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Abstract

This paper addresses an investigation of the asymptotic behaviour as ε → 0 of the solution to the

boundary value problem associated with the p-Laplace operator in an ε-periodically perforated domain

with a nonlinear Robin-type condition specified on the boundary of the inclusions. Here we consider a

non-critical size of the particles. The objective of this paper is two fold. First we study the homogenization

of solutions in the case of continuous nonlinearity. Then, we move to studying the homogenization of the

effectiveness factor of the reactor, which is of importance in Chemical Engineering.
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Introduction

This paper addresses an investigation of the asymptotic behaviour as ε → 0 of the solution to the

boundary value problem associated with the p-Laplace operator in an ε-periodically perforated domain

with a nonlinear Robin-type condition specified on the boundary of the inclusions. Here we consider a

non-critical size of the particles. The objective of this paper is two fold.

First, a homogenized problem is constructed and a theorem is proved stating weak convergence as

ε → 0 of the solution of the original problem to the solution of the homogenized. The closest papers

in the literature are [31, 32] where the case p = 2 was considered, [17, 18, 19, 26] dedicated to the case

2 < p < n and [11] where the case p > n was investigated. In contrast to the mentioned papers we

consider here that reaction function σ need not be smooth. In order to achieve this result we introduce

uniform approximation arguments, that allow us to deal with such reaction functions.

The case when the size of particles are non critical is characterized by the fact that the homogenized

problem contains the same nonlinearity as the nonhomogeneous problem. However, there are critical
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cases in which the nature of the nonlinearity changes (see [9, 10, 12, 17, 18, 19, 20, 25, 29, 32]). For

further reference see [18, 17, 19]. In the critical case due to the technique used were considered that

inclusions are balls, whereas in this noncritical case a general shape is considered.

The second main result of the paper is the analysis of the asymptotic limit of the effectiveness func-

tional (as introduce by Aris, see [2, 3]), which extends results in [13, 14] to the cases p 6= 2 and σ Hölder

continuous.

1. Statement of results

1.1. Problem setting

Let Ω be a bounded domain in Rn, n ≥ 2, with a smooth boundary ∂Ω and let Y = (− 1
2 ,

1
2 )n. Let

G0 be a smooth open set such that G0 ⊂ Y . For δ > 0 and B ⊂ Rn let δB = {x ∈ Rn : δ−1x ∈ B}. For

ε > 0 we define Ω̃ε = {x ∈ Ω | ρ(x, ∂Ω) > 2ε}, where ρ is the distance function. Let aε > 0, define the set

of inclusions

Gε =
⋃
j∈Υε

(aεG0 + εj) =
⋃
j∈Υε

Gjε,

where Υε = {j ∈ Zn : (aεG0 + εj) ∩ Ω̃ε 6= ∅}, Zn is the set of vectors z with integer coordinates. Define

Y jε = εY + εj, where j ∈ Υε, and note that Gjε ⊂ Y
j

ε. Finally, we define

Ωε = Ω \Gε, Sε = ∂Gε, ∂Ωε = ∂Ω ∪ Sε.

Notice that the number of inclusions is of the order of ε−n, in the sense that

lim
ε→0

|Υε|
ε−n

= |Ω| (1)

Throughout this paper we will write

aε � bε ⇐⇒ lim
ε→0

aεb
−1
ε = 0

aε ∼ bε ⇐⇒ lim
ε→0

aεb
−1
ε ∈ (0,+∞).

We will consider that the sizes of the particles is smaller than their repetition, in the sense that

aε � ε. (2)

Sometimes, this case is known as tiny holes (in our case they can be though of as tiny particles). We

consider the problem 
−∆puε = f(x), x ∈ Ωε,

∂νpuε + β(ε)σ(uε) = β(ε)g, x ∈ Sε,

uε = 0, x ∈ ∂Ω,

(3)

where ∆pu ≡ div(|∇u|p−2∇u), ∂νpu ≡ |∇u|p−2(∇u, ν), ν is the outward unit normal vector to Sε and σ

is a continuous nondecreasing function such that σ(0) = 0, f ∈ Lp′(Ω) and g ∈W 1,∞(Ω).
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This problem can be obtained as a change in variable u = 1−w, σ(u) = σ̃(1)− σ̃(w) of the following

problem, which appears in Chemical Engineering in the design of fixed-bed reactors (see, for example,

[30]) 
−∆pwε = f(x), x ∈ Ωε,

∂νpuε + β(ε)σ̃(wε) = 0, x ∈ Sε,

wε = 1, x ∈ ∂Ω.

