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Abstract. The aim of this paper is to consider the asymptotic behavior of boundary value
problems in n-dimensional domains with periodically placed particles, with a general micro-

scopic boundary condition on the particles and p-Laplace diffusion operator on the interior, in

the case in which the particles are of critical size. We consider the cases in which 1 < p < n
and n ≥ 3. In fact, in contrast to previous results in the literature we formulate the micro-

scopic boundary condition in terms of a Robin type condition involving a general maximal
monotone graph which also include the case of microscopic Dirichlet boundary conditions. In

this way we unify the treatment of apparently different formulations which before were consid-

ered separately. We characterize the so called “strange term” in the homogenized problem for
the case in which the particles are balls of critical size. Moreover, by studying an application

in Chemical Engineering, we show that the critically sized particles lead to a more effective

homogeneous reaction than non critically sized particles.

Introduction

A well-known effect in homogenization theory is the appearance of some changes in the struc-
tural modelling of the homogenized problem for suitable critical size of the elements configuring
the “micro-structured” material. It seems that the first result in that direction was presented
in the pioneering paper by V. Marchenko and E. Hruslov [27]. A more popular presentation of
the appearance of some “strange terms” was due to D. Cioranescu and F.Murat [4]. Both arti-
cles dealt with linear equations with Neumann and Dirichlet boundary conditions, respectively.
Since those dates to our days many papers were devoted to consider different formulations: more
general elliptic partial differential equations (possibly of quasilinear type), Robin type and other
boundary conditions of different nature, etc. It is impossible to mention all of them here (a few
of them will be mentioned in the rest of this Introduction) but the reader may imagine that the
nature of this “strange term” may be completely different according to the peculiarities of the
formulation in consideration (something that was already indicated at the end of the Introduction
of the paper by Cioranescu and Murat [4]).
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2 CHARACTERIZING THE STRANGE TERM IN CRITICAL SIZE HOMOGENIZATION

The main goal of this paper is to characterize the change of structural behavior arising in the
homogenization process when applied to chemical reactions taking place on fixed-bed nanoreac-
tors, at the microscopic level, on the boundary of the particles

−∆puε = f(x) x ∈ Ωε,

−∂νpuε ∈ ε−γσ(uε) x ∈ Sε,
uε = 0 x ∈ ∂Ω,

(1)

for a very general type of chemical kinetics (here given by the maximal monotone graph σ of
R2). Thanks to this generality on the maximal monotone graph σ our treatment also includes
the case of microscopic Dirichlet boundary conditions. In this way we unify the treatment of
apparently different formulations which before were considered separately.

The diffusion is modeled by the quasilinear operator ∆puε ≡ div(|∇uε|p−2∇uε) with p > 1.
Notice that p = 2 corresponds to the linear diffusion operator, and that p 6= 2 appears in
turbulent regime flows or non-Newtonian flows [8]. As it is well-known, this operator appears
in many other contexts and is one of the best examples of quasilinear operators leading to a
formulation in terms of nonlinear monotone operators (see, e.g., [26, 1, 7]).

The “normal derivative” must be then understood as ∂νpuε = |∇uε|p−2∇uε · ν, where ν is
outward unit normal vector on the boundary of the particles Sε ⊂ ∂Ωε. In fact, we will consider
the structural assumption

1 < p < n and n ≥ 3. (2)

The cases p ≥ n are completely different [31, 13] (see also, for instance, the study made for a
general monotone quasilinear equation with Dirichlet boundary conditions in [7]).

As mentioned before, the generality assumed on the maximal monotone graph σ of R2 allows
to treat, in an unified way, of cases so different as the case of Dirichlet boundary conditions,
which corresponds to the choice of σ given by

D(σ) = {0} and σ(0) = (−∞,+∞), (3)

(see, e.g. [1]) and the case of nonlinear Robin type boundary conditions, which corresponds (see,
e.g. [24]) to the case in which

D(σ) = R and σ is a continuous non decreasing function. (4)

The domain Ωε ⊂ Rn is assumed to have an ε-periodical structure. Since our main goal is to
get a very precise description of the so called “strange term” in the homogenized problem, we
shall assume that the particles are balls of radius aε = C0ε

α, where α > 1. One of the interesting
properties that arise from our precise characterization is that there is uniqueness of solutions
of the homogenized problem. This was not always proved in previous results (cf. the general
framework considered in [7] and how their characterization, given in their Lemma 5.1, is not
enough to get the uniqueness of solution of their homogenized problem). The consideration of
particles of a general shape is a difficult task, specially the exact identification of the “strange
terms”. A similar formulation to the one considered in this paper for that case can be obtained,
at least for continuous σ, and it will be the object of a separate paper [15].

The problem has two different parameters: α, the size of the particles, and γ, the normalization
factor of the boundary condition on Sε. When they have critical values:

α =
n

n− p
, γ = α(n− 1)− n = α(p− 1), (5)
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then our main result in this paper shows that the homogenized problem involves a different
distributed chemical kinetics nonlinearity{

−∆pu+A|H(u)|p−2H(u) = f(x) in Ω,

u = 0 on ∂Ω,
(6)

where

A =

(
n− p
p− 1

)p−1

Cn−p0 ωn, (7)

and H: R→ R is given by
H(r) = (I + σ−1 ◦Θn,p)

−1(r), (8)

with
Θn,p(s) = B0|s|p−2s, (9)

for s ∈ R, and

B0 =

(
n− p

C0(p− 1)

)p−1

, (10)

where ωn is the surface area of the unit sphere in Rn. We show that, for any maximal monotone
graph σ, H is a nondecreasing contraction and thus the existence, uniqueness and continous
dependence of solutions of the homogenized problem is consequence of well-known results on
monotone operators theory.

