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We study a climatologically important interaction
of two of the main components of the geophysical
system by adding an energy balance model for
the averaged atmospheric temperature as dynamic
boundary condition to a diagnostic ocean model
having an additional spatial dimension. In this work,
we give deeper insight than previous papers in the
literature, mainly with respect to the 1990 pioneering
model by Watts and Morantine. We are taking into
consideration the latent heat for the two phase ocean
as well as a possible delayed term. Non uniqueness
for the initial boundary value problem, uniqueness
under a non-degeneracy condition, and the existence
of multiple stationary solutions are proved here.
These multiplicity results suggest that an S-shaped
bifurcation diagram should be expected to occur in
this class of models generalizing previous Energy
Balance Models (EBMs). The numerical method
applied to the model is based on a finite volume
scheme with nonlinear WENO reconstruction and
Runge-Kutta TVD for time integration.
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1. Introduction
This paper presents new contributions on the mathematical study of a climate model coupling
atmosphere and ocean under a simplified formulation. Our main goal is to exhibit the possible
multiplicity of solutions due to presence of an abruptly distributed coalbedo, such as it was
formulated in terms of a discontinuous function by the climatologist M.I. Budyko (see [13]).
Among the new effects considered with respect to previous mathematical treatments in the
literature we consider here a positive latent heat for the ocean and a general memory term for
the top ocean surface temperature. Moreover, we present here the numerical approximation of
solutions by means of finite volume methods. We shall indicate also many other references on
the mathematical treatment of this class of problems, in a survey style, trying to be useful in the
necessary dialog between geophysical and mathematician experts.

Our model tries to understand the deterministic interactions between two of the main
components of the climatic system. It is well known that detailed mathematical models of the
atmosphere, the ocean and ice sheets are available (see, for instance, the proceedings of several
meetings devoted to this topic, as it was the case of the references [33], [27], [28] and [12]).
Nevertheless, investigating inherently transient phenomena with periods of 100 to 100,000 years
is, of course, out of question for such sophisticated models. This is one reason why simpler
models form useful tools in theoretical climatology. In addition, the mathematical treatment
of such models is far to be obvious and requires the application of finer techniques of the
mathematical and numerical analysis of nonlinear partial differential equations.

Our model takes in account, at least implicitly, the multiple spatial scales which arise in such
complex coupling. Indeed, instead of considering the atmosphere temperature we shall work,
as usual in the theory of EBM, with the averaged surface temperature on suitable spacial and
time local scales. It is well known that in spite of its simplicity, this kind of averaged equations
preserve a high sensitivity with respect to solar parameters. This is very useful for the study
in very large time scales. Nevertheless, since the heat capacity of the ocean is so large, any
departure from equilibrium in the ocean must have a fairly large effect on the thermodynamic
state of the atmosphere. As for the ocean, although we can also simplify its modelling we must
maintain the fact that cold water in a few localized regions at high latitudes sinks is distributed
throughout the deep ocean by currents and slowly rises towards the surface. So, following [70],
we maintain the ocean depth scale for the deep ocean and identify the ocean mixed layer with
the averaged atmospheric surface. This type of models allows to find some explanations to the
Glacial–Holocene transition (see [70]). The inclusion of some stochastic internal and external
variations imperfectly known, as it is the case of solar luminosity variations, volcanic aerosols
and CO2, have already studied for the associate surface EBM (see, e.g. [56], [45], [23], [36]).

It is clear that more realistic ocean models can be also considered in order to investigate the
interactions between time and space scales of both climate subsystems: for instance, the way in
which averaging processes in media with different characteristic scales may produce the presence
of memory terms in the averaged equations can be found in many texts (see, for instance, [59]).
This explains why different delayed terms, or more generally speaking non local terms, may arise
in the modelling of the Energy Balance Models due to the own averaging method (see, e.g. the
exposition made in [45] and the mathematical treatment made in [31] and [32]. But, some times,
the presence of some memory terms can be argued from other modelling proposes (for instance,
[6] study the effects of a delayed term to take into consideration the important role of the clouds
on the albedo). Moreover, there are many reasons to consider the occurrence of a general delay
term in some of the differential equations. For instance, a different justification can be obtained
by regarding some others key phenomena, such as the El Niño/Southern Oscillation (ENSO)
in the Tropical Pacific and its implications in the climate’s interannual variability and in global
warming. Although in this case the time scale must be shorter than in other Paleoclimate models,
we recall that in many previous EBMs seasonal effects have been taken into account (for instance,
the insolation function S(t, x) is then taken as time-dependent) and so, some justification of the
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past glaciations where obtained in [54]. Here we shall only include a delayed term in the deep
ocean temperature equation following the approach initiated in the papers [14], [63], [21], [46],
etc., to simulate seasonally-varying internal parameters.

As said before, even if the model under consideration responds to simplified modelling
arguments, the presence of several nonlinear terms, some of them not always differentiable,
makes that its mathematical treatment can not be reduced to the mere direct application of the
differential delayed equations (DDE) theory (see, e.g. [47] and [71]). In Section 2 we state the
model under consideration and the main structural and constitutive assumptions. The study of
solutions of the transient regime is presented in Section 3. Since there is no hope to get classical
solutions of the system, we introduce the notion of weak solution we shall deal with. We prove
the existence of such type of solutions under quite general assumptions on the data and, which
is more unusual in the study of parabolic type systems, we prove that, in general, there is no
uniqueness of solutions when the coalbedo is assumed to be discontinuous. Since we also prove
that, in this case, there is a continuum of solutions for suitable initial data, it is not possible
to apply the results of the classical bifurcation theory for transient systems. Instead of that, we
prove the uniqueness of weak non-degenerate solutions (corresponding to the case in which the
atmospheric surface temperature arrives not too flat near the boundary of the region where the
coalbedo changes, i.e. on the surface where it becomes abruptly discontinuous). Let us recall that
new aspects which have been taken into consideration in this type of coupled models are the
ocean latent heat and the presence of a memory term.

Once we know the global existence of solutions on any arbitrary time horizon T it can be
proved (see [30] and [64] for a special case of the present system) that the assumptions made here
on the data exclude any other elements in the omega limit set (when t→+∞) different than the
solutions of the stationary system. Perhaps this is the moment to point out that in many other
systems the memory may lead to different qualitative properties of solutions with respect to the
same system but without memory. We shall not develop this approach here but we refer the reader
to a series of papers where this philosophy was carried out for different types of delayed systems
(see [15], [16] and [17].

