CHARACTERIZING THE STRANGE TERM IN CRITICAL SIZE HOMOGENIZATION: QUASILINEAR EQUATIONS WITH A GENERAL MICROSCOPIC BOUNDARY CONDITION

J.I. DÍAZ¹, D. GÓMEZ-CASTRO¹, A.V. PODOL'SKII², AND T.A. SHAPOSHNIKOVA²

ABSTRACT. The aim of this paper is to consider the asymptotic behavior of boundary value problems in *n*-dimensional domains with periodically placed particles, with a general microscopic boundary condition on the particles and *p*-Laplace diffusion operator on the interior, in the case in which the particles are of critical size. We consider the cases in which $1 and <math>n \geq 3$. In fact, in contrast to previous results in the literature we formulate the microscopic boundary condition in terms of a Robin type condition involving a general maximal monotone graph which also include the case of microscopic Dirichlet boundary conditions. In this way we unify the treatment of apparently different formulations which before were considered separately. We characterize the so called "strange term" in the homogenized problem for the case in which the particles are balls of critical size. Moreover, by studying an application in Chemical Engineering, we show that the critically sized particles lead to a more effective homogeneous reaction than non critically sized particles.

INTRODUCTION

A well-known effect in homogenization theory is the appearance of some changes in the structural modelling of the homogenized problem for suitable critical size of the elements configuring the "micro-structured" material. It seems that the first result in that direction was presented in the pioneering paper by V. Marchenko and E. Hruslov [27]. A more popular presentation of the appearance of some "strange terms" was due to D. Cioranescu and F.Murat [4]. Both articles dealt with linear equations with Neumann and Dirichlet boundary conditions, respectively. Since those dates to our days many papers were devoted to consider different formulations: more general elliptic partial differential equations (possibly of quasilinear type), Robin type and other boundary conditions of different nature, etc. It is impossible to mention all of them here (a few of them will be mentioned in the rest of this Introduction) but the reader may imagine that the nature of this "strange term" may be completely different according to the peculiarities of the formulation in consideration (something that was already indicated at the end of the Introduction of the paper by Cioranescu and Murat [4]).

 $^{^1\}mathrm{Dpto.}$ de Matemática Aplicada e I.M.I., Universidad Complutense de Madrid, Madrid, Plaza de las Ciencias, 3 28040 Spain, jidiaz@ucm.es, dgcastro@ucm.es

²Moscow State University, Faculty of Mechanics and Mathematics, Moscow, 19992 Russia, originalea@ya.ru, shaposh.tan@mail.ru

Key words and phrases. Keywords: homogenization; p-Laplace diffusion; non-linear boundary reaction; non-critical sizes; maximal monotone graphs.

 $AMS\ Subject\ Classification:\ 35B25, 35B40, 35J05, 35J20.$

The main goal of this paper is to characterize the change of structural behavior arising in the homogenization process when applied to chemical reactions taking place on fixed-bed nanoreactors, at the microscopic level, on the boundary of the particles

$$\begin{cases} -\Delta_p u_{\varepsilon} = f(x) & x \in \Omega_{\varepsilon}, \\ -\partial_{\nu_p} u_{\varepsilon} \in \varepsilon^{-\gamma} \sigma(u_{\varepsilon}) & x \in S_{\varepsilon}, \\ u_{\varepsilon} = 0 & x \in \partial\Omega, \end{cases}$$
(1)

for a very general type of chemical kinetics (here given by the maximal monotone graph σ of \mathbb{R}^2). Thanks to this generality on the maximal monotone graph σ our treatment also includes the case of microscopic Dirichlet boundary conditions. In this way we unify the treatment of apparently different formulations which before were considered separately.

The diffusion is modeled by the quasilinear operator $\Delta_p u_{\varepsilon} \equiv \operatorname{div}(|\nabla u_{\varepsilon}|^{p-2}\nabla u_{\varepsilon})$ with p > 1. Notice that p = 2 corresponds to the linear diffusion operator, and that $p \neq 2$ appears in turbulent regime flows or non-Newtonian flows [8]. As it is well-known, this operator appears in many other contexts and is one of the best examples of quasilinear operators leading to a formulation in terms of nonlinear monotone operators (see, e.g., [26, 1, 7]).

The "normal derivative" must be then understood as $\partial_{\nu_p} u_{\varepsilon} = |\nabla u_{\varepsilon}|^{p-2} \nabla u_{\varepsilon} \cdot \nu$, where ν is outward unit normal vector on the boundary of the particles $S_{\varepsilon} \subset \partial \Omega_{\varepsilon}$. In fact, we will consider the structural assumption

$$1$$

The cases $p \ge n$ are completely different [31, 13] (see also, for instance, the study made for a general monotone quasilinear equation with Dirichlet boundary conditions in [7]).

As mentioned before, the generality assumed on the maximal monotone graph σ of \mathbb{R}^2 allows to treat, in an unified way, of cases so different as the case of Dirichlet boundary conditions, which corresponds to the choice of σ given by

$$D(\sigma) = \{0\} \text{ and } \sigma(0) = (-\infty, +\infty), \tag{3}$$

(see, e.g. [1]) and the case of nonlinear Robin type boundary conditions, which corresponds (see, e.g. [24]) to the case in which

$$D(\sigma) = \mathbb{R}$$
 and σ is a continuous non decreasing function. (4)

The domain $\Omega_{\varepsilon} \subset \mathbb{R}^n$ is assumed to have an ε -periodical structure. Since our main goal is to get a very precise description of the so called "strange term" in the homogenized problem, we shall assume that the particles are balls of radius $a_{\varepsilon} = C_0 \varepsilon^{\alpha}$, where $\alpha > 1$. One of the interesting properties that arise from our precise characterization is that there is uniqueness of solutions of the homogenized problem. This was not always proved in previous results (cf. the general framework considered in [7] and how their characterization, given in their Lemma 5.1, is not enough to get the uniqueness of solution of their homogenized problem). The consideration of particles of a general shape is a difficult task, specially the exact identification of the "strange terms". A similar formulation to the one considered in this paper for that case can be obtained, at least for continuous σ , and it will be the object of a separate paper [15].

The problem has two different parameters: α , the size of the particles, and γ , the normalization factor of the boundary condition on S_{ε} . When they have critical values:

$$\alpha = \frac{n}{n-p}, \qquad \gamma = \alpha(n-1) - n = \alpha(p-1), \tag{5}$$

then our main result in this paper shows that the homogenized problem involves a different distributed chemical kinetics nonlinearity

$$\begin{cases} -\Delta_p u + \mathcal{A}|H(u)|^{p-2}H(u) = f(x) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(6)

where

$$\mathcal{A} = \left(\frac{n-p}{p-1}\right)^{p-1} C_0^{n-p} \omega_n,\tag{7}$$

and $H: \mathbb{R} \to \mathbb{R}$ is given by

$$H(r) = (I + \sigma^{-1} \circ \Theta_{n,p})^{-1}(r),$$
(8)

with

$$\Theta_{n,p}(s) = \mathcal{B}_0|s|^{p-2}s,\tag{9}$$

for $s \in \mathbb{R}$, and

$$\mathcal{B}_0 = \left(\frac{n-p}{C_0(p-1)}\right)^{p-1},\tag{10}$$

where ω_n is the surface area of the unit sphere in \mathbb{R}^n . We show that, for any maximal monotone graph σ , H is a nondecreasing contraction and thus the existence, uniqueness and continous dependence of solutions of the homogenized problem is consequence of well-known results on monotone operators theory.

The change of behavior from the nonlinearity of type σ in the non-homogeneous problem to the nonlinearity H in the homogeneous problem is one of the characteristics of the nanotechnological effects (see, e.g., [32]) and does not appear if $1 \le \alpha < \frac{n}{n-p}$ (see [5, 33]).

Before presenting the details of the notation used above, let us mention that our main aim is to provide a common roof and extend (under different points of view) some previous results in the literature concerning different structural assumptions (i.e. functions σ and H) after the homogenization process.

The case of Robin boundary conditions $\partial_n u + \beta(\varepsilon)\sigma(u) = 0$ on S_{ε} was first studied by V. A. Marchenko and E. J. Hruslov in a series of papers dealing mainly with the linear case $\sigma(u) = \lambda u$ [20, 21, 19, 27]. Some references on different choices of smooth functions σ can be found in the papers mentioned below and the references therein: [6, 18, 24, 25, 35, 22, 29]. For some further reference see also [23, 17, 16]. Some previous results by the authors [11], formulated there for some non necessarily Lipschitz functions σ and $p \in [2, n)$, will be here extended to the case a general maximal monotone graph σ (which includes the case of Dirichlet boundary conditions) and $p \in (1, n)$.