The change of behavior from the nonlinearity of type σ in the non-homogeneous problem to
the nonlinearity H in the homogeneous problem is one of the characteristics of the nanotechno-
logical effects (see, e.g., [32]) and does not appear if 1 ≤ α < n

n−p (see [5, 33]).

Before presenting the details of the notation used above, let us mention that our main aim
is to provide a common roof and extend (under different points of view) some previous results
in the literature concerning different structural assumptions (i.e. functions σ and H) after the
homogenization process.

The case of Robin boundary conditions ∂nu+ β(ε)σ(u) = 0 on Sε was first studied by V. A.
Marchenko and E. J. Hruslov in a series of papers dealing mainly with the linear case σ(u) = λu
[20, 21, 19, 27]. Some references on different choices of smooth functions σ can be found in the
papers mentioned below and the references therein: [6, 18, 24, 25, 35, 22, 29]. For some further
reference see also [23, 17, 16]. Some previous results by the authors [11], formulated there for
some non necessarily Lipschitz functions σ and p ∈ [2, n), will be here extended to the case a
general maximal monotone graph σ (which includes the case of Dirichlet boundary conditions)
and p ∈ (1, n).

The special case of Dirichlet boundary condition uε = 0 on Sε, covered by (3), gives σ−1(s) = 0
for any s ∈ R and so H(r) = r for any r ∈ R. Therefore the “strange term” arising in the ho-
mogenized equation becomes A|u|p−2u. This was shown for p = 2 in the pioneering paper by
Cioranescu and Murat [4]. However, even in this simple case, the treatment in [7] for the case
p 6= 2 is not as sharp as in our case. The authors of [7] do not provide an explicit expression
for this strange term. In fact, their characterization (see their Lemma 5.1) does not guaranty
uniqueness of solutions of the homogenized problem.

The case of the boundary condition

uε ≥ 0, ∂nuε + ε−γσ0(uε) ≥ 0, uε(∂nuε + ε−γσ0(uε)) = 0 on Sε,
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which was studied for smooth σ0 in [22] by ad hoc techniques, is also covered by the common
roof provided in this paper, by taking

D(σ) = [0,+∞) σ(u) =

{
(−∞, 0] if u = 0,

σ0(u) if u > 0.
(11)

See also [12, 28].

The choice of the critical values of α and γ might appear arbitrary. Let us give some reasons
why this is the good choice. First, if N(ε) is the number of particles, then N(ε) ∼ ε−n. It is
easy to see that |Sε| = N(ε)|∂(aεG0)| ∼ εα(n−1)−n, where G0 is the unit ball centered at 0. Let
us analyze the choice of γ. If we consider the reaction term on the weak formulation, with σ(uε)
a bounded sequence in L∞, and v is a bounded test function then

1

|Sε|

∫
Sε

σ(uε)vdS ∼ ε−(α(n−1)−n)

∫
Sε

σ(uε)vdS (12)

is a bounded sequence. Hence if the sequence uε is bounded in L∞, and v a bounded test
function, then

ε−γ
∫
Sε

σ(uε)vdS (13)

can only be expect to tend to either 0 or +∞ if γ 6= α(n − 1) − n and hence we will lose the
reaction term on the equation on the homogenized equation or we lose the equation altogether.
If the macroscopic behavior is given by a reaction diffusion equation (with non trivial reaction)
then the choice scaling γ as ε→ 0 can be no other.

The appearance of the critical value of α has to do with a property of traces. It is known (see
[30]) that, ∫

aεS0

|u|pdS ≤ K
(
an−1
ε ε−n

∫
Yε

|u|pdx+ ap−1
ε

∫
Yε

|∇u|pdx
)
. (14)

As it turns out, the critical scale is the one in which both terms in the right hand side have the
same order of convergence. Notice that, in the critical case α = n

n−p we have γ = α(p− 1).

Notice that for a Newtonian fluid in R3 (n = 3, p = 2) the critical size corresponds to α = 3.
Obviously the critical value of α is an increasing function of p. Therefore for non Newtonian
dilatant fluids or a Newtonian flow in turbulent regime (p > 2) our assumption means α > 3,
the particles are tiny with respect to their repetition, whereas for pseudoplastic fluids (p < 2)
the critical particles satisfy α < 3, and hence are not so tiny with respect to their repetition.

A relevant application of our results is the following. Let us consider the usual formulation in
Chemical Engineering [34, 9] with a constant external supply −∆wε = 0 x ∈ Ωε,

∂νwε + ε−γg(wε) = 0 x ∈ Sε,
wε = 1 x ∈ ∂Ω.

(15)

where g is a nondecreasing real function such that g(0) = 0. In order to adapt our results, we
introduce the change in variable u = 1−w and σ(u) = g(1)−g(1−u), and the problem becomes −∆uε = 0 x ∈ Ωε,

∂νuε + ε−γσ(uε) = ε−γg(1) x ∈ Sε,
uε = 0 x ∈ ∂Ω.