(4)

A quantity of great interest in the applications is the effectiveness, which can be expressed as

Eε(Ω, G0) = 1
|Sε|

∫
Sε

σ̃(wε) dS, (5)

in the nonhomogeneous case and as

E(Ω, G0) = 1
|Ω|

∫
Ω
σ̃(w) dx, (6)

in the homogenized case. It represents the ratio of the actual amount of reactant consumed per unit

time in Ω to the amount that would be consumed if the interior concentration were everywhere equal

to the ambient concentration. A high effectiveness is desirable in most applications. For isothermal and

endothermic reactions, we see that 0 ≤ Eε, E < 1. This definition was introduced by Aris in the linear

case (p = 2 and σ = λu, see [1, 21, 3]). The study of this functional is equivalent to the study of the

ineffectivenes

ηε = 1
|Sε|

∫
Sε

σ(uε) dS, η = 1
|Ω|

∫
Ω
σ(u) dx. (7)

The mathematical properties have long been studied, see [4, 5, 6, 7, 8]. The aim of this papers is to prove

that ηε → η as ε→ 0.

1.2. Weak formulations

Let us define the energy functional

Jε(v) = 1
p

∫
Ωε
|∇v|p dx+ β(ε)

∫
Sε

Φ(v) dS −
∫

Ωε
fv dx− β(ε)

∫
Sε

gv dS (8)

where Φ(s) =
∫ s

0 σ(τ)dτ . Its subdifferential Aε = ∂Jε is given by

〈Aεv, w〉 =
∫

Ωε
|∇v|p−2∇v · ∇w dx+ β(ε)

∫
Sε

σ(v)w dS −
∫

Ωε
fw dx− β(ε)

∫
Sε

gw dS. (9)

We say that uε is a weak solution of (3) ifAεuε = 0. However, σ(uε) is usually not a well behaved sequence.

We would rather work with an equivalent formulation that does not include it. In this direction, we have

the following characterization of minimizers

Lemma 1. Let X be a reflexive Banach space, J : X → (−∞,+∞] be a convex functional A = ∂J :

X → P(X ′) be its subdifferential. Then the following are equivalent:

i) u is a minimizer of J ,
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ii) u ∈ D(A) and 0 ∈ Au.

If either holds, then

iii) For every v ∈ D(A) and ξ ∈ Av

〈ξ, v − u〉 ≥ 0. (10)

Furthermore, assume that J is Gateaux-differentiable on X and A is continuous on X then iii) is also

equivalent to i).

Remark 1. Naturally, if there is uniqueness of iii) then the i)-iii) are also equivalent.

Remark 2. One should not confuse condition iii) with the Stampacchia formulation (see e.g. [6]). For

a bilinear form a and a linear function F this function is

a(u, v − u) ≥ G(v − u) (11)

for all v in the correspondent space, whereas with this formulation we have a(v, v − u). The advantage

of the representation we consider is that one of the elements can be taken constant as ε→ 0.

We will say that uε is a weak solution of (3) if it is a minimizer of Jε in W 1,p(Ωε, ∂Ω).

Proposition 1 ([26]). Let p > 1. Then there exists an extension operator

Pε : W 1,p(Ωε, ∂Ω)→W 1,p
0 (Ω) (12)

Furthermore, there exists a constant C independent of ε such that

‖∇Pεuε‖Lp(Ω) ≤ C‖∇uε‖Lp(Ω). (13)

Hence, there exists a subsequence of the original sequence Pεuε that admits a weak W 1,p
0 (Ω) limit,

which we will define as u. The aim of this paper is to characterize u.

1.3. Homogenization of solutions for 1 < p < n

We state two approximation lemmas, which are key to our arguments.

Lemma 2. Let σ ∈ C(R) be nondecreasing such that σ(0) = 0. Then there exists σε ∈ C1(R) non

decreasing such that σε(0) = 0 and ‖σ − σε‖ ≤ ε.