The special case of Dirichlet boundary condition $u_{\varepsilon} = 0$ on S_{ε} , covered by (3), gives $\sigma^{-1}(s) = 0$ for any $s \in \mathbb{R}$ and so H(r) = r for any $r \in \mathbb{R}$. Therefore the "strange term" arising in the homogenized equation becomes $\mathcal{A}|u|^{p-2}u$. This was shown for p = 2 in the pioneering paper by Cioranescu and Murat [4]. However, even in this simple case, the treatment in [7] for the case $p \neq 2$ is not as sharp as in our case. The authors of [7] do not provide an explicit expression for this strange term. In fact, their characterization (see their Lemma 5.1) does not guaranty uniqueness of solutions of the homogenized problem.

The case of the boundary condition

$$u_{\varepsilon} \geq 0, \quad \partial_n u_{\varepsilon} + \varepsilon^{-\gamma} \sigma_0(u_{\varepsilon}) \geq 0, \quad u_{\varepsilon}(\partial_n u_{\varepsilon} + \varepsilon^{-\gamma} \sigma_0(u_{\varepsilon})) = 0 \quad \text{ on } S_{\varepsilon},$$

which was studied for smooth σ_0 in [22] by *ad hoc* techniques, is also covered by the common roof provided in this paper, by taking

$$D(\sigma) = [0, +\infty) \qquad \sigma(u) = \begin{cases} (-\infty, 0] & \text{if } u = 0, \\ \sigma_0(u) & \text{if } u > 0. \end{cases}$$
(11)

See also [12, 28].

The choice of the critical values of α and γ might appear arbitrary. Let us give some reasons why this is the good choice. First, if $N(\varepsilon)$ is the number of particles, then $N(\varepsilon) \sim \varepsilon^{-n}$. It is easy to see that $|S_{\varepsilon}| = N(\varepsilon) |\partial(a_{\varepsilon}G_0)| \sim \varepsilon^{\alpha(n-1)-n}$, where G_0 is the unit ball centered at 0. Let us analyze the choice of γ . If we consider the reaction term on the weak formulation, with $\sigma(u_{\varepsilon})$ a bounded sequence in L^{∞} , and v is a bounded test function then

$$\frac{1}{|S_{\varepsilon}|} \int_{S_{\varepsilon}} \sigma(u_{\varepsilon}) v dS \sim \varepsilon^{-(\alpha(n-1)-n)} \int_{S_{\varepsilon}} \sigma(u_{\varepsilon}) v dS$$
(12)

is a bounded sequence. Hence if the sequence u_{ε} is bounded in L^{∞} , and v a bounded test function, then

$$\varepsilon^{-\gamma} \int_{S_{\varepsilon}} \sigma(u_{\varepsilon}) v dS \tag{13}$$

can only be expect to tend to either 0 or $+\infty$ if $\gamma \neq \alpha(n-1) - n$ and hence we will lose the reaction term on the equation on the homogenized equation or we lose the equation altogether. If the macroscopic behavior is given by a reaction diffusion equation (with non trivial reaction) then the choice scaling γ as $\varepsilon \to 0$ can be no other.

The appearance of the critical value of α has to do with a property of traces. It is known (see [30]) that,

$$\int_{a_{\varepsilon}S_0} |u|^p dS \le K \left(a_{\varepsilon}^{n-1} \varepsilon^{-n} \int_{Y_{\varepsilon}} |u|^p dx + a_{\varepsilon}^{p-1} \int_{Y_{\varepsilon}} |\nabla u|^p dx \right).$$
(14)

As it turns out, the critical scale is the one in which both terms in the right hand side have the same order of convergence. Notice that, in the critical case $\alpha = \frac{n}{n-p}$ we have $\gamma = \alpha(p-1)$.

Notice that for a Newtonian fluid in \mathbb{R}^3 (n = 3, p = 2) the critical size corresponds to $\alpha = 3$. Obviously the critical value of α is an increasing function of p. Therefore for non Newtonian dilatant fluids or a Newtonian flow in turbulent regime (p > 2) our assumption means $\alpha > 3$, the particles are tiny with respect to their repetition, whereas for pseudoplastic fluids (p < 2) the critical particles satisfy $\alpha < 3$, and hence are not so tiny with respect to their repetition.

A relevant application of our results is the following. Let us consider the usual formulation in Chemical Engineering [34, 9] with a constant external supply

$$\begin{cases} -\Delta w_{\varepsilon} = 0 & x \in \Omega_{\varepsilon}, \\ \partial_{\nu} w_{\varepsilon} + \varepsilon^{-\gamma} g(w_{\varepsilon}) = 0 & x \in S_{\varepsilon}, \\ w_{\varepsilon} = 1 & x \in \partial \Omega. \end{cases}$$
(15)

where g is a nondecreasing real function such that g(0) = 0. In order to adapt our results, we introduce the change in variable u = 1 - w and $\sigma(u) = g(1) - g(1 - u)$, and the problem becomes

$$\begin{cases} -\Delta u_{\varepsilon} = 0 & x \in \Omega_{\varepsilon}, \\ \partial_{\nu} u_{\varepsilon} + \varepsilon^{-\gamma} \sigma(u_{\varepsilon}) = \varepsilon^{-\gamma} g(1) & x \in S_{\varepsilon}, \\ u_{\varepsilon} = 0 & x \in \partial \Omega. \end{cases}$$
(16)

Notice that the presence of $w_{\varepsilon} = 1$ on $\partial\Omega$ is translated to a source in S_{ε} for u_{ε} . We will see later (Theorem 5.2) that the new equation for H, when $\alpha = \frac{n}{n-2}$, is

$$\frac{n-2}{C_0}H(s) = \sigma(s - H(s)) - g(1)$$
(17)

that is

$$H(u) = -\left(g^{-1}\left(\frac{n-2}{C_0}\right) + Id\right)^{-1}(1-u),$$
(18)

so that an extension of w_{ε} converges weakly in $H^1(\Omega)$ to w_{crit} , the solution of

$$\begin{cases} -\Delta w_{\rm crit} + \mathcal{A}h(w_{\rm crit}) = 0 & \Omega, \\ w_{\rm crit} = 1 & \partial \Omega \end{cases}$$
(19)

and h is given by

$$h(w) = \left(g^{-1}\left(\frac{n-2}{n}\right) + Id\right)^{-1}(w).$$
⁽²⁰⁾

Notice that in the case of Neumann problems $\sigma(s) \equiv 0$ for any $s \in R$ and althoug σ^{-1} is well known maximal monotone graph the more direct identification of the "strange term" H(u) is obtained trough the implicit equation (17) since we get, in this case, that

$$H(s) = -\frac{C_0 g(1)}{n-2} \text{ for any } s \in \mathbb{R}.$$
(21)

In the noncritical cases, $1 < \alpha < \frac{n}{n-2}$, we will show that an extension of w_{ε} converges weakly in $H^1(\Omega)$ to $w_{\text{non-crit}}$, the solution of

$$\begin{cases} -\Delta w_{\text{non-crit}} + \hat{\mathcal{A}}g(w_{\text{non-crit}}) = 0 & \Omega, \\ w_{\text{non-crit}} = 1 & \partial\Omega, \end{cases}$$
(22)

with $\hat{\mathcal{A}} = C_0^{n-1} |\partial G_0|$. Finally, we will show, in Theorem 5.3 that

$$w_{\rm crit} \ge w_{\rm non-crit}$$
 (23)

so we have a pointwise "better" reaction in the critical case [10]. We point out that a different criterion to establish the optimality of the reaction in terms of the so called "chemical effective-ness" was considered by the autors in [14].

The plan of the rest of the paper is the following: Section 1 will be devoted to the statement of the main results, Section 2 contains the proof of the existence results for equation (1) and the characterization of H, Section 3 is devoted to the proof of the main result, Theorem 1.1, and Section 4 contains the proof of auxiliary Theorem 1.2 which studies the limit of the diffusion. We conclude the paper with Section 5 by studying the non critical case and the pointwise comparison of its homogenized solution with the critical case.