(16)
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Notice that the presence of wε = 1 on ∂Ω is translated to a source in Sε for uε. We will see later
(Theorem 5.2) that the new equation for H, when α = n

n−2 , is

n− 2

C0
H(s) = σ(s−H(s))− g(1) (17)

that is

H(u) = −
(
g−1

(
n− 2

C0
·
)

+ Id

)−1

(1− u), (18)

so that an extension of wε converges weakly in H1(Ω) to wcrit, the solution of{
−∆wcrit +Ah(wcrit) = 0 Ω,

wcrit = 1 ∂Ω
(19)

and h is given by

h(w) =

(
g−1

(
n− 2

n
·
)

+ Id

)−1

(w). (20)

Notice that in the case of Neumann problems σ(s) ≡ 0 for any s ∈ R and althoug σ−1 is well
known maximal monotone graph the more direct identification of the “strange term” H(u) is
obtained trough the implicit equation (17) since we get, in this case, that

H(s) = −C0g(1)

n− 2
for any s ∈ R. (21)

In the noncritical cases, 1 < α < n
n−2 , we will show that an extension of wε converges weakly in

H1(Ω) to wnon-crit, the solution of{
−∆wnon-crit + Âg(wnon-crit) = 0 Ω,

wnon-crit = 1 ∂Ω,
(22)

with Â = Cn−1
0 |∂G0|. Finally, we will show, in Theorem 5.3 that

wcrit ≥ wnon-crit (23)

so we have a pointwise “ better” reaction in the critical case [10]. We point out that a different
criterion to establish the optimality of the reaction in terms of the so called “chemical effective-
ness” was considerd by the autors in [14].

The plan of the rest of the paper is the following: Section 1 will be devoted to the statement
of the main results, Section 2 contains the proof of the existence results for equation (1) and the
characterization of H, Section 3 is devoted to the proof of the main result, Theorem 1.1, and
Section 4 contains the proof of auxiliary Theorem 1.2 which studies the limit of the diffusion. We
conclude the paper with Section 5 by studying the non critical case and the pointwise comparison
of its homogenized solution with the critical case.

1. Statement of the main results

Let Ω be a bounded domain in Rn, n ≥ 3, with a smooth boundary ∂Ω and let Y =
(−1/2, 1/2)n. Denote by G0 = B1(0) the unit ball centered at the origin. This plays a cru-
cial role in the proof. As far as we known, no results are known in the critical cases if G0 is not a

ball. For δ > 0 and ε > 0 we define sets δB = {x | δ−1x ∈ B } and Ω̃ε = {x ∈ Ω | ρ(x, ∂Ω) > 2ε }.
Let

aε = C0ε
α (24)
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where α > 1 and C0 is a given positive number. Define

Gε =
⋃
j∈Υε

(aεG0 + εj) =
⋃
j∈Υε

Gjε,

where Υε = {j ∈ Zn : (aεG0 + εj)∩ Ω̃ε 6= ∅}, N(ε) = |Υε| ∼= ε−n , Zn is the set of vectors z with

integer coordinates. Define Y jε = εY + εj, where j ∈ Υε and note that G
j

ε ⊂ Y
j

ε and center of
the ball Gjε coincides with the center of the cube Y jε . Our “microscopic domain” is defined as

Ωε = Ω \Gε, Sε = ∂Gε, ∂Ωε = ∂Ω ∪ Sε.

We define the space W 1,p
0 (Ωε, ∂Ω) as the completion, with respect to the norm of W 1,p(Ωε),

of the set of infinitely differentable functions in Ωε equal to zero in a neighborhood of ∂Ω

W 1,p
0 (Ωε, ∂Ω) =

{
u ∈W 1,p(Ωε) : u = 0 on ∂Ω

}
. (25)

Concerning the solvability of problem (1) we start by introducing the notion of weak solution.
We recall that by well-known results (see, e.g., [2]) since we assume that σ : R→P(R), where
P(R) denotes the set of subsets of R, verifies that

σ is a maximal monotone graph of R2, 0 ∈ σ(0), (26)

there exists a function Ψ : R→(−∞,+∞] such that Ψ is convex lower semicontinuous function
with Ψ(0) = 0, such that σ = ∂Ψ is its subdifferential. We also know that if we define

D(σ) = {r ∈ R such that σ(r) 6= ∅},
where ∅ denotes the empty set, and

D(Ψ) = {r ∈ R such that Ψ(r) < +∞},

then D(σ) ⊂ D(Ψ) ⊂ D(Ψ) = D(σ).

In the rest of the paper we will always assume that

f ∈ Lp
′
(Ω), (27)

where, as usual, p′ = p/(p− 1).

Since uε is the minimizer of the following energy functional in W 1,p(Ωε, ∂Ω) (see [26, 1])

E(u) =

∫
Ωε

|∇u|pdx+ ε−γ
∫
Sε

Ψ(u)dS −
∫

Ωε

fudx, (28)

we consider the following definition of weak solution

Definition 1.1. We will say that uε ∈ W 1,p(Ωε, ∂Ω) is a weak solution of problem (1) if,
uε(x) ∈ D(Ψ) for a.e. x ∈ Sε, and, for all v ∈W 1,p(Ωε, ∂Ω), we have∫

Ωε

|∇uε|p−2∇uε · ∇(v − uε)dx+ ε−γ
∫
Sε

(Ψ(v)−Ψ(uε))dS ≥
∫

Ωε

f(v − uε)dx. (29)

The existence and uniqueness of a weak solution to problem (29) is an easy consequence of
well-known results:

Proposition 1.1. There exists a unique uε ∈ W 1,p(Ωε, ∂Ω) weak solution of (29). Besides,
there exists K > 0 independent of ε such that

‖∇uε‖Lp(Ωε) + ε−γ‖Ψ(uε)‖L1(Sε) ≤ K. (30)

The homogenized problem will involve the function H : R→ R given by (8). Let us present
some of the properties satisfied by H.
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Lemma 1.1. If σ satisfies (26) then function H defined by (8) is a nondecreasing nonexpan-
sion on R (i.e. a nondecreasing Lipschitz continuous function, of Lipschitz constant L ≤ 1).
Moreover, this function H is the unique function H : R→ R satisfying the relation

B0|H(r)|p−2H(r) ∈ σ(r −H(r)), for any r ∈ R. (31)

Concerning the homogenized problem (6) we point out that since H is a nondecreasing nonex-

pansion on R then, given the parameters A and B0 given by (7) and (10) and f ∈ Lp′(Ω), there

exists a unique weak solution u ∈ W 1,p
0 (Ω) of problem (6). Moreover |H(u)|p−2H(u) ∈ Lp′(Ω).

