δ1>0, converging to a function u in L2 (BR × (0, T )) for any R > 0.
Furthermore, u ∈ L1(QT ) ∩ L∞(QT ), which is a weak solution of equation (1.1).
In addition, we obtain the regularity of div (Θ(u)) as follows:

• If s ∈ [1
2
, 1) then

(3.90) div (Θ(u)) ∈ L2
(
0, T ;H−1(BR)

)
.

• Otherwise, if s ∈ (0, 1
2
) then

(3.91) div (Θ(u)) ∈ Lp
(
0, T ;W−2,p(RN)

)
,

for p > 1 such that m2p
p−1
≥ 1, and W−2,p(RN) is the dual space of W 2,p(RN).

Proof. Thanks to Remark 7, we observe that the proof of Proposition 8 can be done by
repeating the one of Proposition 7. Thus, it remains to prove δ1∆uδ1 → 0 in D′(QT ), as
δ1 → 0, (3.90) and (3.91).
We first show that

(3.92) δ1∆uδ1 ⇀ 0, in L2
(
0, T ;H−1(RN)

)
as δ1 → 0, .
Indeed, for any ϕ ∈ L2

(
0, T ;H1(RN)

)
we have from (3.17) and Hölder’s inequality

δ1

∣∣∣∣� T

0

�
RN

∆uδ1ϕdxdt

∣∣∣∣ ≤√δ1

√
δ1‖∇uδ1‖L2(QT )‖∇ϕ‖L2(QT )

≤
√
δ1C‖∇ϕ‖L2(QT ).
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Hence, (3.92) follows as δ1 → 0.

Next, we prove (3.90). It follows from Hölder’s inequality that

‖ div (Θ(u)) ‖L2(0,T ;H−1(BR)) = sup
‖ψ‖

H1
0(BR)

=1

∣∣∣∣�
BR

div (Θ(u))ψ dx

∣∣∣∣
= sup
‖ψ‖

H1
0(BR)

=1

∣∣∣∣�
BR

Θ(u)∇ψ dx
∣∣∣∣

≤ sup
‖ψ‖

H1
0(BR)

=1

‖Θ(u)‖L2(BR)‖∇ψ‖L2(BR)

≤ ‖Θ(u)‖L2(BR).

Then, � T

0

‖ div (Θ(u)) ‖2
L2(0,T ;H−1(BR))dt ≤

� T

0

‖Θ(u)‖2
L2(BR)dt.

It follows from (3.84) and (3.89) that

� T

0

‖Θ(u)‖2
L2(BR)dt ≤ C.

Then, we obtain (3.90).

Next, for any p > 1 such that m2p
′ ≥ 1, we have

‖ div (Θ(u)) ‖W−2,p(RN ) = sup
‖ψ‖

W2,p(RN )
=1

∣∣∣∣�
RN

div (Θ(u))ψ dx

∣∣∣∣
= sup
‖ψ‖

W2,p(RN )
=1

∣∣∣∣�
RN

Θ(u)∇ψ dx
∣∣∣∣

≤ sup
‖ψ‖

W2,p(RN )
=1

‖Θ(u)‖W−1,p(RN )‖∇ψ‖W 1,p(RN )

. sup
‖ψ‖

W2,p(RN )
=1

‖Θ(u)‖W−1,p(RN )‖ψ‖W 2,p(RN )

≤ ‖Θ(u)‖W−1,p(RN ).

A combination of the last inequality and (3.80) implies that

� T

0

‖ div (Θ(u)) ‖p
W−2,p(RN )

dt .
� T

0

‖Θ(u)‖p
W−1,p(RN )

dt ≤ C.

Thus, (3.91) follows.
Then, we complete the proof of Lemma 8.
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In the case m2 > m1, we prove that (3.90) holds for any s ∈ (0, 1).

Proposition 9. Let s ∈ (0, 1), and let u be a weak solution of (1.1). Assume that
m2 > m1. Then, for any ball BR there holds

(3.93) div (Θ(u)) ∈ L2
(
0, T ;H−1(BR)

)
.