1. STATEMENT OF THE MAIN RESULTS

Let Ω be a bounded domain in \mathbb{R}^n , $n \geq 3$, with a smooth boundary $\partial\Omega$ and let $Y = (-1/2, 1/2)^n$. Denote by $G_0 = B_1(0)$ the unit ball centered at the origin. This plays a crucial role in the proof. As far as we known, no results are known in the critical cases if G_0 is not a ball. For $\delta > 0$ and $\varepsilon > 0$ we define sets $\delta B = \{x \mid \delta^{-1}x \in B\}$ and $\widetilde{\Omega}_{\varepsilon} = \{x \in \Omega \mid \rho(x, \partial\Omega) > 2\varepsilon\}$. Let

$$a_{\varepsilon} = C_0 \varepsilon^{\alpha} \tag{24}$$

where $\alpha > 1$ and C_0 is a given positive number. Define

$$G_{\varepsilon} = \bigcup_{j \in \Upsilon_{\varepsilon}} (a_{\varepsilon}G_0 + \varepsilon j) = \bigcup_{j \in \Upsilon_{\varepsilon}} G_{\varepsilon}^j,$$

where $\Upsilon_{\varepsilon} = \{j \in \mathbb{Z}^n : (a_{\varepsilon}G_0 + \varepsilon j) \cap \overline{\widetilde{\Omega}}_{\varepsilon} \neq \emptyset\}, N(\varepsilon) = |\Upsilon_{\varepsilon}| \cong \varepsilon^{-n}, \mathbb{Z}^n$ is the set of vectors z with integer coordinates. Define $Y_{\varepsilon}^j = \varepsilon Y + \varepsilon j$, where $j \in \Upsilon_{\varepsilon}$ and note that $\overline{G}_{\varepsilon}^j \subset \overline{Y}_{\varepsilon}^j$ and center of the ball G_{ε}^j coincides with the center of the cube Y_{ε}^j . Our "microscopic domain" is defined as

$$\Omega_{\varepsilon} = \Omega \setminus \overline{G_{\varepsilon}}, \, S_{\varepsilon} = \partial G_{\varepsilon}, \,\, \partial \Omega_{\varepsilon} = \partial \Omega \cup S_{\varepsilon}.$$

We define the space $W_0^{1,p}(\Omega_{\varepsilon},\partial\Omega)$ as the completion, with respect to the norm of $W^{1,p}(\Omega_{\varepsilon})$, of the set of infinitely differentiable functions in $\overline{\Omega}_{\varepsilon}$ equal to zero in a neighborhood of $\partial\Omega$

$$W_0^{1,p}(\Omega_{\varepsilon},\partial\Omega) = \left\{ u \in W^{1,p}(\Omega_{\varepsilon}) : u = 0 \text{ on } \partial\Omega \right\}.$$
 (25)

Concerning the solvability of problem (1) we start by introducing the notion of weak solution. We recall that by well-known results (see, e.g., [2]) since we assume that $\sigma : \mathbb{R} \to \mathcal{P}(\mathbb{R})$, where $\mathcal{P}(\mathbb{R})$ denotes the set of subsets of \mathbb{R} , verifies that

$$\sigma$$
 is a maximal monotone graph of \mathbb{R}^2 , $0 \in \sigma(0)$, (26)

there exists a function $\Psi : \mathbb{R} \to (-\infty, +\infty]$ such that Ψ is convex lower semicontinuous function with $\Psi(0) = 0$, such that $\sigma = \partial \Psi$ is its subdifferential. We also know that if we define

$$D(\sigma) = \{ r \in \mathbb{R} \text{ such that } \sigma(r) \neq \emptyset \},\$$

where \emptyset denotes the empty set, and

$$D(\Psi) = \{r \in \mathbb{R} \text{ such that } \Psi(r) < +\infty\},\$$

then $D(\sigma) \subset D(\Psi) \subset \overline{D(\Psi)} = \overline{D(\sigma)}$.

In the rest of the paper we will always assume that

$$f \in L^{p'}(\Omega), \tag{27}$$

where, as usual, p' = p/(p-1).

Since u_{ε} is the minimizer of the following energy functional in $W^{1,p}(\Omega_{\varepsilon},\partial\Omega)$ (see [26, 1])

$$E(u) = \int_{\Omega_{\varepsilon}} |\nabla u|^p dx + \varepsilon^{-\gamma} \int_{S_{\varepsilon}} \Psi(u) dS - \int_{\Omega_{\varepsilon}} f u dx, \qquad (28)$$

we consider the following definition of weak solution

Definition 1.1. We will say that $u_{\varepsilon} \in W^{1,p}(\Omega_{\varepsilon}, \partial\Omega)$ is a weak solution of problem (1) if, $u_{\varepsilon}(x) \in D(\Psi)$ for a.e. $x \in S_{\varepsilon}$, and, for all $v \in W^{1,p}(\Omega_{\varepsilon}, \partial\Omega)$, we have

$$\int_{\Omega_{\varepsilon}} |\nabla u_{\varepsilon}|^{p-2} \nabla u_{\varepsilon} \cdot \nabla (v - u_{\varepsilon}) dx + \varepsilon^{-\gamma} \int_{S_{\varepsilon}} (\Psi(v) - \Psi(u_{\varepsilon})) dS \ge \int_{\Omega_{\varepsilon}} f(v - u_{\varepsilon}) dx.$$
(29)

The existence and uniqueness of a weak solution to problem (29) is an easy consequence of well-known results:

Proposition 1.1. There exists a unique $u_{\varepsilon} \in W^{1,p}(\Omega_{\varepsilon}, \partial\Omega)$ weak solution of (29). Besides, there exists K > 0 independent of ε such that

$$\|\nabla u_{\varepsilon}\|_{L^{p}(\Omega_{\varepsilon})} + \varepsilon^{-\gamma} \|\Psi(u_{\varepsilon})\|_{L^{1}(S_{\varepsilon})} \le K.$$
(30)

The homogenized problem will involve the function $H : \mathbb{R} \to \mathbb{R}$ given by (8). Let us present some of the properties satisfied by H. **Lemma 1.1.** If σ satisfies (26) then function H defined by (8) is a nondecreasing nonexpansion on \mathbb{R} (i.e. a nondecreasing Lipschitz continuous function, of Lipschitz constant $L \leq 1$). Moreover, this function H is the unique function $H : \mathbb{R} \to \mathbb{R}$ satisfying the relation

$$\mathcal{B}_0|H(r)|^{p-2}H(r) \in \sigma(r-H(r)), \text{ for any } r \in \mathbb{R}.$$
(31)

Concerning the homogenized problem (6) we point out that since H is a nondecreasing nonexpansion on \mathbb{R} then, given the parameters \mathcal{A} and \mathcal{B}_0 given by (7) and (10) and $f \in L^{p'}(\Omega)$, there exists a unique weak solution $u \in W_0^{1,p}(\Omega)$ of problem (6). Moreover $|H(u)|^{p-2}H(u) \in L^{p'}(\Omega)$. For the proof it is enough to define $V = W_0^{1,p}(\Omega)$ and the operator $A: V \to V'$ by

$$\langle Av, w \rangle = \int_{\Omega} |\nabla v|^{p-2} \nabla v \cdot \nabla w dx + \int_{\Omega} \mathcal{A} |H(v)|^{p-2} H(v) w dx$$
(32)

for any $w \in V$. Notice that, since H is Lipschitz, then $H(v) \in L^p(\Omega)$ for any $v \in L^p(\Omega)$. Then A is a hemicontinuous strictly monotone coercive operator and the existence and uniqueness of a weak solution u is standard (see, e.g., [26]).

We will make fundamental use of the following reformulation of weak solution. Since the *limit* operator $A: V \to V'$, with $V = W_0^{1,p}(\Omega)$, given by (32) is hemicontinuous and monotone we can use the Brezis-Sibony characterization (see Lemme 1.1 of [3], or Theoreme 2.2, Chapter 2 of [26]): $u \in W_0^{1,p}(\Omega)$ is a weak solution of (6) if and only if

$$\int_{\Omega} |\nabla v|^{p-2} \nabla v \cdot \nabla (v-u) dx + \int_{\Omega} \mathcal{B}_0 |H(v)|^{p-2} H(v) (v-u) dx \ge \int_{\Omega} f(v-u) dx \tag{33}$$

for any $v \in W_0^{1,p}(\Omega)$.

The main result of this paper is the following convergence result:

Theorem 1.1. Let $n \geq 3$, $1 , <math>\alpha = \frac{n}{n-p}$, $\gamma = \alpha(p-1)$. Let σ be any maximal monotone graph of \mathbb{R}^2 with $0 \in \sigma(0)$ and let $f \in L^{p'}(\Omega)$. Let $u_{\varepsilon} \in W_0^{1,p}(\Omega_{\varepsilon}, \partial\Omega)$ be the (unique) weak solution of problem (1). Then there exists an extension \tilde{u}_{ε} of u_{ε} such that $\tilde{u}_{\varepsilon} \rightharpoonup u$ in $W_0^{1,p}(\Omega)$ as $\varepsilon \to 0$ where $u \in W_0^{1,p}(\Omega)$ is the (unique) weak solution of the problem (6) associated to the function H, defined by (8).

Remark 1.1. The case n = 2 can be studied by similar techniques, although some of computations vary. In particular, the critical value of α does not verify the same formula.

The other key result we will prove in this paper is Theorem 1.2 below, the statement of which requires some preliminary lemmas. The extension \tilde{u}_{ε} of solutions u_{ε} can be obtained by applying the methods of [30]:

Lemma 1.2. Let Ω_{ε} be the domain defined above and let $1 . Then, an extension operator <math>P_{\varepsilon}: W^{1,p}(\Omega_{\varepsilon}) \to W^{1,p}(\Omega)$ such that

$$\|P_{\varepsilon}u\|_{W^{1,p}(\Omega)} \le C_1 \|u\|_{W^{1,p}(\Omega_{\varepsilon})} \tag{34}$$

$$\|\nabla(P_{\varepsilon}u)\|_{L_{p}(\Omega)} \leq C_{2} \|\nabla u\|_{L_{p}(\Omega_{\varepsilon})}.$$
(35)

Moreover, by applying this extension theorem and the methods introduced in [30] we can prove following useful estimates:

Lemma 1.3. i) Let $u \in W_0^{1,p}(\Omega_{\varepsilon}, \partial\Omega)$ and $p > 1, n \ge 3$. Then there exists positive constant C such that the following inequality is valid

$$\|u\|_{L^p(\Omega_{\varepsilon})} \le C \|\nabla u\|_{L^p(\Omega_{\varepsilon})}.$$
(36)

CHARACTERIZING THE STRANGE TERM IN CRITICAL SIZE HOMOGENIZATION

ii) Let
$$u \in W^{1,p}(Y_{\varepsilon})$$
 such that $\int_{Y_{\varepsilon}} u = 0$. Then
 $\|u\|_{L^{p}(Y_{\varepsilon})} \leq K_{1}\varepsilon\|\nabla u\|_{L^{p}(Y_{\varepsilon})},$

where constant K_1 is independent of ε .