For the proof it is enough to define V = W 1,p
0 (Ω) and the operator A : V → V ′ by

〈Av,w〉 =

∫
Ω

|∇v|p−2∇v · ∇wdx+

∫
Ω

A|H(v)|p−2H(v)wdx (32)

for any w ∈ V . Notice that, since H is Lipschitz, then H(v) ∈ Lp(Ω) for any v ∈ Lp(Ω). Then
A is a hemicontinuous strictly monotone coercive operator and the existence and uniqueness of
a weak solution u is standard (see, e.g., [26]).

We will make fundamental use of the following reformulation of weak solution. Since the limit
operator A : V → V ′, with V = W 1,p

0 (Ω), given by (32) is hemicontinuous and monotone we
can use the Brezis-Sibony characterization (see Lemme 1.1 of [3], or Theoreme 2.2, Chapter 2 of

[26]): u ∈W 1,p
0 (Ω) is a weak solution of (6) if and only if∫

Ω

|∇v|p−2∇v · ∇(v − u)dx+

∫
Ω

B0|H(v)|p−2H(v)(v − u)dx ≥
∫
Ω

f(v − u)dx (33)

for any v ∈W 1,p
0 (Ω).

The main result of this paper is the following convergence result:

Theorem 1.1. Let n ≥ 3, 1 < p < n, α = n
n−p , γ = α(p− 1). Let σ be any maximal monotone

graph of R2 with 0 ∈ σ(0) and let f ∈ Lp
′
(Ω). Let uε ∈ W 1,p

0 (Ωε, ∂Ω) be the (unique) weak

solution of problem (1). Then there exists an extension ũε of uε such that ũε ⇀ u in W 1,p
0 (Ω)

as ε → 0 where u ∈ W 1,p
0 (Ω) is the (unique) weak solution of the problem (6) associated to the

function H, defined by (8).

Remark 1.1. The case n = 2 can be studied by similar techniques, although some of computa-
tions vary. In particular, the critical value of α does not verify the same formula.

The other key result we will prove in this paper is Theorem 1.2 below, the statement of which
requires some preliminary lemmas. The extension ũε of solutions uε can be obtained by applying
the methods of [30]:

Lemma 1.2. Let Ωε be the domain defined above and let 1 < p < n, n ≥ 3. Then, an extension
operator Pε : W 1,p(Ωε)→W 1,p(Ω) such that

‖Pεu‖W 1,p(Ω) ≤ C1‖u‖W 1,p(Ωε) (34)

‖∇(Pεu)‖Lp(Ω) ≤ C2‖∇u‖Lp(Ωε). (35)

Moreover, by applying this extension theorem and the methods introduced in [30] we can
prove following useful estimates:

Lemma 1.3. i) Let u ∈ W 1,p
0 (Ωε, ∂Ω) and p > 1, n ≥ 3. Then there exists positive constant

C such that the following inequality is valid

‖u‖Lp(Ωε) ≤ C‖∇u‖Lp(Ωε). (36)
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ii) Let u ∈W 1,p(Yε) such that
∫
Yε
u = 0. Then

‖u‖Lp(Yε) ≤ K1ε‖∇u‖Lp(Yε), (37)

where constant K1 is independent of ε.

Thanks to the a priori estimate (30) and the properties of the above extension operator

Pε : W 1,p
0 (Ωε, ∂Ω)→W 1,p(Ω) we know that and there exists u ∈W 1,p

0 (Ω) such that

Pεuε ⇀ u, in W 1,p
0 (Ω). (38)

The difficult task is to show that u ∈ W 1,p
0 (Ω) is the weak solution of problem (6) such as it is

ensured in Theorem 1.1.

Motivated by this and (33), we will also use the fact that if uε ∈ W 1,p
0 (Ωε, ∂Ω) is the weak

solution of problem (1) then∫
Ωε

|∇v|p−2∇v.∇(v − uε)dx+ ε−γ
∫
Sε

(Ψ(v)−Ψ(uε))dS ≥
∫

Ωε

f(v − uε)dx (39)

for any test function v ∈W 1,p(Ωε, ∂Ω).

The problematic term, in order to pass to the limit, is the boundary integrals over Sε. Here
we will follow a technique of proof introduced by the last author (T.A. Shaposhnikova) in collab-
oration with different co-authors (see, e.g. Oleinik-Shaposhnikova [28], Shaposhnikova-Zubova
[35] and Shaposhnikova-Podol’skii [33]) which can be applied in different frameworks.

Lemma 1.4. Let zε ∈W 1,p
0 (Ω), for some p > 1, and assume that zε ⇀ z0 in W 1,p

0 (Ω) as ε→ 0.
Then, ∣∣∣∣∣∣∣∣2

2(n−1)ε
∑
j∈Υε

∫
∂T j

ε/4

zεdS − ωn
∫
Ω

z0dx

∣∣∣∣∣∣∣∣→ 0, as ε→ 0, (40)

where ωn is the surface area of the unit sphere in Rn.

This lemma (which we remark is independent of α and γ, see the proof in [35]), is the key
point of the homogenization technique in the critical critical case. It is based in the general idea
that if P jε is the center of the ball Gjε = {x ∈ Y jε : |x − P jε | < aε} and if T jε denotes the ball of
radius ε/4 centered at the point P jε then we can get several explicit estimates on the solution
wjε(x) for j = 1, . . . , N(ε) of the auxiliary cellular boundary value problem

∆pw
j
ε = 0 x ∈ T jε \G

j
ε,

wjε = 1 x ∈ ∂Gjε,
wjε = 0 x ∈ ∂T jε .