Coming back to the consideration of the associated stationary system, we show, in Section 4,
the multiplicity of solutions in terms of the solar constant Q. Again, our result is not an automatic
application of the general bifurcation theory but requires the construction of suitable families
of super and subsolutions well adapted to our setting. An S-shaped bifurcation curve can be
obtained in some special cases (see [2]).

The above mentioned mathematical analysis of the model allows to start the study of the
controllability of some models connected with the climate system and, in particular with EBMs
and related problems (see [25] and [26] for the case of a single EBM equation and [34] and [20] for
some related problems). Moreover, it is possible to get a mathematical meaning to the proposals
already present in some late works by J. von Neumann (see [68] and [29]).

Finally, in Section 5, we present several numerical experiments on the coupled model by means
of a finite volume approach with WENO−7 spatial reconstruction and third order TVD Runge-
Kutta for time discretization (for the application of the finite element method see [9]). We compare
the numerical solution of the model with and without the effect of the ocean latent heat, and we
also present a numerical experiment carried out by considering the effects of the memory term.
Although the data in such experiments could be made more realistic we think that the main value
of such numerical approach is to show how it is possible to made accessible to the quantification
some sophisticated mathematical analysis of complex nonlinear systems, involving, for instance
discontinuous albedo data, for which the solutions satisfy the requirements only in a weak sense.
As Jacques-Louis Lions (1928 – 2001) said: if we accept that a model without data is a worthless
predictive model, it is also true that data without a good model produce only confusion (quoted in [57]).
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2. The mathematical model
Energy Balance Models (EBMs) were introduced, independently by M. I. Budyko [1969] and W. D.
Sellers [1969] (some pioneering model is due to S. Arrhenius in 1896). Such type of climatological
models have a diagnostic character and intended to understand the evolution of the global climate
on a long time scale (see, e.g. [19], [48], [45]). Their main characteristic is the high sensitivity to the
variation of solar and terrestrial parameters. They have been used in the study of the Milankovitch
theory of the ice-ages (see, e.g. [54]).

The EBMs study a distribution of surface atmospheric temperature, u(t, x), which is expressed
pointwise after some averaging process in space (the spatial variable x is in a small neighborhood
Bδ(x) in the Earth’s surface) and in time (on a small interval (t− t̃, t + t̃))

u(t, x) =
1

2t̃ |Bδ(x)|

∫ t+t̃

t−t̃

∫

Bδ(x)
T (a, s)dads.

The pointwise temperature T (a, s) is obtained from the thermodynamics equation of the
atmosphere primitive equations (see e.g., [53] for a mathematical study of those equations and [52],
[31] for the application of averaging processes in this context).

More simply, the energy balance model can be formulated by using the energy balance on
the Earth’s surface: internal energy flux variation= Ra − Re + D, where Ra (respectively Re)
represents the absorbed solar (resp. the emitted terrestrial energy flux) and where D is the surface
heat diffusion. By identifying the Earth’s surface with a compact Riemannian manifold without
boundaryM (for instance, the sphere S2 in IR3), the distribution of temperature, u(t, x), becomes
a function of the spatial x and t time variables. The time scale is considered relatively long. The
absorbed energy Ra depends on the planetary coalbedo β. The coalbedo function represents the
fraction of the incoming radiation flux which is absorbed by the surface. In ice-covered zones,
reflection is greater than over oceans, therefore, the coalbedo is smaller. One observes that there
is a sharp transition between zones of high and low coalbedo. In the energy balance climate
models, a main change of the coalbedo occurs in a neighborhood of a critical temperature for
which ice become white, usually taken as u =−100C. The coalbedo can be modelled by different
monotone increasing fuctions (discontinous in case of Budyko model and Lipschitz continuous
for Sellers model). A more realistic albedo parametrization can be obtained by assuming that the
coalbedo fuction β also depends on the spatial coordinates of each point of the Earth (specially on
its latitude: see [48], Section 3.3). Here we mainly consider the Budyko model since it produces
more clear answers when one studies the evolution of the ice caps.

With respect to the surface temperature diffusion we send the reader to the modeling
performed for instance in [45] for the case of a linear second order differential operator.
Nevertheless, a quasilinear diffusion operator of the type div(k(x, u,∇u)∇u) was proposed in
Stone [1971] as a better eddy diffusive approximation to account for the effect of large scale
atmospheric circulation, where k(x, u,∇u) is a non linear eddy diffusion coefficient, in particular,
k = b(x) |∇u|. In our model, we shall follow Stone’s approach to represent the eddy diffusive
terms by setting k(x, u,∇u) = k(x) |∇u|p−2, with p≥ 2 and k(x) > α > 0.

With respect to the simplified model on the deep ocean we shall follows the modeling derived
in [70] but adding a positive latent heat, γ, which plays an important role in the formation of ice
sheets. With respect to the memory term we recall that such type of terms were proposed for the
study of ENSO events. For instance, in [63] it is taken G(t, x, u, u(t− τ)) =−u + u3 + αu(t− τ),
for some α, τ > 0. We could include also some memory terms inside the albedo and latent heat
expressions (as in [58]) but the detailed mathematical treatment is much more technical. Notice
that since u will be a globally bounded function, without lost of generality, we can modify the
previous example function outside a compact of R2 (concerning the values of u and u(t− τ))
in order to get a globally Lipschitz function. Obviously, the case G(t, x, u, u(t− τ)) = G(t, x, u)

represents the case without delayed effects, such as it was considered by many previous authors.
Notice also, that if τ > 0 then the initial condition for the unknown u needs to be given on the set
[−τ, 0]×M.



5

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

Summarizing, our model will represent the interior and surface temperature of a global ocean
Ω, so that, the unknown are respectively given by U : Ω × [0, T ]→ IR and by u :M× [−τ, T ]→
IR, for an arbitrary T > 0. Here we assume

(H1) Ω is a bounded and open set of IR3 with maximum depth H and ∂Ω =M∪N . M and
N are C∞ two dimensional compact connected oriented Riemannian Manifold of IR3

without boundary and dist(M,N ) = H .