Thanks to the *a priori* estimate (30) and the properties of the above extension operator $P_{\varepsilon}: W_0^{1,p}(\Omega_{\varepsilon}, \partial\Omega) \to W^{1,p}(\Omega)$ we know that and there exists $u \in W_0^{1,p}(\Omega)$ such that

$$P_{\varepsilon}u_{\varepsilon} \rightharpoonup u, \qquad \text{in } W_0^{1,p}(\Omega).$$
 (38)

(37)

The difficult task is to show that $u \in W_0^{1,p}(\Omega)$ is the weak solution of problem (6) such as it is ensured in Theorem 1.1.

Motivated by this and (33), we will also use the fact that if $u_{\varepsilon} \in W_0^{1,p}(\Omega_{\varepsilon},\partial\Omega)$ is the weak solution of problem (1) then

$$\int_{\Omega_{\varepsilon}} |\nabla v|^{p-2} \nabla v \cdot \nabla (v - u_{\varepsilon}) dx + \varepsilon^{-\gamma} \int_{S_{\varepsilon}} (\Psi(v) - \Psi(u_{\varepsilon})) dS \ge \int_{\Omega_{\varepsilon}} f(v - u_{\varepsilon}) dx \tag{39}$$

for any test function $v \in W^{1,p}(\Omega_{\varepsilon}, \partial\Omega)$.

The problematic term, in order to pass to the limit, is the boundary integrals over S_{ε} . Here we will follow a technique of proof introduced by the last author (T.A. Shaposhnikova) in collaboration with different co-authors (see, e.g. Oleinik-Shaposhnikova [28], Shaposhnikova-Zubova [35] and Shaposhnikova-Podol'skii [33]) which can be applied in different frameworks.

Lemma 1.4. Let $z_{\varepsilon} \in W_0^{1,p}(\Omega)$, for some p > 1, and assume that $z_{\varepsilon} \rightharpoonup z_0$ in $W_0^{1,p}(\Omega)$ as $\varepsilon \to 0$. Then,

$$\left| 2^{2(n-1)} \varepsilon \sum_{j \in \Upsilon_{\varepsilon}} \int_{\partial T^{j}_{\varepsilon/4}} z_{\varepsilon} dS - \omega_{n} \int_{\Omega} z_{0} dx \right| \to 0, \qquad as \ \varepsilon \to 0, \tag{40}$$

where ω_n is the surface area of the unit sphere in \mathbb{R}^n .

This lemma (which we remark is independent of α and γ , see the proof in [35]), is the key point of the homogenization technique in the critical critical case. It is based in the general idea that if P_{ε}^{j} is the center of the ball $G_{\varepsilon}^{j} = \{x \in Y_{\varepsilon}^{j} : |x - P_{\varepsilon}^{j}| < a_{\varepsilon}\}$ and if T_{ε}^{j} denotes the ball of radius $\varepsilon/4$ centered at the point P_{ε}^{j} then we can get several explicit estimates on the solution $w_{\varepsilon}^{j}(x)$ for $j = 1, \ldots, N(\varepsilon)$ of the auxiliary cellular boundary value problem

$$\begin{cases} \Delta_p w^j_{\varepsilon} = 0 \quad x \in T^j_{\varepsilon} \setminus \overline{G^j_{\varepsilon}}, \\ w^j_{\varepsilon} = 1 \quad x \in \partial G^j_{\varepsilon}, \\ w^j_{\varepsilon} = 0 \quad x \in \partial T^j_{\varepsilon}. \end{cases}$$
(41)

One of the many remarkable properties of this cellular problem is that its (unique) weak solution, w_{ε}^{j} , is radially symmetric (recall that G_{0} is a ball) and satisfies that $\partial_{\nu_{p}} w_{\varepsilon}^{j}$ is constant on $\partial T_{\varepsilon}^{j}$ and on $\partial G_{\varepsilon}^{j}$. Due to the divergence theorem

$$\int_{G_{\varepsilon}^{j}} |\nabla w_{\varepsilon}^{j}|^{p-2} \nabla w_{\varepsilon}^{j} \cdot \nabla z dx = \int_{\partial T_{\varepsilon}^{j}} z \,\partial_{\nu_{p}} w_{\varepsilon}^{j} dS + \int_{\partial G_{\varepsilon}^{j}} z \,\partial_{\nu_{p}} w_{\varepsilon}^{j} dS, \tag{42}$$

for any $z \in W^{1,p}(T^j_{\varepsilon} \setminus G^j_{\varepsilon})$. Furthermore, we can make explicitly several computations. Hence, we have an explicit way to compare the reaction term on S_{ε} with an auxiliary term on balls with

radius $C\varepsilon$, and Lemma 1.4 becomes very useful.

Another key idea of our proof is to relate a general test function $v \in W_0^{1,p}(\Omega)$, used to check the limit characterization (33), with some suitable *correction*, v_{ε} , which is a better fitted test function in the microscopic weak formulation (39). In fact, by density, it will be enough to do that with a smooth test function $v \in C_c^{\infty}(\Omega)$. We will construct such adaptation among test functions in the form $v_{\varepsilon} = v - hW_{\varepsilon}$ where, for the moment $h \in W^{1,\infty}(\Omega)$ without any other property, and, which is crucial, $W_{\varepsilon} \in W_0^{1,\infty}(\Omega)$ is defined as

$$W_{\varepsilon} = \begin{cases} w_{\varepsilon}^{j}, & x \in T_{\varepsilon}^{j} \setminus G_{\varepsilon}^{j}, \ j = 1, \dots, N(\varepsilon) = |\Upsilon_{\varepsilon}|; \\ 1, & x \in G_{\varepsilon}, \\ 0, & x \in \mathbb{R}^{n} \setminus \bigcup_{j=1}^{N(\varepsilon)} T_{\varepsilon}^{j}, \end{cases}$$
(43)

with w_{ε}^{j} the solution of the auxiliary cellular boundary value problem (41). The following technical result will explain why function H arising in the limit problem (6) was taken in this concrete form (more precisely, such that (31) holds), different from the boundary kinetics σ .

Theorem 1.2. Let $1 and <math>u_{\varepsilon} \in W_0^{1,p}(\Omega_{\varepsilon}, \partial\Omega)$ be a sequence of uniformly bounded norm, $v \in \mathcal{C}^{\infty}_c(\Omega), h \in W^{1,\infty}(\Omega)$ and let

$$v_{\varepsilon} = v - hW_{\varepsilon}.\tag{44}$$

Then

$$\lim_{\varepsilon \to 0} \left(\int_{\Omega_{\varepsilon}} |\nabla v_{\varepsilon}|^{p-2} \nabla v_{\varepsilon} \cdot \nabla (v_{\varepsilon} - u_{\varepsilon}) dx \right) = \lim_{\varepsilon \to 0} \left(I_{1,\varepsilon} + I_{2,\varepsilon} + I_{3,\varepsilon} \right)$$
(45)

$$I_{1,\varepsilon} = \int_{\Omega_{\varepsilon}} |\nabla v|^{p-2} \nabla v \cdot \nabla (v - u_{\varepsilon}) dx \tag{46}$$

$$I_{2,\varepsilon} = -\varepsilon^{-\gamma} \mathcal{B}_0 \int_{S_{\varepsilon}} |h|^{p-2} h(v-h-u_{\varepsilon}) dS$$
(47)

$$I_{3,\varepsilon} = -A_{\varepsilon}\varepsilon \sum_{j\in\Upsilon_{\varepsilon}} \int_{\partial T_{\varepsilon}^{j}} |h|^{p-2}h(v-u_{\varepsilon})dS, \qquad (48)$$

where A_{ε} is a bounded sequence (see (80)). Besides, if \tilde{u}_{ε} is an extension of u_{ε} and $\tilde{u}_{\varepsilon} \rightharpoonup u$ in $W_0^{1,p}(\Omega)$ then, for any $v \in W_0^{1,p}(\Omega)$

$$\lim_{\varepsilon \to 0} \int_{\Omega_{\varepsilon}} |\nabla v|^{p-2} \nabla v \cdot \nabla (v - hW_{\varepsilon} - u_{\varepsilon}) dx = \int_{\Omega} |\nabla v|^{p-2} \nabla v \cdot \nabla (v - u) dx.$$
(49)

The aforementioned corrector term in the form hW_{ε} , were $h \in W^{1,\infty}(\Omega_{\varepsilon},\partial\Omega)$ will be taken to satisfy the condition h(x) = H(v(x)) for a.e. $x \in \Omega$ and H given by equation (31). These conditions rise naturally so that the term $I_{2,\varepsilon}$ above cancels out with the reaction term.