Proof. By the same argument as in (3.77), we also obtain

(3.94)

� T

0

� �
(G(u(x))−G(u(y))) (|u|m1+q−2u(x)− |u|m1+q−2u(y))

|x− y|N+2(1−s) dxdydt ≤ C,

for q > 1. Let us take q = 1 +m2 −m1. It follows from (3.94) that

0 ≤
� T

0

�
G(u)(−∆)1−s[G(u)]dxdt ≤ C = C(u0, f,m1,m2).

Thus,

‖(−∆)
1−s
2 [G(u)]‖2

L2(QT ) ≤ C.(3.95)

Now, we have from the Plancherel theorem that

‖ div Θ(u)‖H−1(BR) = sup
‖ψ‖

H1
0(BR)

=1

∣∣∣∣�
BR

div(Θ(u))ψdx

∣∣∣∣
= sup
‖ψ‖

H1
0(BR)

=1

∣∣∣∣�
RN

div (H(u)∇ψ) (−∆)−s[G(u)]dx

∣∣∣∣
= sup
‖ψ‖

H1
0(BR)

=1

∣∣∣∣�
RN

(−∆)−
1+s
2 [div(H(u)∇ψ)] (−∆)

1−s
2 [G(u)]dx

∣∣∣∣ .(3.96)

Apply Hölder’s inequality, we obtain∣∣∣∣�
RN

(−∆)−
1+s
2 [div(H(u)∇ψ)] (−∆)

1−s
2 [G(u)]dx

∣∣∣∣
≤ ‖(−∆)−

1+s
2 [div(H(u)∇ψ)] ‖L2(RN )‖(−∆)

1−s
2 [G(u)]‖L2(RN ).(3.97)

On the other hand, it follows from the Plancherel theorem that

‖(−∆)−
1+s
2 [div(H(u)∇ψ)] ‖L2(RN ) ≤ C(N)‖(−∆)−

s
2 [H(u)∇ψ] ‖L2(RN ),(3.98)

Moreover, we apply the Riesz potential estimate and Hölder’s inequality to get

‖(−∆)−
s
2 [H(u)∇ψ] ‖L2(RN ) = ‖Is [H(u)∇ψ] ‖L2(RN )

. ‖H(u)∇ψ‖
L

2N
N+2s (RN )

≤ ‖u0‖m1

L∞(RN )
‖∇ψ‖

L
2N
N+2s (RN )

≤ ‖u0‖m1

L∞(RN )
‖∇ψ‖L2(BR)|BR|

2s
N+2s .(3.99)
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Note that 2N
N+2s

> 1 since s ∈ (0, 1) and N ≥ 2.
From (3.99) and (3.98), we obtain

‖(−∆)−
1+s
2 [div(H(u)∇ψ)] ‖L2(RN ) . |BR|

2s
N+2s‖u0‖m1

L∞(RN )
‖∇ψ‖L2(BR).(3.100)

A combination of (3.96), (3.97), and (3.100) yields

‖ div Θ(u)‖H−1(BR) ≤ C‖(−∆)
1−s
2 [G(u)]‖L2(RN ),

where C = C(R, u0, N, s,m1) > 0. Then,
� T

0

‖ div Θ(u)‖2
H−1(BR)dt ≤ C

� T

0

‖(−∆)
1−s
2 [G(u)]‖2

L2(RN )dt.

Thus, the conclusion follows from the last inequality and (3.95) .

4 Decay estimates and the finite time extinction of

solution

In this part, we study some decay estimates and the finite time extinction of solution u.
We start with the case f = 0 by proving Theorem 2.

Proof of Theorem 2. By technical reasons, we consider first the case p > 1. It follows
from (3.18) and after passing to the limit as ε, κ, ν, δ2 → 0 that

1

p

d

dt

�
|u(x, t)|pdx+

(p− 1)

� �
(G(u(x))−G(u(y))) (|u|m1+p−2u(x)− |u|m1+p−2u(y))

|x− y|N+2(1−s) dxdy ≤ 0.(4.1)

Thanks to Lemma 5, we obtain

1

p

d

dt

�
|u(x, t)|pdx+ (p− 1)

� � ∣∣|u|θ0−1u(x)− |u|θ0−1u(y)
∣∣2

|x− y|N+2(1−s) dxdydt ≤ C,

with θ0 = m1+m2+p−1
2

= β0+p
2

,
By Sobolev embedding, we have

‖|u(t)|θ0‖L2? ≤ C‖|u(t)|θ0‖Ḣ1−s ,

with C = C(N, s, 2), and 2? = 2N
N−2(1−s) = 2

α0
.