Let (P3D) be the problem

∂γ(U)

∂t
− div(∇U) + w

∂U

∂z
3 0 in (0, T )×Ω,

∂u

∂t
− div(|∇Mu|p−2∇Mu) +

∂U

∂n
+ F (x,∇Mu) + G(t, x, u, u(t− τ))∈

∈ 1

ρc
QS(t, x)β(u) + f(t, x) in (0, T )×M,

U
∣∣
[0,T ]×M = u,

F̂ (x,∇NU) +
∂U

∂z
= 0 in (0, T )×N ,

U(0, x, z) = U0(x, z) in Ω,

u(s, ·) = u0(s, ·) on [−τ, 0]×M.

Here ∇M and div are understood in the sense of the Riemannian metric on M (see, e.g. [38]
and [53]). The rest of structural conditions are the following:

(H2) β is a bounded maximal monotone graph, i.e. |v| ≤M for all v ∈ β(s), and all s∈D(β) =

IR.
(H3) γ is the graph

γ(s) =





k1s if s < 0,

[0, L] if s = 0,

k2s + L if s > 0,

with k1 > 0, k2 > 0 and L > 0.
(H4) G : (0, T )×M×R× R→R is a continuous function, G(t, x, σ, η) is a globally Lipschitz

function with respect to σ (i.e. u) and η (i.e. u(t− τ)), such that G(t, x, 0, 0) = 0 and
|G(t, x, σ, η)| ≥C(|σ|r + |η|r) for some r > 0. Moreover τ ≥ 0.

(H5) S : (0, T )×M→ IR, S1 ≥ S(t, x)≥ S0 > 0 a.e. x∈M.
(H6) f ∈L∞((0, T )×Ω).
(H7) F :M× TM→ IR and F̂ :N × TN → IR are linear on the tangent bundle spaces TM

and TN with bounded coefficients.
(H8) w ∈C1(Ω).

Remark 2.1. We point out that, for simplicity, we have assumed here isotropic (and constant) diffusion
matrices in both equations. The mathematical treatment of the case of non constant definite positive
diffusion matrices is quite similar and we drop the details.

Remark 2.2. The case in which the Solar constant Q is assumed, in fact, as a periodic or almost periodic
time function has been intensively studied in the literature (see, e.g. [45], [4] and its many references).

We can reduce the dimension of the model by assuming that the surfaceM is a sphere simulating
the Earth surface and that the temperature is constant over each parallel. So, the solution of the
obtained model only depends on latitude, depth and time. For different purposes, it is useful
to particularize the above system to the simpler case of a 1D EBM (the surface temperature is
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defined on [0, T ]× [−1, 1]: i.e, hereM={(x, 0) : x∈ [−1, 1]} := Γ0) coupled with a 2d deep ocean
(Ω = [−1, 1]× [0,−H], and so of boundaries N ={(x,−H) : x∈ [−1, 1]} := ΓH , Γ−1 := {(−1, z) :

z ∈ [−H, 0]} and Γ1 := {(1, z) : z ∈ [−H, 0]}). The resulting equations of the model (this time with
nonisotropic diffusion coefficients and with F (x,∇Mu) := wxux and F̂ (x,∇NU) := wxUx and
with a parameter D > 0 modeling the mixed layer depth) now with x = sin ϕ, ϕ representing the
latitude, and z ∈ [−H, 0], are the following:

γ(U)t − (
KH

R2
(1− x2)Ux)x −KV Uzz + wUz 3 0 in Ω × (0, T ),

wxUx + KV Uz = 0 in ΓH × (0, T ),

Dut − DKH0

R2

(
(1− x2)p/2 |ux|p−2 ux

)
x

+ KV
∂U

∂n
+ wxux + G(t, x, u, u(t− τ))∈

∈ 1

ρc
S(t, x)Qβ(u) + f(t, x) in Γ0 × (0, T ),

U
∣∣
[0,T ]×[−1,1]

= u,

(1− x2)Ux= 0 in (Γ−1 × (0, T )) ∪ (Γ1 × (0, T )),

U(0, x, z) = U0(x, z) in Ω,

u(s, x, 0) = u0(s, x, 0) on [−τ, 0]× Γ0. (P2D)

Remark 2.3. We note that we can introduce the change of variable U = α(V ), with α := γ−1, and then
the equation in the inner ocean can be written as

Vt − (
KH

R2
(1− x2)α(V )x)x −KV α(V )zz + wα(V )z = 0 in Ω × (0, T ),

where

α(s) =





s
k1

if s < 0,

0 if 0 < s < L,
1
k2

(s− L) if s > L.

(2.1)

The terms γ and α (as well as β) are maximal monotone graphs (see [11]). The main difference between γ

and α is that γ is always multivalued (once we assume L > 0) although, in the atmosphere temperature
equation, the coalbedo β becomes a multivalued graph only when it is associated to a discontinuous coalbedo
function, such as it was proposed in [13]. This is the reason why in the previous inner ocean equation and
the surface EBM it appears the symbols ∈ and 3 instead of the usual equality symbol.

3. On the evolution problem
3.1 Existence of solutions.

We define the functional space V := {u∈L2(M) :∇Mu∈Lp(TM)}, where TM=∪p∈MTpM

is the tangent bundle space (see [3]). Due to the presence of possible multivalued graphs
(associated to discontinuous functions), and the possible choice p 6= 2, we can not expect to solve
the system in a classical sense but only in a weak way.

We say that the pair (U, u) with U ∈C([0, T ] : L2(Ω)), u∈C([−τ, T ] : L2(M)) is a bounded
weak solution of (P3D) if

(i) (U, u)∈L∞((0, T )×Ω)× L∞((−τ, T )×M) ∩ L2(0, T : H1(Ω))× Lp(−τ, T : V ),
(ii) there exist Z ∈L∞((0, T )×Ω) and h∈L∞((−τ, T )×M) with Z ∈ γ(U) a.e. (t, x)∈

(0, T )×M, h∈ β(u) a.e. (t, x)∈ (−τ, T )×M and such that



7

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

∫

Ω
Z(T, x)φ(T, x)dA−

∫T

0
〈φt(t, x), Z(t, x)〉H1(Ω)×H1(Ω)′dt +

∫T

0

∫

Ω
∇U∇φ dA dt+

+

∫T

0

∫

Ω
w

∂U

∂z
φ dA dt−

∫T

0

∫

M
∂U

∂n
φ dS dt +

∫T

0

∫

N
F̂ (x,∇N )φ dS dt

=

∫

Ω
U0(x)φ(0, x)dA,

and
∫

M
u(T, x)ψ(T, x)dA−

∫T

0
〈ψt(t, x), u(t, x)〉V ′×V dt +

∫T

0

∫

M
|∇u|p−2∇u∇ψ dS dt+

+

∫T

0

∫

M
G(t, x, u, u(t− τ))ψ dS dt +

∫T

0

∫

M
∂U

∂n
ψ dS dt +

∫T

0

∫

M
F (x,∇M)ψ dS dt

=

∫T

0

∫

M
QS(t, x)h(t, x)ψ dA dt +

∫T

0

∫

M
fψ dA dt +

∫

M
u0(0, x)ψ(0, x)dS

for every test function (φ, ψ)∈L2(0, T : H1(Ω))× Lp(−τ, T ) : W 1,p(M)) such that (φt, ψt)∈
L2(0, T ; H1(Ω)′)× Lp′(0, T ; V ′). Here <, >V ′×V denotes the duality product in V ′ × V .