(41)

One of the many remarkable properties of this cellular problem is that its (unique) weak solution,
wjε, is radially symmetric (recall that G0 is a ball) and satisfies that ∂νpw

j
ε is constant on ∂T jε

and on ∂Gjε. Due to the divergence theorem∫
Gj

ε

|∇wjε|p−2∇wjε · ∇zdx =

∫
∂T j

ε

z ∂νpw
j
εdS +

∫
∂Gj

ε

z ∂νpw
j
εdS, (42)

for any z ∈ W 1,p(T jε \ G
j
ε). Furthermore, we can make explicitly several computations. Hence,

we have an explicit way to compare the reaction term on Sε with an auxilary term on balls with
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radius Cε, and Lemma 1.4 becomes very useful.

Another key idea of our proof is to relate a general test function v ∈ W 1,p
0 (Ω), used to check

the limit characterization (33), with some suitable correction, vε, which is a better fitted test
function in the microscopic weak formulation (39). In fact, by density, it will be enough to do
that with a smooth test function v ∈ C∞c (Ω). We will construct such adaptation among test
functions in the form vε = v − hWε where, for the moment h ∈ W 1,∞(Ω) without any other

property, and, which is crucial, Wε ∈W 1,∞
0 (Ω) is defined as

Wε =


wjε, x ∈ T jε \G

j
ε, j = 1, . . . , N(ε) = |Υε|;

1, x ∈ Gε,

0, x ∈ Rn \
N(ε)⋃
j=1

T jε ,

. (43)

with wjε the solution of the auxiliary cellular boundary value problem (41). The following techni-
cal result will explain why function H arising in the limit problem (6) was taken in this concrete
form (more precisely, such that (31) holds), different from the boundary kinetics σ.

Theorem 1.2. Let 1 < p < n and uε ∈W 1,p
0 (Ωε, ∂Ω) be a sequence of uniformly bounded norm,

v ∈ C∞c (Ω), h ∈W 1,∞(Ω) and let

vε = v − hWε. (44)

Then

lim
ε→0

∫
Ωε

|∇vε|p−2∇vε · ∇(vε − uε)dx

 = lim
ε→0

(I1,ε + I2,ε + I3,ε) (45)

I1,ε =

∫
Ωε

|∇v|p−2∇v · ∇(v − uε)dx (46)

I2,ε = −ε−γB0

∫
Sε

|h|p−2h(v − h− uε)dS (47)

I3,ε = −Aεε
∑
j∈Υε

∫
∂T j

ε

|h|p−2h(v − uε)dS, (48)

where Aε is a bounded sequence (see (80)). Besides, if ũε is an extension of uε and ũε ⇀ u in

W 1,p
0 (Ω) then, for any v ∈W 1,p

0 (Ω)

lim
ε→0

∫
Ωε

|∇v|p−2∇v · ∇(v − hWε − uε)dx =

∫
Ω

|∇v|p−2∇v · ∇(v − u)dx. (49)

The aforementioned corrector term in the form hWε, were h ∈ W 1,∞(Ωε, ∂Ω) will be taken
to satisfy the condition h(x) = H(v(x)) for a.e. x ∈ Ω and H given by equation (31). These
conditions rise naturally so that the term I2,ε above cancels out with the reaction term.

Remark 1.2. In general, it is expected that the convergence ũε → u can be improved to strong
convergence by adding a corrector term. In fact, if σ is smooth, it is known that uε−H(uε)Wε →
u strongly in W 1,p

0 (Ω) (see, e.g., [35]). It is possible to adapt the arguments to the case of some
maximal monotone graphs as, for instance, the one given by the Signorini boundary condition
(see [12]).
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2. Existence of uε and characterization of function H

Proof of Proposition 1.1. Consider the Banach space V = W 1,p
0 (Ωε, ∂Ω). Let Aε : V → V ′ be

the operator defined by

〈Aεv, w〉 =

∫
Ωε

|∇v|p−2∇v · ∇wdx (50)

for any w ∈ W 1,p
0 (Ωε, ∂Ω). Then A is a hemicontinuous strictly monotone coercive operator (

[26]). Define ϕε : W 1,p
0 (Ωε, ∂Ω)→ (−∞,+∞] by

ϕε(u) =

ε
−γ
∫
Sε

Ψ(trSε(u))dS if trSε(u(x)) ∈ D(Ψ) a.e. x ∈ Sε,

+∞ otherwise.

(51)

It is clear that ϕε is a convex lower semicontinuous function with ϕε 6≡ +∞. Since f ∈ V ′, we
have that uε is a weak solution of problem (1) if and only if

〈Aε(uε)− f, v − uε〉+ ϕε(v)− ϕε(uε) ≥ 0, ∀v ∈ V. (52)

Thus, the existence and uniqueness of a weak solution uε of the problem (1) is consequence of
Theorem 8.5, Chapter 2 in [26].