In order to use an iteration method, let us put q0 = p. A combination of the two last
inequalities leads to

(4.2)
d

dt
‖u(t)‖q0Lq0 + Cq0(q0 − 1)‖u(t)‖α0q1

Lq1 ≤ 0,
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with q1 = 2?θ0. Integrating both sides of (4.2) on (s, t) ⊂⊂ (0, T ) yields

(4.3) ‖u(t)‖q0Lq0 + Cq0(q0 − 1)

� t

s

‖u(τ)‖α0q1
Lq1 dτ ≤ ‖u(s)‖q0Lq0 .

It follows from (4.1) that ‖u(t)‖Lq0 is nonincreasing with respect to t. Then, (4.3) deduces

(4.4) ‖u(t)‖α0q1
Lq1 ≤

1

Cq0(q0 − 1)
(t− s)−1‖u(s)‖q0Lq0 ,

for every 0 < s < t < T . It is important to note that the constant C in (4.4) will not
change step by step, since we are going to use an iteration method starting from here.
Now, let us set

tn = t(1− 2−n), qn+1 = 2?θn, θn =
β0 + qn

2
, n ≥ 0,

and θ0, q0 are as above. Here, we note that the conditionm1+m2 > 1− 2q0(1−s)
N

is equivalent
to q1 > q0. Thus, by induction, we observe that the sequence {qn}n≥0 is increasing.
Let us take t = tn+1, s = tn, and replace q0 by qn in (4.4). Then, we obtain

‖u(tn+1)‖α0qn+1

Lqn+1 ≤
1

Cqn(qn − 1)
(tn+1 − tn)−1‖u(tn)‖qnLqn .

By induction, we get

‖u(tn+1)‖Lqn+1 ≤
[

1

Cqn(qn − 1)

] 1
α0qn+1

[
1

Cqn−1(qn−1 − 1)

] 1

α20qn+1

...

[
1

Cq0(q0 − 1)

] 1

αn+1
0 qn+1

×
(
t−12n+1

) 1
α0qn+1

(
t−12n

) 1

α20qn+1 ...
(
t−12

) 1

αn+1
0 qn+1

× ‖u0‖
q0

αn+1
0 qn+1

Lq0 .(4.5)

It is not difficult to verify that

(4.6) lim
n→∞

αn+1
0 qn+1 = q0 +

β0

1− α0

.

Next, by using (4.6), we obtain

lim
n→∞

(
t−1
) 1
α0qn+1

(
t−1
) 1

α20qn+1 ...
(
t−1
) 1

αn+1
0 qn+1 = lim

n→∞
t
− 1
α0qn+1

∑n
j=0( 1

α0
)j

= lim
n→∞

t
− 1
α0qn+1

1−α−(n+1)
0

1−α−1
0

= t
− 1
q0(1−α0)+β0 .(4.7)
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Similarly, we also have

(4.8) lim
n→∞

C
1

α0qn+1C
1

α20qn+1 ...C
1

αn+1
0 qn+1 = C

1
q0(1−α0)+β0 .

And also

lim
n→∞

(2n+1)
1

α0qn+1 (2n)
1

α20qn+1 ...2
1

αn+1
0 qn+1 = 2

1
(1−α0)(q0(1−α0)+β0) .(4.9)

After that, let us put

Zn = q
1

α0qn+1
n q

1

α20qn+1

n−1 ...q

1

αn+1
0 qn+1

0 .

Let us show that Zn is convergent as n→∞. Indeed, we consider the power series

Sn(s) = sn ln qn + sn−1 ln qn−1 + ...+ s1 ln q1 + ln q0.(4.10)

Obviously, the radius of convergence of Sn(s) is 1. Thus, Sn(α0) converges absolutely to
a real number λ0 as n→∞.
On the other hand, we note that

αn+1
0 qn+1 lnZn = S(α0).

It follows then from (4.6) that

lim
n→∞

lnZn =
λ0

q0 + β0
1−α0

.

Then,

(4.11) lim
n→∞

1

Zn
= exp

{
− λ0

q0 + β0
1−α0

}
.