Remark 1.2. In general, it is expected that the convergence $\tilde{u}_{\varepsilon} \to u$ can be improved to strong convergence by adding a corrector term. In fact, if σ is smooth, it is known that $u_{\varepsilon} - H(u_{\varepsilon})W_{\varepsilon} \to u$ strongly in $W_0^{1,p}(\Omega)$ (see, e.g., [35]). It is possible to adapt the arguments to the case of some maximal monotone graphs as, for instance, the one given by the Signorini boundary condition (see [12]).

2. Existence of u_{ε} and characterization of function H

Proof of Proposition 1.1. Consider the Banach space $V = W_0^{1,p}(\Omega_{\varepsilon}, \partial \Omega)$. Let $A_{\varepsilon} : V \to V'$ be the operator defined by

$$\langle A_{\varepsilon}v, w \rangle = \int_{\Omega_{\varepsilon}} |\nabla v|^{p-2} \nabla v \cdot \nabla w dx \tag{50}$$

for any $w \in W_0^{1,p}(\Omega_{\varepsilon}, \partial\Omega)$. Then A is a hemicontinuous strictly monotone coercive operator ([26]). Define $\varphi^{\varepsilon}: W_0^{1,p}(\Omega_{\varepsilon}, \partial\Omega) \to (-\infty, +\infty]$ by

$$\varphi^{\varepsilon}(u) = \begin{cases} \varepsilon^{-\gamma} \int_{S_{\varepsilon}} \Psi(\operatorname{tr}_{S_{\varepsilon}}(u)) dS & \text{if } \operatorname{tr}_{S_{\varepsilon}}(u(x)) \in D(\Psi) \ a.e. \ x \in S_{\varepsilon}, \\ +\infty & \text{otherwise.} \end{cases}$$
(51)

It is clear that φ^{ε} is a convex lower semicontinuous function with $\varphi^{\varepsilon} \not\equiv +\infty$. Since $f \in V'$, we have that u_{ε} is a weak solution of problem (1) if and only if

$$\langle A_{\varepsilon}(u_{\varepsilon}) - f, v - u_{\varepsilon} \rangle + \varphi^{\varepsilon}(v) - \varphi^{\varepsilon}(u_{\varepsilon}) \ge 0, \quad \forall v \in V.$$
 (52)

Thus, the existence and uniqueness of a weak solution u_{ε} of the problem (1) is consequence of Theorem 8.5, Chapter 2 in [26].

In order to prove the *a priori* bound (30), let $v \in W_0^{1,p}(\Omega_{\varepsilon}, \partial\Omega)$. Then, we have

$$\int_{\Omega_{\varepsilon}} |\nabla u_{\varepsilon}|^{p} dx + \varepsilon^{-\gamma} \int_{S_{\varepsilon}} \Psi(u_{\varepsilon}) dS \\
\leq \int_{\Omega_{\varepsilon}} |\nabla u_{\varepsilon}|^{p-2} \nabla u_{\varepsilon} \cdot \nabla v dx + \varepsilon^{-\gamma} \int_{S_{\varepsilon}} \Psi(v) dS - \int_{\Omega_{\varepsilon}} f(v - u_{\varepsilon}) dx.$$
(53)

Given $\delta \in (0,1)$ we apply Young's inequality, $ab \leq \delta |a|^{p'} + C_{\delta} |b|^{p}$, to get

$$\int_{\Omega_{\varepsilon}} |\nabla u_{\varepsilon}|^{p-2} \nabla u_{\varepsilon} \cdot \nabla v dx \le \delta \int_{\Omega_{\varepsilon}} |\nabla u_{\varepsilon}|^{p} dx + C_{\delta} \int_{\Omega_{\varepsilon}} |\nabla v|^{p} dx.$$
(54)

Therefore, since $\Psi \ge 0$, taking v = 0 and applying Hölder's and Poincaré's inequalities we have

$$(1-\delta)\|\nabla u_{\varepsilon}\|_{L^{p}(\Omega_{\varepsilon})}^{p} + \varepsilon^{-\gamma}\|\Psi(u_{\varepsilon})\|_{L^{1}(S_{\varepsilon})} \leq \int_{\Omega_{\varepsilon}} fu_{\varepsilon}dx \leq C\|f\|_{L^{p'}(\Omega)}\|\nabla u_{\varepsilon}\|_{L^{p}(\Omega_{\varepsilon})},$$
(55)

which leads to the result.

Proof of Lemma 1.1. Let $\Theta_{n,p}(s) = \mathcal{B}_0|s|^{p-2}s$ for $s \in \mathbb{R}$. Since σ^{-1} is also a maximal monotone graph of \mathbb{R}^2 then, for any p > 1 and $\mathcal{B}_0 > 0$ the graph $\sigma^{-1} \circ \Theta_{n,p}$ is also a maximal monotone graph of \mathbb{R}^2 . Indeed, let $D(\sigma^{-1}) = [a, b]$ for some $-\infty \leq a < b \leq +\infty$ and let $(\sigma^{-1})^0$ the principal section (i.e. the nondecreasing function) of the graph σ^{-1} . This means that

$$(\sigma^{-1})^0(r) = \inf \sigma^{-1}(r), \qquad r \in [a, b].$$
 (56)

Then, since $\Theta_{n,p}$ is strictly increasing, $\sigma^{-1} \circ \Theta_{n,p}$ is a monotone graph,

$$D(\sigma^{-1} \circ \Theta_{n,p}) = [\Theta_{n,p}^{-1}(a), \Theta_{n,p}^{-1}(b)],$$

and $(\sigma^{-1} \circ \Theta_{n,p})^0 = (\sigma^{-1})^0 \circ \Theta_{n,p}$.

In particular, if σ^{-1} is multivalued in some point $c \in (a, b)$ then $\sigma^{-1} \circ \Theta_{n,p}(c)$ is the full interval

$$\sigma^{-1} \circ \Theta_{n,p}(c) = [(\sigma^{-1})^0 (\Theta_{n,p}(c)^-), (\sigma^{-1})^0 (\Theta_{n,p}(c)^+)]$$

and this implies that $\sigma^{-1} \circ \Theta_{n,p}$ is a maximal monotone graph of \mathbb{R}^2 (see [2] Exemple 2.8.1).

Now, since $\sigma^{-1} \circ \Theta_{n,p}$ is also a maximal monotone graph of \mathbb{R}^2 we know that $(I + \sigma^{-1} \circ \Theta_{n,p})$ is an injective application such that $R(I + \sigma^{-1} \circ \Theta_{n,p}) = \mathbb{R}$ (see [2]). Thus if H is defined by (8) then H is a non expansion on \mathbb{R} (see Proposition 2.2 in [2]). Hence

$$(I + \sigma^{-1} \circ \Theta_{n,p})(H(r)) = r$$

for any $r \in \mathbb{R}$ and, in consequence,

$$H(r) + \sigma^{-1} \circ \Theta_{n,p}(H(r)) = r.$$

In other words,

$$\sigma^{-1} \circ \Theta_{n,p}(H(r)) = r - H(r).$$

This implies that $r - H(r) \in D(\sigma)$ for any $r \in \mathbb{R}$ and that $\Theta_{n,p}(H(r)) \in \sigma(r - H(r))$ for any $r \in \mathbb{R}$ which proves that H(r) satisfies relation (31). Moreover, from the definition of H it is obvious that H is nondecreasing (in fact if σ is strictly increasing then H is also a strictly increasing function).

On the other hand, such function H(r) is the unique function satisfying relation (31) since applying the inverse graph

$$\sigma^{-1} \circ \Theta_{n,p} \circ H \supset (I - H)$$

which implies that $(I + \sigma^{-1} \circ \Theta_{n,p}) \circ H = I$, and, so, necessarily, $H = (I + \sigma^{-1} \circ \Theta_{n,p})^{-1}$. Of course, from the implicit formula, H is strictly increasing.

3. Proof of Theorem 1.1

Since G_0 is ball, it is easy to see that

$$w_{\varepsilon}^{j}(x) = \frac{|x - P_{\varepsilon}^{j}|^{-\frac{n-p}{p-1}} - (\varepsilon/4)^{-\frac{n-p}{p-1}}}{(C_{0}\varepsilon^{\alpha})^{-\frac{n-p}{p-1}} - (\varepsilon/4)^{-\frac{n-p}{p-1}}}, \qquad x \in T_{\varepsilon}^{j}, \sqrt{G_{\varepsilon}^{j}},$$
(57)

is the unique solution of (41). Therefore,

Lemma 3.1. If W_{ε} is defined by (43) the following estimate holds

$$\int_{\Omega_{\varepsilon}} |\nabla W_{\varepsilon}|^q dx \le K \varepsilon^{n(p-q)/(n-p)},\tag{58}$$

for any $1 \leq q \leq p$. In particular,

$$W_{\varepsilon} \rightharpoonup 0 \text{ in } W_0^{1,p}(\Omega) \text{ as } \varepsilon \rightarrow 0.$$
 (59)

Proof. Estimate (58) is an explicit computation. For q = p we obtain from it that, up to a subsequence, there exists $W_0 \in W_0^{1,p}(\Omega)$ such that $W_{\varepsilon} \to W_0$ in $W_0^{1,p}(\Omega)$. For q < p we have that $W_{\varepsilon} \to 0$ in $W_0^{1,q}(\Omega)$, hence $W_0 = 0$.