In order to prove the a priori bound (30), let v ∈W 1,p
0 (Ωε, ∂Ω). Then, we have∫

Ωε

|∇uε|pdx+ ε−γ
∫
Sε

Ψ(uε)dS

≤
∫

Ωε

|∇uε|p−2∇uε · ∇vdx+ ε−γ
∫
Sε

Ψ(v)dS −
∫

Ωε

f(v − uε)dx. (53)

Given δ ∈ (0, 1) we apply Young’s inequality, ab ≤ δ|a|p′ + Cδ|b|p , to get∫
Ωε

|∇uε|p−2∇uε · ∇vdx ≤ δ
∫

Ωε

|∇uε|pdx+ Cδ

∫
Ωε

|∇v|pdx. (54)

Therefore, since Ψ ≥ 0, taking v = 0 and applying Hölder’s and Poincaré’s inequalities we have

(1− δ)‖∇uε‖pLp(Ωε) + ε−γ‖Ψ(uε)‖L1(Sε) ≤
∫

Ωε

fuεdx ≤ C‖f‖Lp′ (Ω)‖∇uε‖Lp(Ωε), (55)

which leads to the result. �

Proof of Lemma 1.1. Let Θn,p(s) = B0|s|p−2s for s ∈ R. Since σ−1 is also a maximal monotone
graph of R2 then, for any p > 1 and B0 > 0 the graph σ−1 ◦ Θn,p is also a maximal monotone
graph of R2. Indeed, let D(σ−1) = [a, b] for some −∞ ≤ a < b ≤ +∞ and let (σ−1)0 the
principal section (i.e. the nondecreasing function) of the graph σ−1. This means that

(σ−1)0(r) = inf σ−1(r), r ∈ [a, b]. (56)

Then, since Θn,p is strictly increasing, σ−1 ◦Θn,p is a monotone graph,

D(σ−1 ◦Θn,p) = [Θ−1
n,p(a),Θ−1

n,p(b)],

and (σ−1 ◦Θn,p)
0 = (σ−1)0 ◦Θn,p.

In particular, if σ−1 is multivalued in some point c ∈ (a, b) then σ−1 ◦Θn,p(c) is the full interval

σ−1 ◦Θn,p(c) = [(σ−1)0(Θn,p(c)
−), (σ−1)0(Θn,p(c)

+)]

and this implies that σ−1 ◦Θn,p is a maximal monotone graph of R2 (see [2] Exemple 2.8.1).
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Now, since σ−1 ◦Θn,p is also a maximal monotone graph of R2 we know that (I + σ−1 ◦Θn,p) is
an injective application such that R(I + σ−1 ◦ Θn,p) = R (see [2]). Thus if H is defined by (8)
then H is a non expansion on R (see Proposition 2.2 in [2]). Hence

(I + σ−1 ◦Θn,p)(H(r)) = r

for any r ∈ R and, in consequence,

H(r) + σ−1 ◦Θn,p(H(r)) = r.

In other words,

σ−1 ◦Θn,p(H(r)) = r −H(r).

This implies that r−H(r) ∈ D(σ) for any r ∈ R and that Θn,p(H(r)) ∈ σ(r−H(r)) for any r ∈ R
which proves that H(r) satisfies relation (31). Moreover, from the definition of H it is obvious
that H is nondecreasing (in fact if σ is strictly increasing then H is also a strictly increasing
function).
On the other hand, such function H(r) is the unique function satisfying relation (31) since
applying the inverse graph

σ−1 ◦Θn,p ◦H ⊃ (I −H)

which implies that (I + σ−1 ◦ Θn,p) ◦H = I, and, so, necessarily, H = (I + σ−1 ◦ Θn,p)
−1. Of

course, from the implicit formula, H is strictly increasing. �

3. Proof of Theorem 1.1

Since G0 is ball, it is easy to see that

wjε(x) =
|x− P jε |

−n−p
p−1 − (ε/4)−

n−p
p−1

(C0εα)−
n−p
p−1 − (ε/4)−

n−p
p−1

, x ∈ T jε , \G
j
ε, (57)

is the unique solution of (41). Therefore,

Lemma 3.1. If Wε is defined by (43) the following estimate holds∫
Ωε

|∇Wε|qdx ≤ Kεn(p−q)/(n−p), (58)

for any 1 ≤ q ≤ p. In particular,

Wε ⇀ 0 in W 1,p
0 (Ω) as ε→ 0. (59)

Proof. Estimate (58) is an explicit computation. For q = p we obtain from it that, up to a

subsequence, there exists W0 ∈ W 1,p
0 (Ω) such that Wε ⇀ W0 in W 1,p

0 (Ω). For q < p we have

that Wε → 0 in W 1,q
0 (Ω), hence W0 = 0. �

Proof of Theorem 1.1. Let v ∈ C∞c (Ω) and h = H(v) with H : R→ R given by (8). Notice that

then h ∈W 1,∞(Ω). Let vε = v−hWε ∈W 1,p
0 (Ωε, ∂Ω) with Wε ∈W 1,∞

0 (Ω) defined by (43). Due
to (39), we know that uε satisfies the inequality∫

Ωε

|∇vε|p−2∇vε · ∇(vε − uε)dx+ (60)

ε−γ
∫
Sε

(Ψ(vε)−Ψ(uε))dS (61)

≥
∫

Ωε

f(vε − uε)dx. (62)
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From here, by Theorem 1.2, we can deduce, since Wε → 0 in Lp(Ω) (due to the compact
inclusion), that

lim
ε→0

[
I1,ε + I2,ε + I3,ε + ε−γ

∫
Sε

(Ψ(vε)−Ψ(uε))dS

]
≥ lim
ε→0

∫
Ωε

f(vε − uε)dx

=

∫
Ω

f(v − u)dx. (63)

Since H : R→ R satisfies (31), by applying that, if ξ ∈ ∂Ψ(s0) = σ(s0) then Ψ(s) − Ψ(s0) ≥
ξ(s− s0), we can write

I2,ε + ε−γ
∫
Sε

(Ψ(vε)−Ψ(uε))dS

= ε−γ
∫
Sε

[
Ψ(v −H(v))−Ψ(uε)− B0|H(v)|p−2H(v)(v −H(v)− uε)

]
dS

≤ 0, (64)

since B0|H(v(x))|p−2H(v(x)) ∈ σ(v(x)−H(v(x))) for any x ∈ Ω. We can pass also to the limit
in (46) and (48) to get that∫

Ω

|∇v|p−2∇v∇(v − u)dx+

∫
Ω

B0|H(v)|p−2H(v)(v − u)dx ≥
∫
Ω

f(v − u)dx, (65)

and since v ∈ C∞c (Ω) is arbitrary, by density, this also holds for every v ∈ W 1,p
0 (Ω). Hence, we

get that u is the unique weak solution of (6). �

4. Proof of Theorem 1.2

The proof of Theorem 1.2 for p = 2 can be found in [36] and for 2 < p < n in [33]. Here we
will complete the proof for 1 < p < 2. We need some auxiliary results.