Let us define the critical values of aε and β, for 1 < p < n

a∗ε = ε
n
n−p , β∗(ε) = a−(n−1)

ε εn, (14)

which separates different asymptotic behaviours of the solution. We focus on the cases aε � a∗ε, since

the critical case is aε ∼ a∗ε. The value β∗ separates the behaviours as shown by the following theorem.

In fact, let us define

β0 = |∂G0| lim
ε→0

β(ε)β∗(ε)−1. (15)
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Theorem 1. Let 1 < p < n, g ∈ W 1,∞(Ω), a∗ε � aε � ε, σ ∈ C(R) nondecreasing such that σ(0) = 0

and

|σ(v)| ≤ C(1 + |u|p−1). (16)

Then the following results hold:

i) Let β0 < +∞. Then, up to a subsequence Pεuε ⇀ u in W 1,p
0 (Ω), where u is the unique solution of−∆pu+ β0σ(u) = f + β0g Ω

u = 0 ∂Ω
(17)

ii) Let β0 = +∞, g = 0 and σ ∈ C1. Then, up to a subsequence Pεuε ⇀ u in W 1,p
0 (Ω) and u satisfies

u(x) ∈ σ−1(0) (18)

a.e. in Ω.

Remark 3. In particular, if β0 = 0 then the limit problem does not contain any reaction term. If

aε = C0ε
α and β(ε) = ε−γ we have

α ∈
(

1, n

n− p

)

β0 =


0 γ < α(n− p)− n,

Cn−1
0 |∂G0| γ = α(n− p)− n,

+∞ γ > α(n− p)− n.

Remark 4. The same result holds for p = n, where the condition on the size aε is

ε
n
n−1 ln(a−1

ε ε)→ 0, as ε→ 0, (19)

(see [27]) and for p > n, where critical size of inclusions doesn’t exist so there is no condition on a∗ε (see

[11]). We can write the critical size for any p > 1 as:

a∗ε =


ε

n
n−p if 1 < p < n,

εe−( 1
ε )1− 1

n if p = n,

0 if p > n.

(20)

The value of β∗ is still

β∗(ε) = a−(n−1)
ε εn. (21)

.
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1.4. Homogenization of the effectiveness factor when p > 1

We conclude by stating a theorem on homogenization of the effectiveness functional that improves

previous results by the authors (see [13, 14]). We give conditions so that

1
|Sε|

∫
Sε

σ(uε) dS → 1
|Ω|

∫
Ω
σ(u) dx as ε→ 0. (22)

To achieve this we need a stronger approximation result for the family of Hölder-continuous functions.

Remark 5. If I is a bounded interval then C(I) ⊂ C0,α(I). This is not true if I is unbounded. For

example, all functions in C0,α(R) are sublinear. We introduce the following condition

|σ(t)− σ(s)| ≤ C(|t− s|α + |t− s|p) ∀t, s ∈ R, (23)

that represents “local Hölder” continuity, in the sense that there is no need for the function to be

differentiable. On the other hand, as |s− t| → +∞, the function σ behaves like a power, and then σ can

be a non sublinear.

Lemma 3. Let σ ∈ C(R), nondecreasing and there exists 0 < α ≤ 1, p > 1 such that (23) holds. Then,

for every 0 < ε < 1
4C there exists σε ∈ C(R) (piecewise linear) such that

‖σε − σ‖C(R) ≤ ε, (24)

0 ≤ σ′ε ≤ Dε1− 1
α , (25)

where D depends only on the C,α, p.

Theorem 2. Let p > 1, a∗ε � aε � ε, β ∼ β∗ and σ be continuous such that σ(0) = 0. Let uε and u be

the solutions of (3) and (17). Lastly, assume either:

i) σ is uniformly Lipschitz continuous (σ′ ∈ L∞), or

ii) σ ∈ C(R) and there exists 0 < α ≤ 1 and q > 1 such that we have (23) and

(σ(t)− σ(s))(t− s) ≥ C|t− s|q, ∀t, s ∈ R. (26)

Then (22) holds.