Theorem 3.1. Let U0 ∈L∞(Ω) and u0 ∈C((−τ, 0] : L∞(M)). Then there exists at least a bounded
weak global solution of (P3D).

Proof. We write the inner ocean equation as

∂V

∂t
− div(∇α(V )) + w

∂α(V )

∂z
= 0 in (0, T )×Ω,

with U = α(V ) and α := γ−1, as mentioned in the above Remark 2.3 (notice that now α is
singlevalued and so we do not need the symbol ∈). We approximate the maximal monotone
graph α by some smooth increasing functions αε. Then we obtain a family of new problems,
that we shall denote by (Pε). The main idea to solve (Pε) is to apply Theorem 5.3.1 of [69] related
to abstract functional equations. We shall construct an operator Tε and to find a fixed point of it
leading to a solution of (Pε). This will consist of several intermediate steps.
Step 1. For every h∈L∞((0, T )×M) we consider the problem (Ph,ε) by replacing the coalbedo
term in (Pε) by h. The proof of the existence of solution of (Ph,ε) is inspired in [35] and [7].
We define the vectorial operator Aε by Aε(U, u) 7−→ (AεU, Bu) on the domain D(Aε) = {(U, u)∈
L2(Ω)× L2(M) : AεU ∈L2(Ω), Bu∈L2(M), αε(U)|M = u}, where

AεU =− div(∇αε(U)) + w
∂αε(U)

∂z
,

Bu =− div(|∇Mu|p−2∇Mu) +
∂αε(U)

∂n
+ F (x,∇Mu).

We also define the operator G(t)u := G(t, x, u, u(t− τ)). Then, the existence of solution of (Ph,ε)

is a consequence of the compactness of the semigroup associated to the operator Aε(U, u) (trough
Theorem 5.3.1 of [69]) and the results of [35] and [7] leading, up very small variations, to the
following properties of Aε.

Lemma 3.1. There exists λ0 > 0 such that for every λ > λ0, we have:

(i) Aε + λI is T -accretive in L1(Ω)× L2(M).
(ii) R(Aε + λI) = L1(Ω)× L2(M).
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Note that (i) allows us to prove a comparison principle for the system

λU + AεU = f in L1(Ω),

λu + Bu = g in L2(M),

αε(U)|M = u,

F̂ (x,∇Nαε(U)) +
∂αε(U)

∂z
= 0 N .

(3.1)

In fact, if f1 ≤ f2 and g1 ≤ g2 then the solutions of (3.1) with f = f1, g = g1 and of (3.1) with f = f2,
g = g2 satisfy U1 ≤U2 and u1 ≤ u2.

The small variation with respect to the proof given in [7] concerns the proof of (ii) in Lemma 3.1.
We notice that the operator B can be expressed as B1 + B2 + B3, where B1 and B2 are maximal
monotone operators in L2(M),

B1u =− div(|∇Mu|p−2∇Mu)

and the pseudo-differential operator B2u =
∂αε(U)

∂n , where U is the solution of the problem

λU + AεU = f in L2(Ω)

αε(U)|M = u.

The operator B3 is defined by B3u = F (∇Mu). This operator is not necessarily monotone but it is
dominated (in the usual sense: see [11]) by the operators B1 and B2. Consequently, it is possible
to apply the abstracts results of perturbation of maximal monotone operators (see e.g. Proposition
2.10 of [11]) and we arrive to the desired conclusion.
Step 2. We follow closely the proof of Theorem 5.3.1 of [69] and the one given in Theorem 3
of [38] for a related problem. We define the operator Tε : h→ g where g ∈ β(uh) and uh is the
solution of (Ph). It is easy to see that every fixed point of Tε is a solution of (Pε). Moreover,
Tε satisfies the hypotheses of Kakutani fixed point Theorem (see e.g. [69]), and so, if we denote
X = Lp(0, T : L2(M)), then

(i) K = {h∈Lp((0, T ), L∞(Ω)) : ||h(t)|| ≤C0 a.e. t∈ (0, T )} is a nonempty, convex and
weakly compact set of X;

(ii) Tε : K 7→ 2X with nonempty, convex and closed values such that Tε(g)⊂K, ∀g ∈K;

(iii) graph(Tε) is weakly×weakly sequentially closed.

Consequently, Tε has at least one fixed point in K. Finally, arguing as in the proof of Theorem
5.3.1 of [69] we prove the existence of a weak solution of (Pε).
Finally, we shall pass to the limit when ε→ 0. To do that we shall use several a priori estimates.
Firstly, due to the assumptions on the initial data and the above Lemma 3.2 we know that there
exists M > 0, independent of ε, such that

max(||Uε||L∞((0,T )×Ω) , ||uε||L∞((−τ,T )×M))≤M

and (by multiplying by Uε and uε in the respective equations)

max(||Uε||L2(0,T :H1(Ω)) , ||uε||Lp(−τ,T :V ))≤M.

We also have that uε is a strong solution (see [38]) in the sense that

||∂uε

∂t
||L2((−τ,T )×M) ≤M,

and that the family {Uε} is equicontinuous (see Proposition 6.3 of [22]). Then there exists a
subsequence of {Uε} and {uε} (which we still label in the same way) such that Uε → Û weakly in
L2(0, T : H1(Ω)) and strongly in C([0, T ] : L1(Ω)) (respectively uε → u weakly in Lp(−τ, T : V )

and strongly in C([−τ, T ] : L1(Ω))). Finally, by using that γ and β are maximal monotone graphs,
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and assumption (H4) on G(t, x, σ, η), we can pass to the limit in all terms and we conclude that
(U, u), where U = α(Û), is a weak solution of the original problem (P3D).