Proof of Theorem 1.1. Let $v \in \mathcal{C}_c^{\infty}(\Omega)$ and h = H(v) with $H : \mathbb{R} \to \mathbb{R}$ given by (8). Notice that then $h \in W^{1,\infty}(\Omega)$. Let $v_{\varepsilon} = v - hW_{\varepsilon} \in W_0^{1,p}(\Omega_{\varepsilon}, \partial\Omega)$ with $W_{\varepsilon} \in W_0^{1,\infty}(\Omega)$ defined by (43). Due to (39), we know that u_{ε} satisfies the inequality

$$\int_{\Omega_{\varepsilon}} |\nabla v_{\varepsilon}|^{p-2} \nabla v_{\varepsilon} \cdot \nabla (v_{\varepsilon} - u_{\varepsilon}) dx +$$
(60)

$$\varepsilon^{-\gamma} \int_{S_{\varepsilon}} (\Psi(v_{\varepsilon}) - \Psi(u_{\varepsilon})) dS \tag{61}$$

$$\geq \int_{\Omega_{\varepsilon}} f(v_{\varepsilon} - u_{\varepsilon}) dx.$$
(62)

From here, by Theorem 1.2, we can deduce, since $W_{\varepsilon} \to 0$ in $L^p(\Omega)$ (due to the compact inclusion), that

$$\lim_{\varepsilon \to 0} \left[I_{1,\varepsilon} + I_{2,\varepsilon} + I_{3,\varepsilon} + \varepsilon^{-\gamma} \int_{S_{\varepsilon}} (\Psi(v_{\varepsilon}) - \Psi(u_{\varepsilon})) dS \right] \ge \lim_{\varepsilon \to 0} \int_{\Omega_{\varepsilon}} f(v_{\varepsilon} - u_{\varepsilon}) dx$$
$$= \int_{\Omega} f(v - u) dx. \tag{63}$$

Since $H : \mathbb{R} \to \mathbb{R}$ satisfies (31), by applying that, if $\xi \in \partial \Psi(s_0) = \sigma(s_0)$ then $\Psi(s) - \Psi(s_0) \ge \xi(s-s_0)$, we can write

$$I_{2,\varepsilon} + \varepsilon^{-\gamma} \int_{S_{\varepsilon}} (\Psi(v_{\varepsilon}) - \Psi(u_{\varepsilon})) dS$$

= $\varepsilon^{-\gamma} \int_{S_{\varepsilon}} \left[\Psi(v - H(v)) - \Psi(u_{\varepsilon}) - \mathcal{B}_0 |H(v)|^{p-2} H(v) (v - H(v) - u_{\varepsilon}) \right] dS$
 $\leq 0,$ (64)

since $\mathcal{B}_0|H(v(x))|^{p-2}H(v(x)) \in \sigma(v(x) - H(v(x)))$ for any $x \in \overline{\Omega}$. We can pass also to the limit in (46) and (48) to get that

$$\int_{\Omega} |\nabla v|^{p-2} \nabla v \nabla (v-u) dx + \int_{\Omega} \mathcal{B}_0 |H(v)|^{p-2} H(v) (v-u) dx \ge \int_{\Omega} f(v-u) dx, \tag{65}$$

and since $v \in \mathcal{C}^{\infty}_{c}(\Omega)$ is arbitrary, by density, this also holds for every $v \in W^{1,p}_{0}(\Omega)$. Hence, we get that u is the unique weak solution of (6).

4. Proof of Theorem 1.2

The proof of Theorem 1.2 for p = 2 can be found in [36] and for 2 in [33]. Here we will complete the proof for <math>1 . We need some auxiliary results.

Lemma 4.1 ([12]). Let 1 . Then there exists positive constant <math>C = C(p) such that inequality

$$||\mathbf{a} - \mathbf{b}|^{p-2}(\mathbf{a} - \mathbf{b}) - (|\mathbf{a}|^{p-2}\mathbf{a} - |\mathbf{b}|^{p-2}\mathbf{b})| \le C(|\mathbf{a}||\mathbf{b}|)^{\frac{p-1}{2}},$$
(66)

is valid for all $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$.

By using this result we prove following proposition.

Lemma 4.2. Let $1 , <math>n \ge 3$, $v \in W_0^{1,\infty}(\Omega)$ and $\varphi \in W_0^{1,p}(\Omega)$. Let $\eta_{\varepsilon} \in W^{1,p}(\Omega)$ be such that $\|\nabla \eta_{\varepsilon}\|_{L^q(\Omega)} \to 0$, for some $q \in [1,p)$, as $\varepsilon \to 0$. Then

$$\lim_{\varepsilon \to 0} \left(\int_{\Omega_{\varepsilon}} |\nabla(v - \eta_{\varepsilon})|^{p-2} \nabla(v - \eta_{\varepsilon}) \cdot \nabla \varphi dx \right) \\
= \lim_{\varepsilon \to 0} \left(\int_{\Omega_{\varepsilon}} |\nabla v|^{p-2} \nabla v \cdot \nabla \varphi dx - \int_{\Omega_{\varepsilon}} |\nabla \eta_{\varepsilon}|^{p-2} \nabla \eta_{\varepsilon} \cdot \nabla \varphi dx \right).$$
(67)

Proof. By Lemma 4.1, by applying Hölder's inequality, we have

$$\left| \int_{\Omega_{\varepsilon}} |\nabla (v - \eta_{\varepsilon})|^{p-2} \nabla (v - \eta_{\varepsilon}) \cdot \nabla \varphi dx - \left(\nabla v |^{p-2} \nabla v - |\nabla \eta_{\varepsilon}|^{p-2} \nabla \eta_{\varepsilon} \right) \cdot \nabla \varphi dx \right|$$
(68)

$$\leq C \int_{\Omega_{\varepsilon}} |\nabla v|^{\frac{p-1}{2}} |\nabla \eta_{\varepsilon}|^{\frac{p-1}{2}} |\nabla \varphi| dx \tag{69}$$

$$\leq K \|\nabla v\|_{\infty}^{\frac{p-1}{2}} \|\nabla \eta_{\varepsilon}\|_{L^{\frac{p+1}{2}}(\Omega_{\varepsilon})}^{\frac{p-1}{2}} \|\nabla \varphi\|_{L^{\frac{p+1}{2}}(\Omega_{\varepsilon})},\tag{70}$$

since 1 < (p+1)/2 < p. This proves the result.

We have all the tools we need for the proof of Theorem 1.2.

Proof of Theorem 1.2. As said before, it is enough to consider the case $p \in (1,2)$. Applying Lemma 4.2 we obtain

$$\lim_{\varepsilon \to 0} \left(\int_{\Omega_{\varepsilon}} |\nabla v_{\varepsilon}|^{p-2} \nabla v_{\varepsilon} \cdot \nabla (v_{\varepsilon} - u_{\varepsilon}) dx \right) = \lim_{\varepsilon \to 0} \left(J_{1,\varepsilon} + J_{2,\varepsilon} \right)$$
(71)

$$J_{1,\varepsilon} = \int_{\Omega_{\varepsilon}} |\nabla v|^{p-2} \nabla v \cdot \nabla (v - hW_{\varepsilon} - u_{\varepsilon}) dx$$
(72)

$$J_{2,\varepsilon} = \int_{\Omega_{\varepsilon}} |\nabla(hW_{\varepsilon})|^{p-2} \nabla(hW_{\varepsilon}) \cdot \nabla(v - hW_{\varepsilon} - u_{\varepsilon}) dx.$$
(73)

Moreover

$$\lim_{\varepsilon \to 0} J_{1,\varepsilon} = \lim_{\varepsilon \to 0} \left(I_{1,\varepsilon} + \int_{\Omega_{\varepsilon}} |\nabla v|^{p-2} \nabla v \cdot \nabla (hW_{\varepsilon}) dx \right) = \lim_{\varepsilon \to 0} I_{1,\varepsilon}.$$
 (74)

On the other hand,

.

