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Abstract

We study some properties of the coincidence set for the boundary Sig-
norini problem, improving some results from previous works by the second
author and collaborators. Among other new results, we show here that
the convexity assumption on the domain made previously in the litera-
ture on the location of the coincidence set can be avoided under suitable
alternative conditions on the data.
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1 Introduction

In the classical Signorini problem of linear elasticity [24], or boundary obstacle
problem, an isotropic, homogeneous and linearly hyperelastic material rests in
equilibrium over a rigid foundation. Because the contact zone is an unknown
of the problem, estimates on its location and size are of interest in the study of
the properties of solutions. In the scalar Signorini problem displacements take
place along one dimension only and the equation of conservation of momentum
is reduced to Poisson’s equation. The simplified model we shall consider in this
paper is the following: −∆u = f in Ω,

u > ψ, ∂νu > g
(u− ψ)(∂νu− g) = 0

on Γ.

Notice that, although the prototypical model for boundary obstacle prob-
lems is the one in elasticity theory, other related models with similar boundary
conditions are found for instance in semipermeable membranes (the so called
parabolic Signorini problem) or stochastic control (with fractional powers of the
Laplacian). See the last series of Remarks at the end of the paper.

We recall that the weak mathematical formulation of the model (what we will
refer to as Problem 1) is the following: given an open, bounded set Ω ⊂ RN
with Lipschitz boundary Γ = ∂Ω and functions ψ ∈ H1/2(Γ), g ∈ H−1/2(Γ) and
f ∈ L2(Ω), find u ∈ Kψ :=

{
v ∈ H1(Ω) : v > ψ on Γ

}
such that

a0(u, v − u) > F (v − u) for all v ∈ Kψ (1)

where

a0(u, v) :=

∫
Ω

∇u∇vdx and F (v) :=

∫
Ω

fvdx+ 〈g, v〉H−1/2(Γ)×H1/2(Γ). (2)

Since the bilinear form is not coercive some additional conditions on the data
must be introduced. In particular, we must assume the compatibility condition∫

Ω

fdx+ 〈g, 1〉H−1/2(Γ)×H1/2(Γ) ≤ 0. (3)

Notice that (3) is the one-dimensional equivalent of the general condition for
vectorial formulations of the problem considered initially by Fichera [16, p. 81],
although there it is given in the equivalent form:∫

Ω

f · rdx+

∫
Γ

g · rdsx ≤ 0

for every rigid and admissible displacement r, with equality if and only if −r is
also admissible, i.e. the cone of displacements moving the body away from the
obstacle. Equivalently, condition (3) means that rigid displacements separating
the body from the obstacle increase the elastic energy.
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Existence and uniqueness of solution of a general class of problems including
Problem 1 follow from [21, Theorem 5.1] which proves the result for general
non-symmetric semicoercive bilinear forms, with uniqueness up to a member of
a given subset of the rigid displacements r satisfying the condition F (r) = 0
(where F was defined in (2)). In our case, since the unknown is scalar we obtain
uniqueness once the compatibility condition is assumed.

The coincidence set for a solution u ∈ H1(Ω) is defined as the complement
of the open set

{
x ∈ Γ : u(x) > ψ(x) in the sense of H1/2(Γ)

}
, i.e.

Iψ := {x ∈ Γ : u(x) = ψ(x)}. (4)

Observe that it is not justified to require a priori g ∈ H1/2(Ω) since a0 is
not coercive and the solution may fail to be in H2(Ω) in very simple cases. See,
e.g., [1, Theorem I.10] and [19, p. 617] for some classical counterexamples of
cases in which u 6∈ H2(Ω), as well as the results presented in [23] and [3].

A common recourse against the lack of coercivity of the bilinear form is
to replace the equation by a new one by introducing an additional regulariz-
ing term αu with α > 0 which makes the proofs of existence and uniqueness
straightforward. This is done e.g. in [1, Theorem I.10]. In this case the corre-
sponding problem (which we shall refer to as Problem α) involves the PDE
−∆u+ αu = f which leads to the bilinear form

aα(u, v) :=

∫
Ω

∇u∇vdx+ α

∫
Ω

uvdx.

Here, the additional linear term αu makes aα coercive even in the case of no
Dirichlet boundary conditions and allows for a standard proof of existence and
uniqueness applying Stampacchia’s theorem, [21, Theorem 2.1]. Coercivity also
allows the use of Brézis’ regularity result [1, Theorem I.10] stating u ∈ H2(Ω)
whenever f ∈ L2(Ω), making the choice g ∈ H1/2(Γ) adequate. We also note
that under additional assumptions on the data, the solution is in L∞(Ω) (see,
e.g. [1, Theorem I.10] and [20, §5]). See also the monograph [22].