Similarly, there is a real positive number ζ0 such that

(4.12) lim
n→∞

1

(qn − 1)
1

α0qn+1 (qn−1 − 1)
1

α20qn+1 ...(q0 − 1)
1

αn+1
0 qn+1

= ζ0.

A combination of (4.5), (4.6), (4.7), (4.8), (4.9), (4.11), and (4.12) implies that there is a
constant C = C(N, s, q0,m1,m2) > 0 such that

(4.13) ‖u(t)‖L∞ ≤ Ct
− 1
q0(1−α0)+β0 ‖u0‖

q0(1−α0)
q0(1−α0)+β0
Lq0 .

This puts an end to the proof of Theorem 2 when p > 1.

Next, we prove L1 decay estimate. To do that, we first prove an estimate of the decay
L1-Lq in the following lemma.
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Lemma 9. Let s ∈ (0, 1), and m1,m2 > 0 be such that m1 + m2 > α0. Assume that
u0 ∈ L1(RN). Then, for any q > 1 there holds

(4.14) ‖u(t)‖Lq ≤ Ct
−

N(1− 1
q )

(m1+m2−1)N+2(1−s)‖u0‖
N(m1+m2−1)+2(1−s)q
[N(m1+m2−1)+2(1−s)]q
L1 ,

with C = C(N, s,m1,m2, q) > 0.

Proof. Thanks to the Interpolation Inequality and the monotonicity of ‖u(t)‖L1 for t > 0,
it suffices to prove that (4.14) is true for any q > 1 large enough. We mimic the proof of
Theorem 2 above by considering q = q0. Let us recall here q1 = β0+q0

α0
. Note that q1 > q0

since q0 is large enough.
Then, we apply the Interpolation Inequality to obtain

‖u(t)‖Lq0 ≤ ‖u(t)‖θL1‖u(t)‖1−θ
Lq1 ,

with θ =
1
q0
− 1
q1

1− 1
q1

. Since ‖u(t)‖L1 is nonincreasing for t ≥ 0, we then get

‖u(t)‖Lq0 ≤ ‖u0‖θL1‖u(t)‖1−θ
Lq1 .

It follows from (4.2) and the last inequality that

(4.15) y′(t) + C‖u0‖
− θα0q1

1−θ
L1 y(t)

α0q1
(1−θ)q0 ≤ 0,

with C = C(N, s, q0) > 0, and y(t) = ‖u(t)‖q0Lq0 .
Note that 1− α0q1

(1−θ)q0 < 0 since q0 is large enough. Then, solving the OD inequality yields

y(t)
1− α0q1

(1−θ)q0 ≥ C‖u0‖
− θα0q1

1−θ
L1 t,

with C = C(N, s, q0,m1,m2) > 0.
Thus,

‖u(t)‖Lq0 ≤ C‖u0‖
θα0q1

α0q1−(1−θ)q0
L1 t

− (1−θ)
α0q1−(1−θ)q0 = Ct

−
N(1− 1

q )

(m1+m2−1)N+2(1−s)‖u0‖
N(m1+m2−1)+2(1−s)q
[N(m1+m2−1)+2(1−s)]q
L1 .

This completes the proof of Lemma 9.

Now, let us prove Theorem 2 for p = 1. In fact, we have from (4.13)

(4.16) ‖u(t)‖L∞ ≤ C(t− τ)
− 1
q0(1−α0)+β0 ‖u(τ)‖

q0(1−α)
q0(1−α0)+β0
Lq0 ,

for any τ ∈ (0, t), and for any q0 large enough.
Thanks to (4.14), we obtain

(4.17) ‖u(τ)‖Lq0 ≤ Cτ
−

N(1− 1
q0

)

(m1+m2−1)N+2(1−s)‖u0‖
N(m1+m2−1)+2(1−s)q0
[N(m1+m2−1)+2(1−s)]q0
L1 .

Then, the conclusion follows from (4.16) and (4.17) with τ = t
2
. And the proof of Theorem

2 is complete.
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Finally, let us prove Theorem 3.