Remark 6. Even though roots σ(s) = |s|q−1s do not satisfy (26), but a continuous linear cutoff

σ(s) =

|s|
q−1s |s| ≤ s0,

σ0 + λs |s| > s0,
(27)

does satisfy this kind of behaviour. Hence, the result for σ(s) = |s|q−1s where q < 1 holds, at least for

uniformly bounded solutions. This must hold, for example, in Chemical Engineering since u typically

represents a concentration, so 0 ≤ u ≤ 1.
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2. Auxiliary results and estimates

2.1. Estimates on the boundary integrals

First let us introduce a uniform trace information in Sε

Proposition 2. Let p > 1 and assume (2). Then

i) There exists C, independent of ε, such that, for u ∈W 1,p(Ωε, ∂Ω), it holds that

β∗(ε)
∫
Sε

|u|p dS ≤ C
∫

Ωε
|∇u|p dx. (28)

ii) If vε ⇀ v in W 1,p
0 (Ω) and a∗ε � aε � ε. Then

β∗(ε)
∫
Sε

vε dS → |∂G0|
∫
Ω

v dx. (29)

Remark 7. Notice that the natural trace in Sε is not well behaved with respect to
∫
Sε
· dS, but rather

with 1
|Sε|

∫
Sε
· dS

Lemma 4. Let 0 < r < s. Then, there exists C, independent of ε, such that(
β∗(ε)

∫
Sε

|u|r dS
) 1
r

≤ C
(
β∗
∫
Sε

|u|s dS
) 1
s

. (30)

Proof. Let q = s
r > 1. Then q′ = s

s−r . Applying Hölder’s inequality we find that

∫
Sε

|u|r dS ≤ C
(∫

Sε

|u|s dS
) r
s
(∫

Sε

1
s
s−r dS

) s−r
s

β∗(ε)
∫
Sε

|u|r dS ≤ Cβ∗(ε)
1
q+ 1

q′

(∫
Sε

|u|s dS
) r
s

|Sε|
s−r
s

≤ Cβ∗(ε)
1
q+ 1

q′

(∫
Sε

|u|s dS
) r
s

|Sε|
s−r
s

≤ C
(
β∗(ε)

∫
Sε

|u|s dS
) r
s

(β∗(ε)|Sε|)
s−r
s

≤ C
(
β∗(ε)

∫
Sε

|u|s dS
) r
s

,

which concludes the result.

With this results we can proof that

Proposition 3. Let p > 1. Then, for every ε > 0 there exists a unique weak solution of (3) uε ∈

W 1,p(Ωε, ∂Ω). Furthermore, there exists a constant C independent of ε such that

‖∇uε‖p−1
Lp(Ωε) ≤ C(‖f‖Lp′ (Ωε) + β(ε)β∗(ε)−1‖g‖L∞(R)). (31)
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2.2. Characterization of solutions

The proof of the furthermore statement can be found in [16]. In fact we state the the following

characterization, which could improve the regularity required, but that we do not apply due to the

homogenization techniques applied.

Lemma 5 (Proposition 2.2 in [16]). Let us assume that J = J1 + J2 and J1 and J2 being l.s.c. convex

functions on a convex set C into R, J1 being Gateaux-differentiable with differential J ′1. Then u ∈ C, the

following three conditions are equivalent to each other:

i) u is a minimizer of J ,

ii) For every v ∈ C

〈J ′1(u), v − u〉+ J2(v)− J2(u) ≥ 0, (32)

iii) For every v ∈ C

〈J ′1(v), v − u〉+ J2(v)− J2(u) ≥ 0. (33)

We have the following lemma

Lemma 6. Let 1 < p < +∞ and σ be a nondecreasing function. Then if

X = W 1,p(Ωε, ∂Ω) C = {v ∈ X : Φ(v) ∈ L1(Sε)}

J(v) = Eε(v) Av = Aεv

J1(v) = 1
p

∫
Ωε
|∇v|p dx−

∫
Ωε
fv dx− β(ε)

∫
Sε

gv dS

J ′1(v)(w) =
∫

Ωε
|∇v|p−2∇v · ∇w dx−

∫
Ωε
fw dx− β(ε)