Lemma 4.1 ( [12]). Let 1 < p < 2. Then there exists positive constant C = C(p) such that
inequality

||a− b|p−2(a− b)− (|a|p−2a− |b|p−2b)| ≤ C(|a||b|)
p−1
2 , (66)

is valid for all a,b ∈ Rn.

By using this result we prove following proposition.

Lemma 4.2. Let 1 < p < 2, n ≥ 3, v ∈ W 1,∞
0 (Ω) and ϕ ∈ W 1,p

0 (Ω). Let ηε ∈ W 1,p(Ω) be such
that ‖∇ηε‖Lq(Ω) → 0, for some q ∈ [1, p), as ε→ 0. Then

lim
ε→0

( ∫
Ωε

|∇(v − ηε)|p−2∇(v − ηε) · ∇ϕdx

)

= lim
ε→0

 ∫
Ωε

|∇v|p−2∇v · ∇ϕdx−
∫
Ωε

|∇ηε|p−2∇ηε · ∇ϕdx

 . (67)
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Proof. By Lemma 4.1, by applying Hölder’s inequality, we have∣∣∣∣∣
∫
Ωε

|∇(v − ηε)|p−2∇(v − ηε) · ∇ϕdx−
(
∇v|p−2∇v − |∇ηε|p−2∇ηε

)
· ∇ϕdx

∣∣∣∣∣ (68)

≤ C
∫
Ωε

|∇v|
p−1
2 |∇ηε|

p−1
2 |∇ϕ|dx (69)

≤ K‖∇v‖
p−1
2∞ ‖∇ηε‖

p−1
2

L
p+1
2 (Ωε)

‖∇ϕ‖
L

p+1
2 (Ωε)

, (70)

since 1 < (p+ 1)/2 < p. This proves the result. �

We have all the tools we need for the proof of Theorem 1.2.

Proof of Theorem 1.2. As said before, it is enough to consider the case p ∈ (1, 2). Applying
Lemma 4.2 we obtain

lim
ε→0

(∫
Ωε

|∇vε|p−2∇vε · ∇(vε − uε)dx

)
= lim
ε→0

(J1,ε + J2,ε) (71)

J1,ε =

∫
Ωε

|∇v|p−2∇v · ∇(v − hWε − uε)dx (72)

J2,ε =

∫
Ωε

|∇(hWε)|p−2∇(hWε) · ∇(v − hWε − uε)dx. (73)

Moreover

lim
ε→0

J1,ε = lim
ε→0

(
I1,ε +

∫
Ωε

|∇v|p−2∇v · ∇(hWε)dx

)
= lim
ε→0

I1,ε. (74)

On the other hand,

lim
ε→0

J2,ε = lim
ε→0

 ∫
Ωε

|∇Wε|p−2∇Wε · ∇(v − hWε − uε)dx

 (75)

= lim
ε→0

(∑
j∈Υε

∫
∂T j

ε

|∇wjε|p−2∂νw
j
ε|h|p−2h(v − uε)dS

+
∑
j∈Υε

∫
∂Gj

ε

|∇wjε|p−2∂νw
j
ε|h|p−2h(v − h− uε)dS

)
, (76)

where ∂νg is the usual normal derivative of g. Using (57), we get:

∂νw
j
ε

∣∣∣
∂T j

ε

=
d

dr
wjε

∣∣∣
r=ε/4

= − (n− p)2
2n−2
p−1 C

n−p
p−1

0 ε
1

p−1

(p− 1)
(

1− (C0εα)
n−p
p−1 ε−

n−p
p−1 2

2n−2p
p−1

) , (77)

∂νw
j
ε

∣∣∣
∂Gj

ε

= − d

dr
wjε

∣∣∣
r=aε

=
(n− p)ε

−n
n−p

(p− 1)C0

(
1− (C0εα)

n−p
p−1 ε−

n−p
p−1 2

2n−2p
p−1

) . (78)
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Therefore

lim
ε→0

J2,ε = lim
ε→0

(
Aεε

∑
j∈Υε

∫
∂T j

ε

|h|p−2h(v − uε)ds−

− ε−γ
∫
Sε

((n− p
p− 1

)p−1

C1−p
0 |h|p−2h

)
(v − h− uε)ds−

−Qε

)
, (79)

where

Aε =

(
n− p
p− 1

)p−1
22n−2Cn−p0(

1− (C0εα)
n−p
p−1 ε−

n−p
p−1 2

2n−2p
p−1

)p−1 , (80)

Qε =

1−
(

1− a
n−p
p−1
ε ε

p−n
p−1 2

2n−2p
p−1

)p−1

Cp−1
0

(
1− a

n−p
p−1
ε ε

p−n
p−1 2

2n−2p
p−1

)p−1

(
n− p
p− 1

)p−1

ε−γ
∫
Sε

|h|p−2h(v − h− uε)dS. (81)

It is an easy (but tedious) task to check that

lim
ε→0

Qε = 0, (82)

which concludes the proof. �

5. Non critical case and pointwise comparison of homogenized solutions with
the critical case

For A ⊂ Rm let C(A) denote the space of continuous functions on A.