Proof of Theorem 3. We recall here q0, q1 as in the proof of Theorem 2. Then, we can
mimic the proof of Lemma 9 in order to obtain as in (4.15)

(4.18) y′(t) + C‖u0‖
− θα0q1

1−θ
L1 y(t)

α0q1
(1−θ)q0 ≤ 0,

with y(t) = ‖u(t)‖q0Lq0 .
Now, we shall show that there exists a time τ0 > 0 such that y(τ0) = 0. If this is done, then
the conclusion follows from the monotonicity of y(t) by (4.18). Assume by contradiction
that y(t) > 0, for any t > 0. Then, we solve the indicated ODE to obtain

y(t)
1− α0q1

(1−θ)q0 − y(0)
1− α0q1

(1−θ)q0 + C1‖u0‖
− θα0q1

1−θ
L1 t ≤ 0.

Therefore,

(4.19) y(0)
1− α0q1

(1−θ)q0 ≥ C1‖u0‖
− θα0q1

1−θ
L1 t.

By the fact 1− α0q1
(1−θ)q0 > 0, (4.19) leads to a contradiction as t→∞.

Thus, we obtain the proof of Theorem 3.

Remark 8. By (4.19), we can estimate the extinction time of u, denoted as τ0 satisfying

τ0 ≤ C1‖u0‖
θα0q1
1−θ
L1 ‖u0‖

−α0q1+(1−θ)q0
1−θ

Lq0 .

Remark 9. Some of the results of this paper remain valid for the case of a bounded
domain and homogeneous Dirichlet boundary conditions. Moreover function f may be
given through a potential as in the case of nonlocal Schrödinger equation, such as f(x, t) =
−V (x)u(x, t), see [19]. To end this paper, we would like to refer to [1] for the study of
the energy method in proving the complete quenching of solutions and the free boundary
of solutions of nonlinear evolution equations.

Now we shall consider the case of f 6= 0. In fact, the finite time extinction phenomenon
also appears in problem (1.1) when f 6= 0 and f extincts in a finite time Tf > 0 (i.e:
f(x, t) = 0 for t ≥ Tf , and x ∈ RN). By assuming, for simplicity, that

f ∈ L1(QT ) ∩ L∞(QT ), for any T > 0,

it is easy to adapt the proof of Theorem 3 to conclude that

(4.20) y′(t) +K1y(t)
α0q1

(1−θ)q0 ≤ K2g(t),
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with y(t) = ‖u(t)‖q0Lq0 and

g(t) =

�
|f(x, t)||u(x, t)|q−1dx,

for some positive constants K1 and K2. Thus, we get the existence of a finite extinction
time τ0 ≥ Tf for the solution u of problem (1.1) by repeating the arguments of Theorem
4 starting with the initial datum u(x, Tf ).

A less intuitive fact is that for certains source functions f(t) 6= 0, with a finite extinction
time Tf > 0, the resulting extinction time τ0 of the solution u let such that τ0 = Tf . Such
type of behaviors was considered in the monograph [1] (see Theorem 2.1 of Chapter 2)
for the case of local problems. As many other free boundary problems, this phenomenon
requires a suitable balance between the domain (here the interval (0, Tf )) and the datum
‖u0‖Lq0 , with a suitable decay of the right hand side (here given by the decay of g(t)
around (t− Tf )+).

Proposition 10. Let s ∈ (0, 1), and let m1,m2 > 0 be such that m1+m2 < α0 = N−2(1−s)
N

.
Assume that ‖u0‖L1(RN ) + ‖u0‖L∞(RN ) is small enough. Let ν0 satisfy

max{α0, 1− (α0 −m1 −m2)} < ν0 < 1.

Suppose that f ∈ L1(QT ) ∩ L∞(QT ) and there exists a finite time Tf > 0 such that

(4.21) ‖f(t)‖L∞(RN ) ≤ ε

[
1− t

Tf

] ν0
1−ν0

+

, for t > 0,

and for some ε > 0 small enough. Then the finite extinction time of the solution u
coincides with the extinction time of the source term f , i.e. τ0 = Tf .

Proof. Let us set

q0 =
1− ν0 + (α0 −m1 −m2)

1− ν0

.

Note that q0 ≥ 2 since ν0 > 1 +m1 +m2 − α0. By a simple calculation, we have

ν0 =
α0q1

(1− θ)q0

,

with q1 = β0+q0
α0

, and θ =
1
q0
− 1
q1

1− 1
q1

. We also emphasize that q1 > q0 since ν0 > α0.