∫
Sε

gw dS

J2(v) = β(ε)
∫
Sε

Φ(v) dS

〈J ′2(v), w〉 = β(ε)
∫
Sε

σ(v)w dS,

or

X = W 1,p(Ω), C = {v ∈ X : Φ(v) ∈ L1(Ω)}

J = J1 + J2

J1(v) = 1
p

∫
Ω
|∇v|p dx−

∫
Ω
fv dx− β0

∫
Ω
gv dx

〈J ′1(v), w〉 = 1
p

∫
Ω
|∇v|p−2∇v · ∇w dx−

∫
Ω
fw dx− β(ε)

∫
Sε

gw dx

J2(v) = β0

∫
Ω

Φ(v) dx

J ′2(v)(w) = β(ε)β0

∫
Ω
σ(v)w dx,

we have that J1, J2 : C → R, J1 are convex, J1 is Gateaux differentiable. Furthermore, if (16) holds then

C = X, J2 is Gateaux-differentiable in X and J ′ is continuous on X.
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Remark 8. The furthermore part was first proved in [15]. Condition (16) is given by the fact that,

v 7→ G(v) is Lr(Ω) → Lt(Ω) is continuous if |G| ≤ C(1 + |v| rt ). Notice that, for r = p and t = p′ we

have r
t = p− 1. In this case, J satisfies the continuity condition for Lp → L1, which is enough to make

J continuous. It is likely that (16) is purely a technical requirement so that iii) implies i).

2.3. On the coercivity of the p-Laplacian, when 1 < p < 2

We will need the following auxiliary lemma, that deals with the coercivity of the p-Laplace operator:

Lemma 7. Let 1 < p < 2 and u, v ∈W 1,p(Ω). Then

∫
Ω
|∇(u− v)|p dx ≤ C

∫
Ω

|∇(u− v)|2

|∇u|2−p + |∇v|2−p dx


p
2
∫

Ω

(|∇u|2−p + |∇v|2−p)
p

2−p dx


2−p
p

≤ C

∫
Ω

(|∇u|p−2∇u− |∇v|p−2∇v) · ∇(u− v) dx


p
2

×

∫
Ω

(|∇u|2−p + |∇v|2−p)
p

2−p dx


2−p
p

. (34)

Proof. The first inequality is a direct consequence of the Hölder inequality∫
Ω

|∇(u− v)|p

(|∇u|2−p + |∇v|2−p)
p
2

(
|∇u|2−p + |∇v|2−p

) p
2 dx



≤

∫
Ω

|∇(u− v)|2

|∇u|2−p + |∇v|2−p dx


p
2
∫

Ω

(|∇u|2−p + |∇v|2−p)
p

2−p dx


2−p
p

,

and the second one is due to the estimate for vectors, ξ, η ∈ Rn, not both zero:

|ξ − η|2

|ξ|2−p + |η|2−p ≤ C
(
|η|p−2η − |ξ|p−2ξ

)
· (η − ξ),

this concludes the proof.

2.4. Comparison of solutions with different kinetics

We have the following comparison lemma for the solutions:

Lemma 8. Let σ, σ̂ be continuous functions, σ satisfies (26) for some q > 1 and let uε and ûε be the

corresponding solutions of (3) with β ∼ β∗. Then

β(ε)
∫
Sε

|uε − ûε|q ds ≤ C‖σ − σ̂‖
q
q−1
C(R). (35)
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Proof. We use u− û as a test function, and via the monotonicity of σ we have

β(ε)
∫
Sε

(σ(u)− σ(û))(u− û) dS ≤
∫

Ωε
|∇(u− û)|p dS + β(ε)

∫
Sε

(σ(u)− σ(û))(u− û) dS

≤ β(ε)
∫
Sε

(σ̂(û)− σ(û))(u− û) dS

≤ ‖σ − σ̂‖C(R)β(ε)
∫
Sε

|u− û| dS

≤ C‖σ − σ̂‖C(R)

(
β(ε)

∫
Sε

|u− û|q dS
) 1
q

.

Due to (26) we have that

β(ε)
∫
Sε

|u− û|q dS ≤ C‖σ − σ̂‖C(R)

(
β(ε)

∫
Sε

|u− û|q dS
) 1
q

(
β(ε)

∫
Sε

|u− û|q dS
)1− 1

q

≤ C‖σ − σ̂‖C(R),

which concludes the result.