Concerning the estimates on the spatial location of the coincidence set we
recall that after Friedman’s pioneering paper [17], the first explicit estimates
on the location were given in [8, 13] for Problem α with g = ψ = 0, under
the geometric requirement that Ω be convex and by assuming that the external
force be negative near a sufficiently large part of the boundary Γ.

In Section 2 we extend the conclusion of the above mentioned papers to
Problem 1 (see Theorem 1) while also relaxing their assumptions. Section 3
is devoted to the study of location estimates of the coincidence set when the
convexity assumption on Ω is not made. We provide Example 1 in which the
coincidence set is totally identified on a non-convex Ω. Finally, by working
with a suitable change of coordinates, we prove the main result of this paper
(Theorem 3) in which we obtain some location estimates of the coincidence set
without any geometrical assumption on Ω but instead some regularity condition
on ∂Ω.
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2 Location estimates for Problem 1

As already mentioned, in [13, Theorem 2] the basic geometrical assumption
made for the study of Problem α with g = ψ = 0 is that the domain Ω must
be convex. In this section we first improve on the aforementioned result by
considering Problem 1 (i.e., without any regularization term) for non neces-
sarily vanishing data g and ψ. Moreover we shall assume convexity only for
parts of Ω near the boundary on which a suitable balance between the exter-
nal force, the obstacle and the boundary flux becomes negative. We shall also
require C3 boundary in order to have a tubular neighborhood of ∂Ω with a C2

parametrization given by x = x(ξ, s) = ξ + sν(ξ).

Theorem 1 Let Ω be an open set in RN and assume that the data f, g and
ψ lead to a unique solution u ∈ H1(Ω) ∩ L∞(Ω) of Problem 1. Assume that
there exist ε, δ ≥ 0, a subset Γε,δ ⊂ Γ = ∂Ω of class C3, and a tubular semi-
neighborhood V −ρ of Γε,δ for some ρ > 0 with

ρ large enough and V −ρ ⊂ Ω, (5)

such that if Ψ ∈ H2(V −ρ ) is a nonnegative extension of ψ to V −ρ (i.e. Ψ = ψ on
Γε,δ) then one has

f + ∆Ψ ≤ −ε on V −ρ ,

and
g − ∂νΨ 6 −δ on Γε,δ. (6)

Then, if ε > 0 and
Ω ∩ V −ρ is a convex set, (7)

we have the location estimate Γε,δ ⊂ Iψ on the coincidence set of u.

We note that, in the case in which f +∆Ψ = 0, by assuming the coincidence
set Iψ in the class of regular subsets of ∂Ω, a necessary condition in order to
have a positively measured coincidence set is that

∫
Iψ
g−∂νΨ ≤ 0 (see e.g. [17]).

So, in some sense, Theorem 1 shows that a pointwise balance estimate (6) on a
good part of ∂Ω is enough to identify where the coincidence is taking place.

Proof. We first prove the result for the solutions ũα of Problem α, for any α > 0.
Notice that it is enough to prove the conclusion for data, ψ = 0, f̃ := f + ∆Ψ−
αΨ and g̃ := g−∂νΨ. Indeed, we let ũ be the solution of Problem 1 under these
conditions, and readily see that u := ũ+ Ψ solves the problem with data f, ψ, g.
Let x0 ∈ Γε,δ and, for ρ > 0, let V −ρ be the tubular semi-neighborhood of Γε,δ
defined by the C2 parametrization

x = x(ξ, s) = ξ + sν(ξ), for ξ ∈ Γε,δ, s ∈ (−ρ, 0).

Let ‖ũ‖∞ 6 M . Define R := min{dist(x0,Γ\Γε,δ), ρ,MN} and consider the
subset D := Ω ∩ B(x0, R). Define ∂1D := ∂D\Γ and ∂2D := ∂D ∩ Γ ⊂ Γε,δ as
in Figure 1.
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Figure 1: The setting in the proof of Theorem 1.

For some c > 0 define now in D the function uα(x) = c(2N)−1|x− x0|2. In
D we have

−∆uα + αuα = −c+
αc

2N
|x− x0|2 > −ε ≥ f̃ in D,

assuming
0 < c ≤ ε.