$$\lim_{\varepsilon \to 0} J_{2,\varepsilon} = \lim_{\varepsilon \to 0} \left(\int_{\Omega_{\varepsilon}} |\nabla W_{\varepsilon}|^{p-2} \nabla W_{\varepsilon} \cdot \nabla (v - hW_{\varepsilon} - u_{\varepsilon}) dx \right)$$

$$= \lim_{\varepsilon \to 0} \left(\sum_{j \in \Upsilon_{\varepsilon}} \int_{U_{\varepsilon}} |\nabla w_{\varepsilon}^{j}|^{p-2} \partial_{\nu} w_{\varepsilon}^{j} |h|^{p-2} h(v - u_{\varepsilon}) dS \right)$$
(75)

$$\lim_{\varepsilon \to 0} \left(\sum_{j \in \Upsilon_{\varepsilon}} \int_{\partial T_{\varepsilon}^{j}} |\nabla w_{\varepsilon}^{j}|^{p-2} \partial_{\nu} w_{\varepsilon}^{j} |h|^{p-2} h(v-u_{\varepsilon}) dS + \sum_{j \in \Upsilon_{\varepsilon}} \int_{\partial G_{\varepsilon}^{j}} |\nabla w_{\varepsilon}^{j}|^{p-2} \partial_{\nu} w_{\varepsilon}^{j} |h|^{p-2} h(v-h-u_{\varepsilon}) dS \right),$$
(76)

where $\partial_{\nu}g$ is the usual normal derivative of g. Using (57), we get:

$$\partial_{\nu} w_{\varepsilon}^{j} \Big|_{\partial T_{\varepsilon}^{j}} = \frac{d}{dr} w_{\varepsilon}^{j} \Big|_{r=\varepsilon/4} = -\frac{(n-p)2^{\frac{2n-2}{p-1}} C_{0}^{\frac{n-p}{p-1}} \varepsilon^{\frac{1}{p-1}}}{(p-1) \left(1 - (C_{0}\varepsilon^{\alpha})^{\frac{n-p}{p-1}} \varepsilon^{-\frac{n-p}{p-1}} 2^{\frac{2n-2p}{p-1}}\right)},$$
(77)

$$\partial_{\nu} w_{\varepsilon}^{j} \Big|_{\partial G_{\varepsilon}^{j}} = -\frac{d}{dr} w_{\varepsilon}^{j} \Big|_{r=a_{\varepsilon}} = \frac{(n-p)\varepsilon^{\frac{-n}{n-p}}}{(p-1)C_{0} \left(1 - (C_{0}\varepsilon^{\alpha})^{\frac{n-p}{p-1}}\varepsilon^{-\frac{n-p}{p-1}}2^{\frac{2n-2p}{p-1}}\right)}.$$
(78)

Therefore

$$\lim_{\varepsilon \to 0} J_{2,\varepsilon} = \lim_{\varepsilon \to 0} \left(A_{\varepsilon} \varepsilon \sum_{j \in \Upsilon_{\varepsilon_{\partial} T_{\varepsilon}^{j}}} \int_{|h|^{p-2} h(v - u_{\varepsilon}) ds - \varepsilon^{-\gamma} \int_{S_{\varepsilon}} \left(\left(\frac{n-p}{p-1} \right)^{p-1} C_{0}^{1-p} |h|^{p-2} h \right) (v - h - u_{\varepsilon}) ds - Q_{\varepsilon} \right),$$

$$(79)$$

where

$$A_{\varepsilon} = \left(\frac{n-p}{p-1}\right)^{p-1} \frac{2^{2n-2}C_0^{n-p}}{\left(1 - (C_0\varepsilon^{\alpha})^{\frac{n-p}{p-1}}\varepsilon^{-\frac{n-p}{p-1}}2^{\frac{2n-2p}{p-1}}\right)^{p-1}},\tag{80}$$

$$Q_{\varepsilon} = \frac{1 - \left(1 - a_{\varepsilon}^{\frac{n-p}{p-1}} \varepsilon^{\frac{p-n}{p-1}} 2^{\frac{2n-2p}{p-1}}\right)^{p-1}}{C_0^{p-1} \left(1 - a_{\varepsilon}^{\frac{n-p}{p-1}} \varepsilon^{\frac{p-n}{p-1}} 2^{\frac{2n-2p}{p-1}}\right)^{p-1}} \left(\frac{n-p}{p-1}\right)^{p-1} \varepsilon^{-\gamma} \int_{S_{\varepsilon}} |h|^{p-2} h(v-h-u_{\varepsilon}) dS.$$
(81)

It is an easy (but tedious) task to check that

,

$$\lim_{\varepsilon \to 0} Q_{\varepsilon} = 0, \tag{82}$$

which concludes the proof.

5. Non critical case and pointwise comparison of homogenized solutions with The critical case

For $A \subset \mathbb{R}^m$ let $\mathcal{C}(A)$ denote the space of continuous functions on A.

Theorem 5.1. Let $n \geq 3, p \in [2, n)$, $1 < \alpha < \frac{n}{n-p}$, $f \in L^{\infty}(\Omega)$, $r \in C(\overline{\Omega})$, $\sigma \in C(\mathbb{R})$ non decreasing such that $\sigma(0) = 0$ and u_{ε} be the solution of

$$\begin{cases} -\Delta_p u_{\varepsilon} = f & x \in \Omega_{\varepsilon}, \\ \partial_{\nu_p} u_{\varepsilon} + \varepsilon^{-\gamma} \sigma(u_{\varepsilon}) = \varepsilon^{-\gamma} r & x \in S_{\varepsilon}, \\ u_{\varepsilon} = 0 & x \in \partial \Omega. \end{cases}$$
(83)

Then $\tilde{u_{\varepsilon}} \rightharpoonup u_{non-crit}$ in $W_0^{1,p}(\Omega)$, the solution of

$$\begin{cases} -\Delta_p u + \hat{\mathcal{A}}\sigma(u) = f + \hat{\mathcal{A}}r & \Omega\\ u = 0 & \partial\Omega \end{cases}$$
(84)

with $\hat{\mathcal{A}} = C_0^{n-1} |\partial G_0|$.

Proof. Assume first that

$$0 < k_1 \le \sigma' \le k_2 \tag{85}$$

then the result holds by Theorem 3 in [33].

Applying the estimates in [29] we check that $(P_{\varepsilon}u_{\varepsilon})$ is bounded in $W_0^{1,p}(\Omega)$, hence there exists a limit \hat{u} such that, up to a subsequence, $P_{\varepsilon}u_{\varepsilon} \to \hat{u}$ strongly in $L^p(\Omega)$ and weakly in $W_0^{1,p}(\Omega)$. Let M be such that $\|u_{\varepsilon}\|_{L^{\infty}(\Omega_{\varepsilon})} \leq M$ (see [8]). Let σ_{δ} be a sequence such that $0 < k_{1,\delta} \leq \sigma'_{\delta} \leq k_{2,\delta}$ and $\sigma_{\delta} \to \sigma$ in $\mathcal{C}([-M, M])$ as $\delta \to 0$. Let $u_{\varepsilon,\delta}$ be the solution of (83) with σ_{δ} . We can check, again with estimates in [29], that

$$\|u_{\varepsilon} - u_{\varepsilon,\delta}\|_{L^{p}(\Omega_{\varepsilon})} \le C \|\sigma - \sigma_{\delta}\|_{\mathcal{C}([-M,M])}.$$
(86)

Passing to the limit as $\varepsilon \to 0$, indicating that $P_{\varepsilon}u_{\varepsilon,\delta} \rightharpoonup u_{\delta}$ in $W_0^{1,p}(\Omega)$, where u_{δ} is the solution of (84) with σ_{δ} , we have that

$$\hat{u} - u_{\delta} \|_{L^p(\Omega)} \le C \| \sigma - \sigma_{\delta} \|_{\mathcal{C}([-M,M])}.$$
(87)

It is easy to check that $u_{\delta} \to u$ in $L^{p}(\Omega)$ where u is the solution of the problem with σ . Therefore $P_{\varepsilon}u_{\varepsilon} \to u$ in $L^{p}(\Omega)$ as $\varepsilon \to 0$ and $u = \hat{u}$.

Theorem 5.2. Let $n \ge 3, p \in [2, n), \alpha = \frac{n}{n-p}, f \in L^{\infty}(\Omega), r \in \mathcal{C}(\overline{\Omega})$, $\sigma \in \mathcal{C}(\mathbb{R})$ non decreasing such that $\sigma(0) = 0$ and u_{ε} be the solution of (83). Then $\tilde{u}_{\varepsilon} \rightharpoonup u_{crit}$ in $W_0^{1,p}(\Omega)$ the solution of

$$\begin{cases} -\Delta_p u + \mathcal{A} |H(x,u)|^{p-2} H(x,u) = f & \Omega, \\ u = 0 & \partial\Omega, \end{cases}$$
(88)

and H is the solution of

$$\mathcal{B}_0|H(x,s)|^{p-2}H(x,s) = \sigma(s - H(x,s)) - r(x)$$
(89)

a.e. in Ω .

Sketch of proof. We can apply the same reasoning as before and the fact that $H_{\delta} \to H$, in the sense of maximal monotone graphs, as $\sigma_{\delta} \to \sigma$ in $\mathcal{C}([-M, M])$.