Lemma 9. Let σ, σ̂ be continuous nondecreasing functions such that σ(0) = 0 and u, û be their respective

solutions of (3). Then, there exists constants C depending on p, but independent of ε, such that

i) If 1 < p < 2

‖∇(uε − ûε)‖Lp(Ωε) ≤ Cβ(ε)β∗(ε)−1‖σ − σ̂‖C(R)

(
‖∇uε‖2−pLp(Ωε) + ‖∇ûε‖2−pLp(Ωε)

) 2
p

. (36)

ii) If p ≥ 2 then

‖∇(uε − ûε)‖p−1
Lp(Ωε) ≤ Cβ(ε)β∗(ε)−1‖σ − σ̂‖C(R). (37)

Proof. By considering the difference of weak formulations we can write, for the test function u2 − u1,

∫
Ω

(|∇u2|p−2∇u2 − |∇u1|p−2∇u1) · ∇(u2 − u1) dx+ β(ε)
∫
Sε

(σ2(u2)− σ2(u1))(u2 − u1) dS

= β(ε)
∫
Sε

(σ1(u1)− σ2(u1))(u2 − u1) dS.

Applying monotonicity, Proposition 2 and Lemma 4∫
Ω

(|∇u2|p−2∇u2 − |∇u1|p−2∇u1) · ∇(u2 − u1) dx

≤ β(ε)‖σ2 − σ1‖∞β∗(ε)−1
(
β∗(ε)

∫
Sε

|u1 − u2|p dS
) 1
p

≤ Cβ(ε)‖σ2 − σ1‖∞β∗(ε)−1‖∇(u1 − u2)‖Lp(Ωε),
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Part ii) follows directly. Let us prove part i). Applying Lemma 7 we have that

‖∇(u1 − u2)‖pLp ≤ C
(
β(ε)β∗(ε)−1‖σ2 − σ1‖∞‖∇(u1 − u2)‖Lp

) p
2

×

∫
Ω

(|∇u1|2−p + |∇u2|2−p)
p

2−p dx


2−p
p

‖∇(u1 − u2)‖Lp ≤ Cβ(ε)β∗(ε)−1‖σ2 − σ1‖∞

∫
Ω

(|∇u1|2−p + |∇u2|2−p)
p

2−p dx

 2
p

2−p
p

≤ Cβ(ε)β∗(ε)−1‖σ2 − σ1‖∞
(
‖∇u1‖2−pLp + ‖∇u2‖2−pLp

) 2
p

,

which proves the result.

2.5. Proof of the approximation lemmas

There is extensive literature on the approximation of functions in bounded intervals, in particular

approximation that preserve the monotonicity. For example, it is known that Bernstein polynomials

of a monotone function are also monotone, and the convolution with a positive kernel also preserves

global monotonicity. Finer results are known as to the approximation of function which are piecewise

monotone by functions that share their monotonicity (i.e. comonotone functions. In this direction see,

e.g. [22, 23, 24, 28]).

One of the canonical options in this directions is the Yosida approximation, but, in general this only

converges pointwise. This is natural, since one can approximate a discontinues function, which is Lipschitz

continuous, and therefore the limit cannot be uniform. We choose, locally, a convolution with mollifiers.

Proof of Lemma 2. Let σε,0 ∈ C1([−1, 1]) be an approximation of σ such that
σε,0 = σ in {−1, 0, 1},

‖σε,0 − σ‖C([−1,1]) ≤ ε

σε,0 is nondecreasing.

This can be done, since, for example, the convolution of σ with nonnegative mollifiers are nondecreasing.

Let σε,1 ∈ C1([1, 2]) be an approximation of σ in [1, 2] such that

σε,1 = σ in {1, 2},

σ′ε,1(1) = σ′ε,0(1),

‖σε,1 − σ‖C([1,2]) ≤ ε,

σε,1 is nondecreasing.