Additionally, on ∂1D, from assumption (5) we have

uα >
c

2N
R2 ≥M > ũα

which holds if

R ≥ 2NM

c
.

Moreover, since by construction uα is non-negative, on the subset of the coin-
cidence set Iα := Iα0 ∩ ∂2D we have uα > ũα a.e. Iα and thus a.e. on all of
∂1D ∪ Iα. Now, the Signorini conditions imply that it has to be ∂ν ũα = g̃ over
∂2D − Iα, and, on the other hand we have

∂νuα(ξ) = cN−1|ξ − x0| cos(ν(ξ), ξ − x0) > −δ > g̃ on ∂2D (8)

where we used the convexity of Ω ∩ V −ρ (positivity of the cosine) in the first
inequality. Then, by the comparison principle applied to the associated problem
on the set D, with Signorini boundary conditions on ∂2D and with Dirichlet
conditions on ∂1D (see, e.g. [1]) we deduce finally that ũα 6 uα in D and that
the same inequality holds for the traces, that is:

0 6 ũα 6
c

2N
|ξ − x0|2, over Γ ∩B(x0, R) (in the sense of H1/2(Γ)).

Letting ξ → x0 we conclude that for every α > 0, ũα(x) = 0 a.e. in Γε,δ
uniformly (since the estimate on the location of Iα := Iα0 ∩ ∂2D is independent
of α).
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Final step. For α → 0 we let ũα be the solutions with data f̃ = 0, ψ̃ = 0 and
g̃ of Problem α. The regularity result mentioned above implies that we have
‖ũα‖∞ 6 M uniformly on α. Then, by well known results we have ũα → ũ0

strongly in H1(Ω) and therefore ũ0 = 0 on Γε,δ. 2

Remark. In fact we can also consider the case ε = 0 and δ = 0 under the as-
sumptions of Theorem 1. Indeed, assume for the moment that we can construct,
for some c > 0, a function w ∈ H2(D) satisfying

−∆w ≥ ε̂ in D,
w > 0 in D,
w = 0 on ∂1D,

∂νw = −δ̂ on ∂2D.

Then, the function v̂(x) := ũα(x) − w(x) is a solution of Problem α for data

ψ = 0, f̂ := f+∆Ψ− αΨ +∆w−αw and ĝ := g̃−δ̂. Taking w(x) = w(sν) = ϕ(s)
and using the expression of the Laplacian on V −ρ (see, e.g. [18] and [25, §4.3.5,
p. 62]), the construction of such a w is reduced to finding ϕ(s) such that

−ϕ′′(s)− (N − 1)H(ξ, s)ϕ′(s) > c,
ϕ(s) > 0
ϕ(0) = 0,
ϕ′(0) = −δ,

for s ∈ (−R, 0), where H(ξ, s) denotes the mean curvature of the hypersurface,
to a distance s of Γε,δ, i.e. at points x = x(ξ, s) = ξ + sν(ξ), ξ ∈ Γε,δ. When
Ω∩ V −ρ is a convex set, as required in (7), we have that H(ξ, s) is non-negative
and bounded for R small enough depending on this convex part of the boundary
and thus w can be made explicit.

3 Sharper estimates and further remarks

One of the main goals of this section is to obtain some sharper location estimates
on the coincidence set and to extend the previous results while dispensing with
the convexity condition (7) on the tubular semi-neighborhood of Γε,δ. We start
by showing in a concrete example that this goal is not impossible.

Example 1 Let 0 < R0 < R1 and define the open ring

Ω := {x ∈ BR1
(0)\BR0(0)}

with inner boundary Γ0 := ∂BR0(0) and outer boundary Γ1 := ∂BR1(0). Let
ε > 0, Rε ∈ (R0, R1] and f ∈ L2(Ω) ∩ L∞(Ω) be such that

f(x) 6 −ε a.e. in Ωε := BRε(0)\BR0(0),
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and consider the special formulation of the Signorini problem{
−∆u = f in Ω,

u = 0 on Γ1
and

 ∂νu > 0 on Γ0,
u > 0 on Γ0,

u∂νu = 0 on Γ0.

Notice that we now do not need the compatibility condition since we have
Dirichlet conditions on Γ1.

We claim that the coincidence set is the whole Γ0, i.e. u|Γ0
≡ 0.

R1

R0

Γ0

Γ1

Rε

Figure 2: The contact set for a ring is the whole boundary.