Remark 3.1. Lemma 3.1 and similar arguments to those in Lemma 3 of [38] allow us to prove the existence
of a maximal and minimal solutions.

3.2 Nonuniqueness of solutions in the presence of a discontinuous coalbedo term.
The presence of the multivalued coalbedo, β, (corresponding to a discontinuous function

which graph is completed as to generate a maximal monotone graph) allows us to prove that,
for some special initial data, there exist more than one time dependent solution. We assume here
the following conditions.

(H∗
1 ) The coalbedo function is

β(u) =





[m, M ] if u =−10,

m if u <−10,

M if u >−10, with 0 < m < M .
(3.2)

(H∗
2 ) G(t, x, u, u(t− τ)) = Bu + C − µu(t− τ) and γ(u) = u.

(H∗
3 ) B and C are positive constants verifying

Qs1m

ρc
<−10B + C, −10B + C + µ‖u0‖L∞(−τ,0)×L∞(−1,1) <

Qs0M

ρc
. (3.3)

(H∗
4 ) We also assume w(x)≤ 0 for all x∈ (−1, 1).

(H∗
5 ) The initial data (U0, u0) satisfy





U0 ∈C∞(Ω), u0 ∈C([−τ, 0])× C∞(Γ0), u0(s, x) = u0(s,−x) = u0(0, x), x∈ [−1, 1], s∈ [−τ, 0]

∂u0

dx
(s, 0) =

∂2u0

∂x2
(s, 0) = 0, u0(s, 0) =−10,

∂u0

dx
(s, x) < 0 if x∈ (0, 1),

∂u0

dx
(s, 1) = 0, s∈ (−τ, 0]

∂U0

∂z
(x, 0) > 0, U0(x, 0) = u0(0, x), if x∈ (0, 1).

Theorem 3.2. Under the above conditions, Problem (P2D) has at least two bounded weak solutions.

Proof. Step 1. First, we consider the problem (Pm)



∂U

∂t
− KH

R2

∂

∂x
((1− x2)

∂U

∂x
)−Kv

∂2U

∂z2
+ w

∂U

∂z
= 0 (0, T )×Ω,

wx
∂U

∂x
+ KV

∂U

∂z
= 0 (0, T )× ΓH

D ∂U
∂t −

DKH0
R2

∂
∂x

(
(1− x2)

p
2 |∂U

∂x |p−2 ∂U
∂x

)
+

+KV
∂U
∂n + wx∂U

∂x + Bu + C − µu(t− τ, x) = 1
ρcQS(x)m on (0, T )× Γ0

(1− x2)
p
2 |∂U

∂x |p−2 ∂U
∂x = 0 Γ1 ∪ Γ−1

U(0, x, z) = U0(x, z) Ω,

U(0, x, 0) = u0(x) (−1, 1),

We notice that if t < τ then u(t− τ, x) = u0(t− τ). Denote (Um, um) to the solution of (Pm). We
notice that if um ≤−10 then (Um, um) is also a solution of (P2D) because h(t, x)≡m∈ β(um).
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Now, by changing U∗ =−10− Um and u∗ =−10− um, we have that u∗ verifies

Du∗t −
DKH0

R2
((1− x2)|u∗x|p−2u∗x)x + Bu∗ =

−QSm

ρc
− 10B + C −KV

∂U∗

∂n
− wx

∂u∗

∂x
− µu0(t− τ, x).

From hypotheses (H∗
3 ) and (H∗

5 ), there exists T0 > 0 s.t. if t < T0 then the right hand side term is
positive. Consequently u∗ =−10− um is positive and um <−10. Notice that KV

∂U
∂n + wx∂U

∂x ≤ 0

in (0, T0)× Γ0).
Step 2. Now, we prove that there exist a solution which takes values bigger than -10 in a subset of
Γ0 for t < τ . To see the existence of this second solution, we shall construct a family of auxiliary
functions Uλ (and the restrictions Uλ

|Γ0
= uλ). We decompose Ω × [0, λ] =Qλ

1 ∪Qλ
2 ∪Σλ, where

Qλ
1 = {(x, z, t)∈Ω × [0, λ] : x2 + z2 >

t2

λ2
},

Qλ
2 = {(x, z, t)∈Ω × [0, λ] : x2 + z2 <

t2

λ2
},

Σλ = {(x, z, t)∈Ω × [0, λ] : x2 + z2 =
t2

λ2
}.

In the region Qλ
1 . We consider (Uλ, uλ) the solution of problem (PQλ

1
) (see e.g. [44] and [41]).




∂U

∂t
− KH

R2

∂

∂x
((1− x2)

∂U

∂x
)−Kv

∂2U

∂z2
+ w

∂U

∂z
= 0 Qλ

1

wx
∂U

∂x
+ KV

∂U

∂z
= 0 Qλ

1 ∩ (0, T )× ΓH

D ∂U
∂t −

DKH0
R2

∂
∂x

(
(1− x2)

p
2 |∂U

∂x |p−2 ∂U
∂x

)
+

+ KV
∂U
∂n + wx∂U

∂x + Bu + C − µu0 = 1
ρcQS(x)m Qλ

1 ∩ (0, T )× Γ0

(1− x2)
p
2 |∂U

∂x |p−2 ∂U
∂x = 0 on Γ1 ∪ Γ−1

U(0, x, z) = U0(x, z), U(0, x, 0) = u0(x)

Uλ =−10 Σλ

On the region Qλ
2 , we define Uλ =−10− Cλ(t)(x2 + z2 − t2

λ2 ). Notice that if Cλ > 0 then Uλ >

−10 in Qλ
2 . Is easy to see that (Uλ, uλ) is a solution of Problem (Pλ),




∂U

∂t
− KH

R2

∂

∂x
((1− x2)

∂U

∂x
)−Kv

∂2U

∂z2
+ w

∂U

∂z
= Hλ in (0, T )×Ω,

wx
∂U

∂x
+ KV

∂U

∂z
= gλ in (0, T )× ΓH

D ∂U
∂t −

DKH0
R2

∂
∂x

(
(1− x2)

p
2 |∂U

∂x |p−2 ∂U
∂x

)
+

+ KV
∂U
∂n + wx∂U

∂x + Bu + C − µu0 = hλ in (0, T )× Γ0

(1− x2)
p
2 |∂U

∂x |p−2 ∂U
∂x = 0 in (0, T )× (Γ1 ∪ Γ−1)

U(0, x, z) = U0(x, z)in Ω, U(0, x, 0) = u0(x)in (−1, 1),

where, for (t, x, z)∈Qλ
2 ,
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Hλ =−(Cλ)′(t)(x2 + z2 − t2

λ2 )− Cλ(t)[(−2t
λ2 )− 2KH

R2 (1− 3x2)− 2Kv + 2wz],

hλ = −D(Cλ)′(t)(x2 − t2

λ2
)− Cλ(t)[−2Dt

λ2
+ 2wx2 + B(x2 − t2

λ2
)

−2p−1 DKH0

R2
|Cλ(t)|p−2(−p(1− x2)

p−2
2 |x|p +

+(p− 1)(1− x2)
p
2 |x|p−2]− 10B + C − µu0),

gλ = −2Cλ(t)(x2w −KvH)≥ 0.