In a similar way to the proof of (4.18), and thanks to the assumption (4.21), we observe
that y(t) = ‖u(t)‖q0Lq0 satisfies the following ordinary differential inequality:

(4.22) y′(t) + C‖u0‖
− θα0q1

1−θ
L1 y(t)ν0 ≤ ε

[
1− t

Tf

] ν0
1−ν0

+

‖u0‖q0−1

Lq0−1 , y(0) = y0 = ‖u0‖q0Lq0 ,
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for some positive constant K. But, it is easy to see that the function

Y (t) = y0

[
1− t

Tf

] 1
1−ν0

+

is a supersolution of problem (4.22) once we assume the following condition on the data:

(4.23) C‖u0‖
− θα0q1

1−θ
L1 y0

ν0 − y0

(1− ν0)Tf
> ε‖u0‖q0−1

Lq0−1 .

We note that (4.23) occurs since u0 is small and ε > 0 is also small enough, and it depends
on u0. Then, by applying the comparison principle for nonnegative solutions of the ODE
associated to (4.22), we get

0 ≤ y(t) ≤ Y (t) for any t ≥ 0,

which implies that the extinction time of y(t) coincides with Tf .

Remark 10. Notice that Theorem 3 extends to the case of the nonlocal problem (1.1) the
result by Bénilan and Crandall [2] when we take s = 0 and m := m1 +m2.

5 Appendix

Lemma 10. Let s ∈ (0, 1). For any ε > 0, there holds

0 ≤ F {Lsε} ≤ F {(−∆)s} .

Proof. It is known that for any u ∈ S(RN) (the Schwartz space), F{(−∆)s} can be
considered as a multiplier of F{(−∆)su}, i.e:

F {(−∆)su} (ξ) = F{(−∆)s}F{u}(ξ).

We have

(−∆)su(x) =
1

2

�
RN

u(x+ h) + u(x− h)− 2u(x)

|h|N+2s
dh.

Taking the Fourier transform yields

F {(−∆)su} (ξ) =
1

2

�
RN

eiξ·h + e−iξ·h − 2

|h|N+2s
dhF{u}(ξ)

=

�
RN

1− cos(ξ · h)

|h|N+2s
dhF{u}(ξ).
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This implies that

(5.1) F {(−∆)s} (ξ) =

�
RN

1− cos(ξ · h)

|h|N+2s
dh.

Similarly, we also have

F {Lsεu} (ξ) =
1

2

�
RN

eiξ·h + e−iξ·h − 2

(|h|2 + ε2)
N+2s

2

dhF{u}(ξ)

=

�
RN

1− cos(ξ · h)

(|h|2 + ε2)
N+2s

2

dhF{u}(ξ).

Therefore,

(5.2) F {Lsε} (ξ) =

�
RN

1− cos(ξ · h)

(|h|2 + ε2)
N+2s

2

dh.

Then, the conclusion of Lemma 10 follows from (5.1) and (5.2).

Next, we have the following embedding results.

Lemma 11. Let α ∈ (0, 1), N ≥ 1, and p ≥ 1. Then, we have

‖∇αv‖Lp(RN ) ≤ C‖∇v‖αLp(RN )‖v‖
1−α
Lp(RN )

, ∀v ∈ W 1,p(RN).

Proof. We have

‖∇αv‖Lp(RN ) ≤ C(N,α)

(�
RN

(�
RN

|v(x+ h)− v(x)|
|h|N+α

dh

)p
dx

)1/p

≤ C(N,α, p)

[(�
RN

(�
|h|≤λ

|v(x+ h)− v(x)|
|h|N+α

dh

)p
dx

)1/p

+

(�
RN

(�
|h|>λ

|v(x+ h)− v(x)|
|h|N+α

dh

)p
dx

)1/p
]

:= C(I1 + I2).(5.3)

Now, we consider I1. Applying Young’s inequality and Hölder’s inequality yields

I1 ≤
�
|h|≤λ

(�
RN

∣∣∣∣ |v(x+ h)− v(x)|
|h|N+α

∣∣∣∣p dx)1/p

dh

≤
�
|h|≤λ

(�
RN

(� 1

0

|∇v(t(x+ h) + (1− t)x)|dt
)p

dx

)1/p

|h|−(N+α−1)dh

≤
�
|h|≤λ

(� 1

0

�
RN
|∇v(t(x+ h) + (1− t)x)|pdxdt

)1/p

|h|−(N+α−1)dh

≤ C(N,α)λ1−α‖∇v‖Lp(RN ).(5.4)
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Next, we apply Young’s inequality to get