To see this we apply again the comparison principle for the associated Prob-
lem α for any α > 0 and then we pass to the limit α→ 0 as in Theorem 1. We
define over the ring Ωε, the function

u(x) := c(|x| −R0)2

for some constant c > 0 to be determined later. Then, writing r for |x| we have

−∆u = −d
2u

dr2
− (N − 1)

r

du

dr

= −2c− (N − 1)

r
2c(r −R0)

> −2c

(
1 +

N − 1

R0
(Rε −R0)

)
.

Consequently −∆u > −ε > f on Ωε whenever c 6 ε
2

(
1 + N−1

R0
(Rε −R0)

)−1

.

For instance, we may take c := εR0/(4NR1). We set f := −∆u in Ωε and by
construction f > f . LetM := ‖u‖∞,Ω. In order to apply the comparison lemma,
we need the condition u > M on Γε := ∂BRε(0), that is: c(Rε −R0)2 > M or,
equivalently, Rε > R0 +

√
M/c = R0 +2(MNR1ε

−1R−1
0 )1/2 and this is possible

for large enough values of R1. Furthermore, on I = {x ∈ Γ0 : u(x) = 0} we have
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u > u too, since by construction u is non-negative. Thus u > u on Γε∪I and on
the complement Γ0\I, where u > 0, the Signorini condition implies ∂νu = 0 and
also ∂νu = −c(|x| − R0)x = 0. Applying the comparison principle we deduce
u 6 u on Ωε, and in particular u = 0 over Γ0.

The following result improves Theorem 1 for the case ε > 0 and δ > 0.

Theorem 2 Assume the conditions of Theorem 1 except condition (7), for some
fixed ε > 0 and δ > 0. Then we obtain the location estimate Γε,δ ⊂ Iψ on the
coincidence set of u.

Proof. We follow the same arguments of the proof of Theorem 1, but instead of
condition (7) we use the fact that we can assume that

inf
x0∈Γε,δ,x∈V −

ρ

{cos(x− x0, ν(x0)} ≥ −θ0(δ, ρ) (9)

for some continuous function θ0(δ, ρ) ≥ 0 (as a matter of fact θ0(δ, ρ) ∈ [−1, 1]).
Then, in (8) we argue instead with

∂νuα(ξ) = cN−1|ξ − x0| cos(ν(ξ), ξ − x0) > −cN−1Rθ0(δ, ρ) > −δ ≥ g̃ on ∂2D

which holds by taking
cN−1θ0(δ, ρ)R ≤ δ,

i.e.

c ≤ δN

θ0(δ, ρ)R
.

Therefore it is enough to take

c ≤ min(ε,
δN

θ0(δ, ρ)R
)

and R ≥ 2NM
c . 2

Remark. Notice that when the tubular semi-neighborhood of Γε,δ is convex
then θ0(δ, ρ) = 0. We conjecture that, under suitable additional conditions, it
should be possible to dispense with at least one of the assumptions ε > 0 or δ > 0
on the semi-neighborhood of Γε,δ. At present it seems that this fact remains an
open problem in the literature. One could try to argue as in the previous Remark
in order to extend the result to the case ε = 0 but with δ > 0. However, it is
not entirely clear how to construct the function w without condition (7). Notice
that in the special case in which we assume that all the mean curvatures H(ξ, s)
are constant and equal to H, we may actually solve the auxiliary equation of
the above Remark without requiring H > 0, but under suitable choices of the
interval of definition of such functions. Indeed, the exact solution is given by
ϕ(s) = ϕh(s) + ϕp(s). For the general solution of the homogeneous equation
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Φ′ = AΦ with Φ = (ϕ,ϕ′), A =

(
0 1
0 −b

)
and b = (N − 1)H one has

Φ(s) = eAs~α with eAs =

(
1 −1

b e−bs

0 e−bs

)
, ~α ∈ R2. Therefore:

ϕh(s) = α1 −
α2

b
e−bs.

For the particular solution of the inhomogeneous equation we find with the
Ansatz ϕp(s) = β1s

2 + β2s:

ϕp(s) =
−c
b
s.

Introducing the boundary conditions we arrive at α1 = α2/b = (c/b− δ)/b and

ϕ(s) =

(
c

b2
− δ

b

)
(1− e−bs)− c

b
s, s 6 0.

Finally we have ϕ(s) > 0 over some interval (−ε, 0) because ϕ′ is continuous
and negative at zero, therefore in an interval around it, and ϕ(0) = 0, meaning
that the function decreases to zero from the left.