Thus, there exist λ > 0 and Cλ : [0, T0]→ IR such that hλ ≤ Qs0M
ρc . Then (Uλ, uλ) is a

lowersolution of Problem (P2D). Then, by upper and lower solution method we deduce that
there exists a solution (V, v) of (P2D) satisfying uλ < v. Consequently v >−10 in some subset
of positive measure. (V, v) is different than the solution of step 1. Finally, we get two different
solutions of (P2D) for an initial data satisfying (H∗

5 ).

Remark 3.2. The above construction makes arise a parameter λ which is not uniquely determined. So, in
fact, the proof shows the existence of a continuum of solutions, and not only two of them.

Remark 3.3. In the proof of the above result, the multivalued nature of β was a crucial element. As a
matter of fact, if by the contrary we assume that β is a regular function, for instance a Lipschitz function
then, by standard arguments we get the uniqueness of weak solutions .

3.3 Uniqueness of non degenerate solutions.
Now, we wonder if it is possible to get uniqueness of time dependent solutions for a model

which may involve a multivalued coalbedo term but for some special initial data. The answer is
positive but it will depend on a suitable property which must be satisfied by the weak solutions.
By simplicity in the exposition we shall assume here γ(s) = s (the result remains true for the case
of the graph γ corresponding to a positive latent heat but the details are too technical as to be
presented here). We define a class of solutions called as non degenerate on Γ0. This notion was also
useful in [24] and [38] where the EBM model without the deep ocean effect was studied.

Definition. Let w ∈L∞(Γ0). We say that w satisfies the strong nondegeneracy property (resp.
weak) if there exist C > 0 and ε0 > 0 such that for any ε∈ (0, ε0), |{x∈ Γ0 : |w(x) + 10| ≤ ε}| ≤
Cεp−1 (resp. |{x∈ Γ0 : 0 < |w(x) + 10| ≤ ε}| ≤Cεp−1).

Theorem 3.3. (i) Assume that there exists a solution (U, u) of (P2D) such that u(t) verifies the strong
nondegeneracy property for all t∈ [0, T ] then (U, u) is the unique bounded weak solution of (P2D). (ii)
There exists at most one solution of (P2D) verifying the weak nondegeneracy property.

The idea of the proof is based on the fact that β generates a continuous operator from L∞(Γ0)

to Lq(Γ0) ∀q ∈ [1,∞) when the domain of such operator is the set of functions verifying the
strong nondegeneracy property. More precisely, we estimate the difference between two possible
solutions (U − V, u− v) by using the following

Lemma 3.2. (i) Let w, ŵ ∈L∞(Γ0). Assume w satisfies the strong nondegeneracy property. Then, for
every q ∈ [1,∞) there exists C̃ > 0 such that for every z, ẑ ∈L∞(Γ0) verifying z(x)∈ β(w(x)) and
ẑ(x)∈ β(ŵ(x))a.e. x∈ Γ0, we have

‖ z − ẑ ‖Lq(Γ0)≤ (bw − bi)min{C̃ ‖w − ŵ ‖(p−1)/q
L∞(Γ0)

, |2|1/q}. (3.4)

(ii) If w, ŵ ∈L∞(Γ0) satisfy the weak nondegeneracy property then
∫

Γ0

(z(x)− ẑ(x))(w(x)− ŵ(x))dA≤ (bw − bi)C ‖w − ŵ ‖p
L∞(Γ0)

. (3.5)
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The idea of the proof (for the case of the simpler model (P2D)) of the uniqueness of solution
follows closely Theorem 5 of [38]. First we argue on the time interval [0, τ ] (it is enough to repeat
the same arguments on subintervals of lenght τ to get the result on the whole interval [−τ, T ] for
any arbitrary T > 0). Assume there exist two solutions (U, u) and (V, v). By using Holder, Young
and Friedrich inequalities and the lemma of nondegeneracy property (by introducing a suitable
spatial rescaling x 7→ λx to estimate some balance of the upper bounds) we obtain that

∂

∂t
‖U − V ‖2L2(Ω) +

∂

∂t
‖u− v‖2L2(Γ0) ≤K1‖U − V ‖2L2(Ω) + K2‖u− v‖2L2(Γ0).

Finally, by Gronwall Lemma, we conclude that ‖U − V ‖L2(Ω) = 0 and ‖u− v‖L2(Γ0) = 0, which
ends the proof.

Remark 3.4. The conclusion of Theorem 3.7 also holds for the (P3D) but its proof becomes more technical.
It will be presented in a future work by the authors.

4. Multiplicity of steady states
The analysis of the stabilization, as t→+∞ of the solutions can not be carried out by
means of any linearization principle due to the presence of the possible multivalued graphs
γ and β. An alternative method consists in to characterize the ω-limit set (once it is
assumed that f(t, .)→ f∞(.), when t→+∞, in some suitable sense). In that case, it can
be shown that, given (U, u) bounded weak solution of (P3D), any element of the ω-limit
set of (U, u), defined by ω(U, u) = {(U∞, u∞)∈ (H1(Ω)× V ) ∩ L∞(M)× L∞(M) : ∃tn →
+∞ such that (U(tn, ·), u(tn, ·))→ (U∞, u∞) in L2(Ω)× L2(M)}, is formed merely by solutions
(U∞, u∞) of the associate stationary model, which we denote by (P∞). The proof of this result
follows the ideas of [30] (the details will appear in a future work). The associated stationary
problem (P∞) consists of the following set of equations:

−div(K∇U) + w
∂U

∂z
= 0 on Ω, (4.1)

F̂ (x,∇NU) +
∂U

∂z
= 0 on N , (4.2)