I2 ≤
�
|h|>λ

(�
RN
|v(x+ h)− v(x)|pdx

)1/p

|h|−(N+α)dh

≤ 2‖v‖Lp(RN )

�
|h|>λ
|h|−(N+α)dh = C(N,α)λ−α‖v‖Lp(RN ).(5.5)

A combination of (5.4) and (5.5) implies

I1 + I2 ≤ C(N,α)
(
λ1−α‖∇v‖Lp(RN ) + λ−α‖v‖Lp(RN )

)
.

The last inequality holds for any λ > 0, then we obtain

(5.6) I1 + I2 ≤ C(N,α)‖v‖1−α
Lp(RN )

‖∇v‖αLp(RN ).

By (5.3) and (5.6), we complete the proof of Lemma 11.

Lemma 12. Let θ ∈ (0, 1), and N ≥ 1. Let α1, α2 ∈ (0, 1) be such that α1 < α2θ. Assume
that Γ is a θ-Hölder continuous function on R. Then, we have

‖∇α1Γ(v)‖Lr(RN ) ≤ C‖v‖Ḣα2 (RN ),

where

(5.7)
α1

θ
+
N

2
= α2 +

N

r
.

Remark 11. Note that it follows from (5.7) that r > 2.

Proof. The proof of Lemma 12 can be found in [3, Lemma 6.6] .
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[19] J. I. Dı́az, D. Gómez-Castro, J. L. Vázquez. The fractional Schrödinger equation with
general nonnegative potentials. The weighted space approach. Nonlinear Analysis,
177 (2018), 325-360.

[20] J. Dolbeault, A. Zhang Flows and functional inequalities for fractional operators.
Applicable Analysis 96 (9) (2017), 1547-1560.

[21] Q.-H. Nguyen, J. L. Vázquez. Porous medium equation with nonlocal pressure in a
bounded domain. Comm. PDEs, 43 (2018), 1502-1539.

[22] A. Porretta. Existence Results for Nonlinear Parabolic Equations via Strong Con-
vergence of Truncations. Annali di Matematica pura ed applicata. (IV), CLXXVII
(1999), 143-172.

[23] J. M. Rakotoson, R. Temam, An optimal compactness theorem and application to
elliptic-parabolic systems, Appl. Math. Lett. 14 (2001), 303-306.

[24] S. Serfaty, J. L. Vázquez. A Mean Field Equation as Limit of Nonlinear Diffusion
with Fractional Laplacian Operators. Calc. Var. PDEs. 49 (2014), 1091-1120.

[25] J. Simon. Compact sets in the space Lp(0, T ;B). Ann. Mat. Pura Appl. 146 (1987),
65-96.

[26] D. Stan, F. del Teso, J. L. Vázquez. Finite and infinite speed of propagation for
porous medium equations with fractional pressure. Journal Diff. Eqns. 260 (2016),
1154-1199.

[27] D. Stan, F. del Teso, J. L. Vázquez. Existence of weak solutions for porous medium
equations with nonlocal pressure. Arch. Ration. Mech. Anal. 233 (2019), no. 1, 451-
496.

48



[28] E. Stein. Singular Integrals and Differentiability Properties of Functions. Princeton
University Press, Princeton, 1970.

[29] P. R. Stinga, J. L. Torrea. Extension problem and Harnack inequality for some frac-
tional operators, Comm. PDE. 35 (2010), 2092-2122.

[30] M. E. Taylor. Partial Differential Equations. III: Nonlinear Equations, 2nd edn, xxii,
p. 715. Applied Mathematical Sciences 117. Springer, New York, 2011.

[31] J. L. Vázquez. The Porous Medium Equation. Mathematical Theory, vol. Oxford
Mathematical Monographs, Oxford University Press, Oxford, 2007.

[32] J. L. Vázquez, A. de Pablo, F. Quirós, A. Rodŕıguez. Classical solutions and higher
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