Our next goal is to improve the location estimates. In order to achieve this
we shall not use a function of the Euclidean norm as local supersolution, but
a differentiable extension of the intrinsic distance over the manifold ∂Ω. The
gradient is then tangent at every point, ∂ν ṽ = 0 and we may build simple
supersolutions. Let l(γab) denote the length of a piecewise C1 curve γab joining
two points a, b ∈ Γ. Fix a point x0 ∈ Γ and an open neighborhood Γ0 of x0 in Γ
whose closure is the graph of a Lipschitz map ϕ : U → R. Define the intrinsic
distance to x0 over Γ as

d0(x) := inf{l(γx0x) : γ ∈ C1([0, 1],Γ0), γ(0) = x0, γ(1) = x}, x ∈ Γ0

With this distance Γ0 is a complete metric space determining the same topology
as the differential structure. For Γ0 smooth enough, d0 is a non-negative function
in C2(Γ0) which we now extend. Let Vρ(Γ0) be a tubular neighborhood of Γ0

with the C2 parametrization

x = x(ξ, s) = ξ + sν(ξ) for ξ ∈ Γ0, s ∈ (−ρ, ρ)

and define

d̃0(x) = d̃0(ξ, s) := [s2 + d0(ξ)2]1/2 for every x ∈ Vρ(Γ0).

Now let V0 := Vρ(Γ0)\{x0}. The function d̃0 is clearly in C2(V0) and we know
that

ν(ξ)=-∇d̃0(ξ) for any ξ ∈ Γ0 (10)

(see [6, Theorem 8.5, Chapter 7]). Furthermore, for any given D precompact in
V0, D b V0, there exist positive constants cd, Cd and c∆ depending on d̃ and D
such that

cd|x| 6 d̃0(x) 6 Cd|x| and ∆d̃0(x) 6 c∆ for every x ∈ D b V0.
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The second assertion is obvious since d̃0 ∈ C2(V0). For the first simply let
m = minx∈D d̃0(x), M = maxx∈D d̃0(x), l = minx∈D |x|, L = maxx∈D |x|,
where we may assume l > 0 after a translation placing x0 at the origin. Then
it suffices to take cd := m/L and Cd := M/l. Finally, using the extension d̃0 we
may define for sufficiently small τ the balls

B̃0(τ) := {x ∈ Vρ(Γ0) : d̃0(x) < τ}. (11)

Equipped with all this we may finally prove our main result:

Theorem 3 Let Ω be an open set in RN and suppose that the data f, g and ψ
lead to a unique solution u ∈ H1(Ω)∩L∞(Ω). Assume that there exist ε, δ ≥ 0,
a subset Γε,δ ⊂ ∂Ω of class C3, and a tubular semi-neighborhood V −ρ of Γε,δ
equipped with the intrinsic distance, for some ρ > 0 such that

ρ > 0 is large enough and V −ρ ⊂ Ω (12)

and such that if Ψ ∈ H2(V −ρ ) is a nonnegative extension of ψ to V −ρ (i.e. Ψ = ψ
on Γε,δ) then we have that

f + ∆Ψ ≤ −ε on V −ρ ,

and
g − ∂νΨ 6 −δ on Γε,δ. (13)

If ε and δ are strictly positive, then one has the location estimate Γε,δ ⊂ Iψ, the
coincidence set of u.

Proof. As in Theorem 1 it is enough to work with data f̃ = f + ∆Ψ, ψ̃ = 0
and g̃ := g − ∂νΨ. Let x0 ∈ Γε,δ and ρmax the maximal width of a tubular
neighborhood around Γε,δ. Define R := min{d(x0,Γ\Γε,δ), ρmax}, D := Ω ∩
B̃(x0, R), ∂1D := ∂D\Γ and ∂2D := ∂D ∩ Γ ⊂ Γε,δ. Define now in D the

function u(x) = cc−1
∆ d̃0(x) for some c > 0. In D we have

−∆u = − c

c∆
∆d̃0(x) > −ε ≥ f̃ .

Additionally, on ∂1D we have

u >
c

c∆
R >M > ũ,

assuming that
c

c∆
R >M.

Notice that this condition holds once we take ρ > 0 (hence also R) large
enough (for some given c > 0). Moreover, since ∂ν ũ = g̃ over ∂2D− I, by using
property (10) we have

∂νu = cc−1
∆ ∂ν d̃0 = −cc−1

∆ > −δ ≥ g̃ on ∂2D),
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once we take
cc−1

∆ ≤ δ,
i.e.

c ≤ min(δc∆, ε).