Theorem 5.1. Let n ≥ 3, p ∈ [2, n), 1 < α < n
n−p , f ∈ L∞(Ω), r ∈ C(Ω̄), σ ∈ C(R) non

decreasing such that σ(0) = 0 and uε be the solution of −∆puε = f x ∈ Ωε,
∂νpuε + ε−γσ(uε) = ε−γr x ∈ Sε,
uε = 0 x ∈ ∂Ω.

(83)

Then ũε ⇀ unon-crit in W 1,p
0 (Ω), the solution of{

−∆pu+ Âσ(u) = f + Âr Ω

u = 0 ∂Ω
(84)

with Â = Cn−1
0 |∂G0|.

Proof. Assume first that
0 < k1 ≤ σ′ ≤ k2 (85)

then the result holds by Theorem 3 in [33].

Applying the estimates in [29] we check that (Pεuε) is bounded in W 1,p
0 (Ω), hence there exists a

limit û such that, up to a subsequence, Pεuε → û strongly in Lp(Ω) and weakly in W 1,p
0 (Ω).

LetM be such that ‖uε‖L∞(Ωε) ≤M (see [8]). Let σδ be a sequence such that 0 < k1,δ ≤ σ′δ ≤ k2,δ

and σδ → σ in C([−M,M ]) as δ → 0. Let uε,δ be the solution of (83) with σδ. We can check,
again with estimates in [29], that

‖uε − uε,δ‖Lp(Ωε) ≤ C‖σ − σδ‖C([−M,M ]). (86)
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Passing to the limit as ε→ 0, indicating that Pεuε,δ ⇀ uδ in W 1,p
0 (Ω), where uδ is the solution

of (84) with σδ, we have that

‖û− uδ‖Lp(Ω) ≤ C‖σ − σδ‖C([−M,M ]). (87)

It is easy to check that uδ → u in Lp(Ω) where u is the solution of the problem with σ. Therefore
Pεuε → u in Lp(Ω) as ε→ 0 and u = û. �

Theorem 5.2. Let n ≥ 3, p ∈ [2, n), α = n
n−p , f ∈ L

∞(Ω), r ∈ C(Ω̄) , σ ∈ C(R) non decreasing

such that σ(0) = 0 and uε be the solution of (83). Then ũε ⇀ ucrit in W 1,p
0 (Ω) the solution of{

−∆pu+A|H(x, u)|p−2H(x, u) = f Ω,

u = 0 ∂Ω,
(88)

and H is the solution of

B0|H(x, s)|p−2H(x, s) = σ(s−H(x, s))− r(x) (89)

a.e. in Ω.

Sketch of proof. We can apply the same reasoning as before and the fact that Hδ → H, in the
sense of maximal monotone graphs, as σδ → σ in C([−M,M ]). �

Theorem 5.3. Assume the conditions of the two previous theorems, f = 0 and r(x) ≡ g(1) = 1
constant. Then, we have that

ucrit ≤ unon-crit. (90)

Proof. The condition on f and r guarantee that 0 ≤ u ≤ 1 in both cases. It is easy to check
that H is increasing, and H(s) ≤ 0 for s ∈ [0, 1]. It is easy to establish the following inequality
on the zero order terms

B0|H(s)|p−2H(s) ≥ Â(σ(s)− g(1)). (91)

Therefore, applying the comparison principle (see, e.g., [8]) we have the result. �
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[5] C. Conca, J. I. Dı́az, A. Liñán, and C. Timofte. Homogenization in Chemical Reactive Flows. Electronic

Journal of Differential Equations, 40:1–22, 2004.
[6] C. Conca and P. Donato. Non-homogeneous Neumann problems in domains with small holes. Modélisation
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[15] J. I. Dı́az, D. Gómez-Castro, T. A. Shaposhnikova, and M. N. Zubova. Article in preparation.
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1969.

[27] V. A. Marchenko and E. Y. Khruslov. Boundary-value problems with fine-grained boundary. Mat. Sb. (N.S.),
65(3):458–472, 1964.

[28] O. A. Oleinik and T. A. Shaposhnikova. On the homogenization of the Poisson equation in partially perforated

domains with arbitrary density of cavities and mixed type conditions on their boundary. Atti della Accademia
Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e

Applicazioni, 7(3):129–146, 1996.
[29] A. V. Podol’skii. Homogenization limit for the boundary value problem with the p-Laplace operator and a

nonlinear third boundary condition on the boundary of the holes in a perforated domain. Doklady Mathe-
matics, 82(3):942–945, 2010.

[30] A. V. Podol’skii. Solution continuation and homogenization of a boundary value problem for the p-Laplacian

in a perforated domain with a nonlinear third boundary condition on the boundary of holes. Doklady Math-

ematics, 91(1):30–34, 2015.



CHARACTERIZING THE STRANGE TERM IN CRITICAL SIZE HOMOGENIZATION 17

[31] A. V. Podol’skiy and T. A. Shaposhnikova. Homogenization for the p-Laplacian in an n-dimensional domain
perforated by very thin cavities with a nonlinear boundary condition on their boundary in the case p = n.

Doklady Mathematics, 92(1):464–470, 2015.

[32] S. Schimpf, M. Lucas, C. Mohr, U. Rodemerck, A. Brückner, J. Radnik, H. Hofmeister, and P. Claus. Sup-
ported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation

reactions. Catalysis Today, 72(1):63–78, 2002.

[33] T. A. Shaposhnikova and A. V. Podolskiy. Homogenization limit for the boundary value problem with the
with the p-Laplace operator and a nonlinear third boundary condition on the boundary of the holes in a

perforated domain. Functional Differential Equations, 19(3-4):1–20, 2012.
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