− divM(|∇Mu|p−2∇Mu) + KV
∂U

∂n
+ F (x,∇Mu) + Ĝ(u)∈Ra(u) + f∞ on M, (4.3)

U|M = u, (4.4)

where ∂Ω =N ∪M and with Ĝ(x, u) given by the limit of G(t, x, u, u(t− τ)) when t→+∞. In
this section, we shall assume the conditions

(HS) S : Ω→ IR, S ∈L∞(−1, 1), S1 ≥ S(x)≥ S0 > 0 for some S1 > S0.
(HG) Ĝ : IR→ IR is a continuous strictly increasing function such that Ĝ(0) = 0 and

lim|s|→∞ |G(s)|= +∞.
(Hf ) f∞ ∈L∞(Ω) and there exist Cf > 0 such that −‖f∞‖∞ ≤ f∞(x)≤−Cf a.e. x∈Ω.
(Hβ) β is a bounded maximal monotone graph of IR2 and there exists two real numbers 0 <

m < M and ε > 0 such that β(r) = {m} for any r ∈ (−∞,−10− ε) and β(r) = {M} for
any r ∈ (−10 + ε, +∞).

(HCf
) Ĝ(−10− ε) + Cf > 0 and

Ĝ(−10 + ε) + ‖f∞‖∞
Ĝ(−10− ε) + Cf

≤ S0M

S1m
.

(Hw) w ∈C1(Ω) (for simplicity).
(HK ) The constants KH , KV , KH , KH0 , D, R, ρ, c and Q are positive.

One important technique that we shall use in the following result is the continuity of the
solutions with respect to the coalbedo β. This allows us the approximation of a discontinuous (i.e.
multivalued graph) β by a smoother functions. This also have some implications for the numerical
treatment of the model.
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Theorem 4.1. Let (HS), (HG), (Hf ), (Hw), (HK) and (Hβ) be satisfied. Then for any Q > 0 there is
a minimal solution (U, u) (resp. a maximal solution (U, u)) of problem (PQ). Moreover, if (HCf

) holds,
then there exist Q1 < Q2 < Q3 < Q4 such that

i) if 0 < Q < Q1, then (PQ) has a unique solution,
ii) if Q2 < Q < Q3, then (PQ) has at least three solutions,
iii) if Q4 < Q, then (PQ) has a unique solution, where

Q1 =
(Ĝ(−10− ε) + Cf )ρc

S1M
Q2 =

(Ĝ(−10 + ε) + ‖f∞‖∞)ρc

S0M

Q3 =
(Ĝ(−10− ε) + Cf )ρc

S1m
Q4 =

(Ĝ(−10 + ε) + ‖f∞‖∞)ρc

S0m
.

Proof. This proof is the extension to (P3D) of the results for (P2D) given in [40] (see also [30]). Let
us define the vectorial operator A : L2(Ω)× L2(M)→L2(Ω)× L2(M) by A(U, u) := (AU, Bu)

with domain

D(A) = {(U, u)∈L2(Ω)× L2(M) : AU ∈L2(Ω), Bu∈L2(M), U|M = u},

where AU =− div(∇U) + w ∂U
∂z and

Bu =− div(|∇Mu|p−2∇Mu) + KV
∂U

∂n
+ F (x,∇Mu) + Ĝ(x, u).

It is easy to find some constant functions (V , v) and (U, u) verifying
{

AV = 0

Bv = 1
ρcQS0m− ‖f∞‖∞ ≤ 1

ρcQS(x)β(v) +f∞,

{
AU = 0

Bu = 1
ρcQS1M − Cf ≥ 1

ρcQS(x)β(u) +f∞,

where β and β are some (eventually discontinuous) functions (i.e., single valued sections of the
graph β) such that β(s)∈ β(s), β(s)∈ β(s) and β(u)≤ h≤ β(u) for all h∈ β(u). Every solution
(U, u) of (P3D) verifies V ≤U ≤U and v≤ u≤ u.

(i) If Q < Q1 then V ≤U ≤−10− ε. So, every solution (U, u) of (PQ) verifies u <−10− ε and
it is a solution of the problem

(Pm
Q )





AU = 0 on Ω,

Bu = 1
ρcQS(x)m + f∞ on M,

U = u on M,

F̂ (x,∇NU) + ∂U
∂z = 0 on N ,

which has a unique solution. To prove it, we assume there exist two solutions, (U1, u1) and
(U2, u2) and we take the difference U1 − U2 as a test function in the weak formulation. The
accretiveness of the operator allows us to conclude the uniqueness.

(iii) If Q4 < Q then −10 + ε≤ V ≤U . So, every solution (U, u) verifies −10 + ε≤ u and β(u) =

M . So, (U, u) is the unique solution of problem (PM
Q ) which is obtained by replacing m by M in

problem (Pm
Q ).

(ii) The proof of the multiplicity consists of three steps
Step 1. Construction of upper and lower solutions. If Q2 < Q < Q3 then,
U1 := G−1( 1

ρcQS1M − Cf ) is an uppersolution of (PM
Q )

V 1 := G−1( 1
ρcQS0M − ‖f∞‖∞) is a lowersolution of (PM

Q )

U2 := G−1( 1
ρcQS1m− Cf ) is an uppersolution of (Pm

Q )

V 2 := G−1( 1
ρcQS0m− ‖f∞‖∞) is a lowersolution of (Pm

Q ).

Moreover, V 2 < U2 <−10− ε <−10 + ε < V 1 < U1. Then, there exist two solutions (U1, u1) and
(U2, u2) of (PQ) such that u1 and u2 do not cross the level -10. To find the third solution, we shall
apply a result of [1]. This is possible for the case where β is a Lipschitz function. In next step, we
will approximate the graph β by some Lipschitz functions.
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Step 2. Approximate problem. We define a new family of problems, (PQ,λ) by replacing β(u)

by βλ(u) in (P3D), where βλ is the Lipschitz function βλ = 1
λ (I − (I − λβ)−1), λ > 0 (the Yosida

approximation of β). Since β verifies (Hβ), we get that

βλ is a bounded and nondecreasing function ∀λ > 0,

βλ(s) = β(s) for any s 6∈ [−10− ε,−10 + ε + λM ], ∀λ > 0,

βλ(s)→ β(s) in the sense of maximal monotone graphs when λ→ 0

(see [11]). In the case of β is a Lipschitz function, we take βλ = β. Now, by applying the argument
of step 1 to problem (PQ,λ), there exit λ0 such that V 2 < U2 <−10− ε <−10 + ε + λ0M < V 1 <

U1. Then, we have two families of solutions of {(PQ,λ)} such that uλ
1 and uλ

2 do not cross the
level -10. We have the third family of solutions by using the following lemma. We recall that X is
a retract of E if there exists a continuous mapping r : X →E such that r(x) = x for each x∈X .