Theorem 5.3. Assume the conditions of the two previous theorems, f = 0 and $r(x) \equiv g(1) = 1$ constant. Then, we have that

$$u_{crit} \le u_{non-crit}.\tag{90}$$

Proof. The condition on f and r guarantee that $0 \le u \le 1$ in both cases. It is easy to check that H is increasing, and $H(s) \le 0$ for $s \in [0, 1]$. It is easy to establish the following inequality on the zero order terms

$$\mathcal{B}_0|H(s)|^{p-2}H(s) \ge \mathcal{A}(\sigma(s) - g(1)).$$
(91)

Therefore, applying the comparison principle (see, e.g., [8]) we have the result.

Acknowledgements

The research of the first two authors was partially supported by the project ref. MTM2014-57113-P of the DGISPI (Spain) and as members of the Research Group MOMAT (Ref. 910480) of the UCM. The research of D. Gómez-Castro was supported by a FPU Grant from the Ministerio de Educación, Cultura y Deporte (Spain).

References

- H. Brézis. Monotonicity Methods in Hilbert Spaces and Some Applications to Nonlinear Partial Differential Equations. In E. Zarantonello, editor, *Contributions to Nonlinear Functional Analysis*, pages 101–156. Academic Press, Inc., New York, 1971.
- H. Brézis. Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam, 1973.
- [3] H. Brézis and M. Sibony. Méthodes d'approximation et d'itération pour les opérateurs monotones. Archive for Rational Mechanics and Analysis, 28(1):59–82, 1968.
- [4] D. Cioranescu and F. Murat. A Strange Term Coming from Nowhere. In A. Cherkaev and R. Kohn, editors, *Topics in Mathematical Modelling of Composite Materials*, pages 45–94. Springer Science+Business Media, LLC, New York, 1997.
- [5] C. Conca, J. I. Díaz, A. Liñán, and C. Timofte. Homogenization in Chemical Reactive Flows. *Electronic Journal of Differential Equations*, 40:1–22, 2004.
- [6] C. Conca and P. Donato. Non-homogeneous Neumann problems in domains with small holes. Modélisation Mathématique et Analyse Numérique, 22(4):561–607, 1988.
- [7] G. Dal Maso and I. V. Skrypnik. A monotonicity approach to nonlinear Dirichlet problems in perforated domains. Adv. Math. Sci. Appl., 11:721–751, 2001.

CHARACTERIZING THE STRANGE TERM IN CRITICAL SIZE HOMOGENIZATION

- [8] J. I. Díaz. Nonlinear Partial Differential Equations and Free Boundaries. Pitman, London, 1985.
- [9] J. I. Díaz. Two problems in homogenization of porous media. Extracta mathematicae, 14(2):141–156, 1999.
- [10] J. I. Díaz and D. Gómez-Castro. A mathematical proof in nanocatalysis: better homogenized results in the diffusion of a chemical reactant through critically small reactive particles. In *Progress in Industrial Mathematics at ECMI 2016*, page To appear. Springer.
- [11] J. I. Díaz, D. Gómez-Castro, A. V. Podol'skii, and T. A. Shaposhnikova. Homogenization of the p-Laplace operator with nonlinear boundary condition on critical size particles: identifying the strange terms for some non smooth and multivalued operators. *Doklady Mathematics*, 94(1):387–392, 2016.
- [12] J. I. Díaz, D. Gómez-Castro, A. V. Podol'skii, and T. A. Shaposhnikova. Homogenization of variational inequalities of Signorini type for the *p*-Laplacian in perforated domains when $p \in (1, 2)$. Doklady Mathematics, 95(2):151–156, 2017.
- [13] J. I. Díaz, D. Gómez-Castro, A. V. Podolskii, and T. A. Shaposhnikova. Non existence of critical scales in the homogenization of the problem with p-Laplace diffusion and nonlinear reaction in the boundary of periodically distributed particles in n-dimensional domains when p > n. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017.
- [14] J. I. Díaz, D. Gómez-Castro, A. V. Podol'skiy, and T. A. Shaposhnikova. On the asymptotic limit of the effectiveness of reaction-diffusion equations in perforated media. *Journal of Mathematical Analysis and Applications*, To appear.
- [15] J. I. Díaz, D. Gómez-Castro, T. A. Shaposhnikova, and M. N. Zubova. Article in preparation.
- [16] D. Gómez, M. Lobo, M. E. Pérez, A. Podolskii, and T. A. Shaposhnikova. Unilateral problems for the p-Laplace operator in perforated media involving large parameters. ESAIM: Control, Optimisation and Calculus of Variations, 2017.
- [17] D. Gómez, M. E. Pérez, A. V. Podolskiy, and T. A. Shaposhnikova. Homogenization for the p-Laplace operator in perforated media with nonlinear restrictions on the boundary of the perforations: A critical Case. Doklady Mathematics, 92(1):433–438, 2015.
- [18] M. V. Goncharenko. Asymptotic behavior of the third boundary-value problem in domains with fine-grained boundaries. In A. Damlamian, editor, *Proceedings of the Conference "Homogenization and Applications to Material Sciences"* (Nice, 1995), GAKUTO, pages 203–213. Gakkötosho, Tokyo, 1997.
- [19] E. Hruslov. The Asymptotic Behavior of Solutions of the Second Boundary Value Problem Under Fragmentation of the Boundary of the Domain. *Sbornik: Mathematics*, 35:266–282, 1979.
- [20] E. J. Hruslov. The Method of Orthogonal Projections and the Dirichlet Problem in Domains With a Fine-Grained Boundary. *Mathematics of the USSR-Sbornik*, 17(1):37, 1972.
- [21] E. J. Hruslov. The First Boundary Value Problem in Domains With a Complicated Boundary for Higher Order Equations. *Mathematics of the USSR-Sbornik*, 32(4):535, 1977.
- [22] W. Jäger, M. Neuss-Radu, and T. A. Shaposhnikova. Homogenization of a variational inequality for the Laplace operator with nonlinear restriction for the flux on the interior boundary of a perforated domain. *Nonlinear Analysis: Real World Applications*, 15(0):367–380, 2014.
- [23] V. V. Jikov, O. A. Oleinik, and S. M. Kozlov. Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Berlin, 1994.
- [24] S. Kaizu. The Poisson equation with semilinear boundary conditions in domains with many tiny holes. J. Fac. Sci. Univ. Tokyo, 35:43–86, 1989.
- [25] S. Kaizu. The Poisson equation with nonautonomous semilinear boundary conditions in domains with many tiny holes. SIAM Journal on Mathematical Analysis, 22(5):1222–1245, 1991.
- [26] J. L. Lions. Quelques Méthodes de Résolution pour les Problèmes aux Limites non Linéaires. Dunod, Paris, 1969.
- [27] V. A. Marchenko and E. Y. Khruslov. Boundary-value problems with fine-grained boundary. Mat. Sb. (N.S.), 65(3):458–472, 1964.
- [28] O. A. Oleinik and T. A. Shaposhnikova. On the homogenization of the Poisson equation in partially perforated domains with arbitrary density of cavities and mixed type conditions on their boundary. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, 7(3):129–146, 1996.
- [29] A. V. Podol'skii. Homogenization limit for the boundary value problem with the p-Laplace operator and a nonlinear third boundary condition on the boundary of the holes in a perforated domain. *Doklady Mathematics*, 82(3):942–945, 2010.
- [30] A. V. Podol'skii. Solution continuation and homogenization of a boundary value problem for the p-Laplacian in a perforated domain with a nonlinear third boundary condition on the boundary of holes. *Doklady Mathematics*, 91(1):30–34, 2015.

- [31] A. V. Podol'skiy and T. A. Shaposhnikova. Homogenization for the p-Laplacian in an n-dimensional domain perforated by very thin cavities with a nonlinear boundary condition on their boundary in the case p = n. Doklady Mathematics, 92(1):464–470, 2015.
- [32] S. Schimpf, M. Lucas, C. Mohr, U. Rodemerck, A. Brückner, J. Radnik, H. Hofmeister, and P. Claus. Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions. *Catalysis Today*, 72(1):63–78, 2002.
- [33] T. A. Shaposhnikova and A. V. Podolskiy. Homogenization limit for the boundary value problem with the with the p-Laplace operator and a nonlinear third boundary condition on the boundary of the holes in a perforated domain. *Functional Differential Equations*, 19(3-4):1–20, 2012.
- [34] J. M. Vega and A. Liñán. Isothermal nth order reaction in catalytic pellets: Effect of external mass transfer resistance. *Chemical Engineering Science*, 34(11):1319–1322, 1979.
- [35] M. N. Zubova and T. A. Shaposhnikova. Homogenization of boundary value problems in perforated domains with the third boundary condition and the resulting change in the character of the nonlinearity in the problem. *Differential Equations*, 47(1):78–90, 2011.
- [36] M. N. Zubova and T. A. Shaposhnikova. Averaging of boundary-value problems for the Laplace operator in perforated domains with a nonlinear boundary condition of the third type on the boundary of cavities. *Journal of Mathematical Sciences*, 190(1):181–193, 2013.