We proceed analogously in [n, n + 1], [−(n + 1),−n] for n ∈ N. We finally construct σε ∈ C1(R) by

matching the pieces.
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Proof of Lemma 3. Let ε < 1
4C and δ =

(
ε

4C
) 1
α < 1 . If |x− y| ≤ δ then

|σ(x)− σ(y)| ≤ D(|x− y|α + |x− y|p) ≤ D(δα + δp)

≤ 2Dδα = ε.

We define

σε(nδ) = σ(nδ), n ∈ Z (38)

and linear in (n, n+ 1). Since σ is nondecreasing so is σε. For x ∈ [δ(n− 1), δn] we have

|σ(x)− σε(x)| ≤ |σ(x)− σ(δn)|+ |σ(δn)− σε(x)|

≤ ε

2 + |σε(δn)− σε(x)|

≤ ε

2 +
(
σε(δn)− σε(δ(n− 1))

)
= ε

2 +
(
σ(δn)− σ(δ(n− 1))

)
≤ ε

2 + ε

2
= ε.

On the other hand, for x ∈ (δ(n− 1), δn) we have

0 ≤ σ′ε(x) = σ(δn)− σ(δ(n− 1))
δ

≤ C(δα−1 + δp−1) ≤ Dε1− 1
α ,

which concludes the result.

3. Proof of Theorem 1

Proof of Theorem 1. We rewrite the problem, due to Lemma 1 as∫
Ωε
|∇v|p−2∇v · ∇(v − uε) dx+ β(ε)

∫
Sε

σ(v)(v − uε) dS

≥
∫

Ωε
f(v − uε) dx+ β(ε)

∫
Sε

g(v − uε) dS ∀v ∈W 1,p
0 (Ω). (39)

Let us start by considering σ ∈ C1(R). If either β0 = +∞ and g = 0 or β0 < +∞, we can apply Proposition

3 to show that Pεuε are uniformly bounded in W 1,p
0 (Ω), and therefore there exists u ∈ W 1,p

0 (Ω) and a

subsequence of Pεuε (denoted as the original sequence) such that

Pεuε ⇀ u in W 1,p
0 (Ω) as ε→ 0. (40)

Then it is known that (see [26, 29, 32]), for v ∈W 1,∞
0 (Ω) we have∫

Ωε
|∇v|p−2∇v · ∇(v − uε) dx→

∫
Ω
|∇v|p−2v · ∇(v − u) dx∫

Ωε
f(v − uε) dx→

∫
Ω
f(v − u) dx

β∗(ε)
∫
Sε

σ(v)(v − uε) dS → |∂G0|
∫

Ω
σ(v)(v − u) dx

β∗(ε)
∫
Sε

g(v − uε) dS → |∂G0|
∫

Ω
g(v − uε) dx,

12



as ε→ 0. If β0 < +∞ we can pass to the limit in (39) as ε→ 0 and obtain∫
Ω
|∇v|p−2∇v · ∇(v − u) dx+ β0

∫
Ω
σ(v)(v − u) dx

≥
∫

Ω
f(v − u) dx+ β0

∫
Ω
g(v − u) dx ∀v ∈W 1,∞

0 (Ω). (41)

Applying density, Lemma 6 and Lemma 1 this is equivalent to u being a solution of (17).

If β0 = +∞ and g = 0 then we write (39) as

β∗(ε)β(ε)−1
∫

Ωε
|∇v|p−2∇v · ∇(v − uε) dx+ β∗(ε)

∫
Sε

σ(v)(v − uε) dS

≥ β∗(ε)β(ε)−1
∫

Ωε
f(v − uε) dx.

By passing to the limit we obtain∫
Ω
σ(v)(v − uε) dx ≥ 0, v ∈W 1,∞

0 (Ω).

Again, applying Lemma 1 we deduce the result.

Let σ ∈ C(R) and β0 < +∞. By Lemma 2 there exists nondecreasing functions (σm) ⊂ C1(R) such that

σm(0) = 0, σm → σ in C(R). Let uε,m and um be the solutions of (3) and (17) with kinetic σm, which

by the previous proof satisfy

Pεuε,m ⇀ um in W 1,p
0 (Ω) as ε→ 0. (42)

Applying Lemma 9 we have that

‖∇ (uε − um,ε) ‖Lp(Ω) ≤ Cβ(ε)β∗(ε)−1‖σm − σ‖C(R) if 1 < p < 2,

‖∇ (uε − um,ε) ‖p−1
Lp(Ω) ≤ Cβ(ε)β∗(ε)−1‖σm − σ‖C(R) if 2 ≤ p < n.