Moreover, since u = 0 in ∂1D ∪ I we have uα > ũα here. This yields ũ 6 u in
H1(D) and the same inequality holds for the traces, that is:

0 6 ũ(x) 6
c

c∆
d̃0(x), over Γ ∩ B̃(x0, R) in H1/2(Γ).

Letting x→ x0 we conclude that ũ(x) = 0 a.e. in Γε,δ. 2

4 Final remarks and related work

The above results can be easily extended to the associated heat equation with
Signorini boundary conditions by using arguments similar to those found in
[12]. Moreover, it is also possible to extend them to Poisson’s equation or to
the heat equation with dynamic boundary conditions as in [11] and [7] respec-
tively. Notice that according to the equivalent formulation of the fractional
Laplacian operator (see, e.g. [2] and the multiple references given in [10]), the
case of dynamical Signorini boundary conditions for the Poisson and related
linear equations corresponds to the usual obstacle problem associated to the
fractional Laplace operator.

The Signorini boundary conditions can be also formulated in terms of mul-
tivalued nonlinear maximal monotone graphs (see [1]). Some results analyzing
the set in which the solution vanishes on the boundary for other different non-
linear boundary conditions was the main goal of the paper [14]. See also [4] for
the case of singular nonlinear boundary conditions.

The proof techniques used in the present scalar Signorini problem can also
be applied to the study of the contact region of one of the vectorial components
of the deformation field associated to some problems in linear elasticity (see,
e.g., [15] and [5]).

A different class of problems to which the techniques of this paper can be ap-
plied are the ones mentioned in the pioneering book [15] concerning temperature
control or reverse osmosis membranes (see also the associated homogenization
process in [9]).
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[1] Brézis, H. (1972). Problèmes unilatéraux. Journal de Mathematiques pures
et appliquées, (51):1–168.

[2] Caffarelli, L. and Silvestre, L. (2007). An Extension Problem Related to
the Fractional Laplacian. Communications in Partial Differential Equations,
32(8):1245–1260.

11



[3] Caffarelli, L. A. (1979). Further regularity for the signorini problem. Com-
munications in Partial Differential Equations, 4(9):1067–1075.

[4] Dávila, J. and Montenegro, M. (2005). Nonlinear problems with solutions
exhibiting a free boundary on the boundary. Annales de l’I.H.P. Analyse non
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[13] Dı́az, J. I. and Jiménez, R. F. (1988). Boundary behaviour of solutions of
the Signorini problem. Bolletino U.M.I, 7(2-B):127–139.

[14] Dı́az, J. I. and Mingazzini, T. (2015). Free boundaries touching the bound-
ary of the domain for some reaction–diffusion problems. Nonlinear Analysis:
Theory, Methods & Applications, 119:275–294.

12



[15] Duvaut, G. and Lions, J. L. (1976). Inequalities in Mechanics and Physics,
volume 219 of Grundlehren der mathematischen Wissenschaften. Springer-
Verlag.

[16] Fichera, G. (1970). Unilateral constraints in elasticity. Actes, Congrès
international de Mathematiques, 3:79–84.

[17] Friedman, A. (1967). Boundary behavior of solutions of variational inequal-
ities for elliptic operators. Arch. Rational Mech. Anal., 27:95–107.

[18] Gilbarg, D. and Trudinger, N. S. (2001). Elliptic Partial Differential Equa-
tions of Second Order. Classics in Mathematics. Springer-Verlag, Berlin Hei-
delberg, 2 edition.

[19] Kinderlehrer, D. (1981). Remarks about Signorini’s problem in linear elas-
ticity. Annali della scuola normale superiore di Pisa, 8(4):605–645.

[20] Kinderlehrer, D. and Stampacchia, G. (2000). An introduction to varia-
tional inequalities and their applications, volume 31 of SIAM’s classics in ap-
plied mathematics. Society for Industrial and Applied Mathematics, Philadel-
phia.

[21] Lions, J. L. and Stampacchia, G. (1967). Variational inequalities. Commu-
nications on pure and applied mathematics, 20(3):493–519.

[22] Petrosyan, A., Shahgholian, H., and Uraltseva, N. (2012). Regularity of
Free Boundaries in Obstacle-Type Problems, volume 136 of Graduate Studies
in Mathematics. American Mathematical Society.

[23] Schatzmann, M. (1973). Problemes aux limites non linéaires non coercifs.
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