Passing to the limit as ε→ 0 in this estimations we get

‖∇ (u− um) ‖Lp(Ω) ≤ C‖σm − σ‖C(R) if 1 < p < 2,

‖∇ (u− um) ‖p−1
Lp(Ω) ≤ C‖σm − σ‖C(R) if 2 ≤ p < n.

By uniform boundedness there exists û ∈ W 1,p
0 (Ω) such that um ⇀ û in W 1,p(Ω) as m → +∞. By

continuity of the equation with respect to the kinetic we know that û is the solution of (17). From the

previous estimate we have that u = û, which concludes the proof.

Remark 9. Notice that condition (16) is only used to show that (41) implies that u is a solution of (17).

However, if we show that (41) has a unique solution then condition (16) can be removed. Also, if u is

bounded then this condition can also be removed.

4. Proof of Theorem 2

Proof of Theorem 2. Applying the results of this paper for the case 1 < p < n, which extend naturally

to p = n (see Remark 4) and [11] for the case p > n we have that Pεuε ⇀ u in W 1,p
0 (Ω).
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First, let us suppose that σ′ ∈ L∞. Then σ(uε) is bounded in W 1,p(Ωε, ∂Ω). Hence, it is easy to show

that Pεσ(uε) ⇀ σ(u) in W 1,p
0 (Ω). We have

|Sε| = |Υε||aε∂G0| = an−1
ε |Υε||∂G0| (43)

Taking into account (1) we get

|Sε|
β∗(ε)|Ω||∂G0|

→ 1. (44)

Hence, applying Proposition 2 we have the result for σ uniformly Lipschitz.

Let σ ∈ C0,α(R) such that (23), (26) are satisfied. According to Lemma 3 there exist a sequence of

nondecreasing functions (σm) ⊂ C(R) such that σ′m ∈ L∞ and σm → σ in C(R).

Let uε,m be the corresponding solution of (3) with kinetic σm. Then we have∣∣∣∣∣β(ε)
∫
Sε

σ(u) dS − β(ε)
∫
Sε

σm(uε,m) dS

∣∣∣∣∣ ≤ β(ε)
∫
Sε

|σ(uε)− σm(uε)| dS

≤ β(ε)
∫
Sε

|σ(uε)− σ(uε,m)| dS + β(ε)
∫
Sε

|σ(uε,m)− σm(uε,m)| dS

≤ Cβ(ε)
∫
Sε

|uε − uε,m|α dS + β(ε)|Sε|‖|σ − σm‖C(R)

≤ C
(
β(ε)

∫
Sε

|uε − uε,m|q dS
)α
q

+ β(ε)|Sε|‖|σ − σm‖C(R)

≤ C
(
‖σ − σm‖

α
q−1
C(R) + ‖σ − σm‖C(R)

)
.

In particular, taking any m ∈ Z we show that up to a subsequence following convergence holds

ηε = 1
|Sε|

∫
Sε

σ(u) dS → η0 as ε→ 0.

Applying the first part of the proof, we have that∣∣∣∣η0 −
1
|Ω|

∫
Ω
σm(um) dx

∣∣∣∣ ≤ C (‖σ − σm‖ α
q−1
C(R) + ‖σ − σm‖C(R)

)
.

Due to Lemma 9 we have that, asm→ +∞, um → u in Lp(Ω). Also, due (23) we have that σ(um)→ σ(u)

in L1(Ω). Hence

‖σm(um)− σ(u)‖L1(Ω) ≤ ‖σm(um)− σ(um)‖L1(Ω) + ‖σ(um)− σ(u)‖L1(Ω)

≤ ‖σm − σ‖C(R) + ‖σ(um)− σ(u)‖L1(Ω).

Therefore, σm(um)→ σ(u) in L1(Ω). Hence,

η0 = 1
|Ω|

∫
Ω
σ(u) dx.

Since every convergent subsequence of (ηε) has the same limit η0 we conclude the proof.
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