Lemma 4.1. (Amann [1976]) Let X be a retract of some Banach space E and let F : X →X be a compact
map. Suppose that X1 and X2 are disjoint retracts of X , and let Yk, k = 1, 2 be open subset of X such
that Yk ⊂Xk. Moreover, suppose that F (Xk)⊂Xk and that F has no fixed points on Xk − Yk, k = 1, 2.
Then F has at least three distinct fixed points x, x1, x2 with xk ∈Xk and x∈X − (X1 ∪X2).

We see that the assumptions of this lemma are satisfied. Any solution u of the problem (PQ,λ)

is a fixed point of the equation u = F (u) with F : L∞(M)→L∞(M) defined by

u = P2(A−1(
1

ρc
QS(·)βλ(u) + f∞(·))),

where P2 is the projection over the second component. Let E = L∞(M) which is an ordered
Banach space with respect to the natural ordering whose positive cone is given by

L∞+ (M) = {v ∈L∞(M) : v(x)≥ 0 a.e. x∈M},
having a nonempty interior. Let us define the intervals X = [V 2 − δ , U1 + δ], X1 = [V 1 −
δ , U1 + δ] and X2 = [V 2 − δ , U2 + δ] where δ > λ0M is taken such that V 1 > −10 + ε + δ,
U2 > −10− ε− δ. So, there exists an open set Yk of L∞(M) containing uλ

k for k = 1, 2 such
that Yk ⊂Xk. The sets X , X1 and X2 are retracts of L∞(M) (resp. X), since they are nonempty
closed convex subsets of L∞(M) (resp. X). Moreover, F (X)⊂X and F (Xk)⊂Xk. Finally, from
the properties of βλ and the compact embedding W 1,p(M)⊂L∞(M) for p≥ 2, we arrive to F :

X →X is a compact map. So, by Lemma 4.1 we conclude that F has at least three fixed points, or
equivalently, (PQ,λ) has at least three solutions: uλ

1 ∈X1, uλ
2 ∈X2 and uλ

3 ∈X − (X1 ∪X2).

Step 3. The proof ends with the convergence of a subsequence of {uλ
3} to u3 such that (U3, u3)

is a solution of (PQ,λ). To get this limit we need to use a result of maximal monotone graphs
( [10]) which guarantees that the limit of βλ(uλ) is in the graph β(u3). Finally, the convergence
in L∞(M) allow us to show that u3 is different from u1 and u2. In particular, u3 must cross the
level −10.

5. Numerical approximation
In this section we are concerned with computing a numerical solution for the problem (P2D) with
p = 3. The numerical approximation used is based upon the finite volume method with Weighted
Essentially Non-Oscillatory (WENO) reconstruction in space and third-order Runge-Kutta TVD
for time integration. Details of WENO reconstruction can be found in many references, among
them [5], [65], [66], [43]. For each time step, a numerical solution of the EBM is computed and
then used as a Dirichlet boundary condition for the deep ocean model. Other approximations are
possible, for instance we can mention the ADER-ENO scheme for nonlinear reaction-diffusion
problems proposed by [67]. The numerical scheme follows the ideas put forward in [51]. Its
application allows to obtain γn+1

i,j for each control volume. Then we use an iterative solver of
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Table 1. Physical data used in the model.

Parameter V alue Units

KH 0.049 m2c−1

KH0 0.555× 10−3 m2c−1

KV 0.0125 m2c−1

C, B 190, 2 Wm−2, Wm−2K−1

c, ρ 3900,1004 J(kg◦C)−1,kgm−3

Q 340 Wm−2

D 60 m

nonlinear equations to compute the cell averages of the numerical solution for the deep ocean
model Un+1

i,j from γn+1
i,j , solving the nonlinear equation

γn+1
i,j =





k1Un+1,iter
i,j if Un+1,iter−1

i,j < 0
L+k2ε

ε Un+1,iter
i,j if 0≤Un+1,iter−1

i,j < ε

k2Un+1,iter
i,j + L if Un+1,iter−1

i,j ≥ ε

(iter = 1, 2, · · · ),

for a given small ε. This iterative process ends up when |Un+1,iter
i,j − Un+1,iter−1

i,j |< δ for each
control volume Vi,j and with δ small enough. The iterative solver used consists of a combination
of Newton’s method and bisection method, in such a way that the method performing is the one
that converges faster. Note that, following this idea, both methods can act at a particular time
step. Finally, we assign the value Un+1

i,j = Un+1,iter
i,j . As for the cell averages of the delay term

ui(t− τ), an arithmetic mean of the values ui(t
k) and ui(t

k+1) with t− τ ∈ [tk, tk+1] has been
used.

The evolution of the temperature in the deep ocean is due to the combined effect of
water sinking from the Earth poles with heating-cooling processes taking place in the interface
atmosphere-ocean. Also water upwelling takes place at certain latitudes.

In the first numerical example we compare the numerical solution of the model with
and without the effect of the latent heat. The initial conditions considered are U(0, x, z) =

18e−x2−z2
+ 6e6z(11e−x2 − 10) for the ocean interior and u(0, x) := U(0, x, 0) = 84e−x2 − 60.

The data used in this example are depicted in Table 1. In this table the unit c stands for century.
The insolation function is taken as S(x) = 1− 1

2P2(x) where P2(x) = 1
2 (3x2 − 1) is the second

Legendre polynomial in the interval [−1, 1]. The coalbedo β(u) is given by (H∗1), where m = 0.4

and M = 0.69. The numerical implementation of the coalbedo is performed considering that we
are in the context of an explicit scheme therefore if, in the previous time step, at certain control
volume, u≤−10 then β(u) = m otherwise, β(u) = M . As for the velocity, it depends only on x

and in this work it is defined as

ω(x, z) = W (x) =
10(x + 0.75)(x− 0.75)

(0.1 + 10 |x + 0.75|)(0.1 + 10 |x− 0.75|) . (5.1)

This particular velocity is a way to represent sinking water near the poles and upwelling water in
the vicinity of the Equator. The spatial discretization used is ∆x = 2/60; ∆z = 1/60 and the size
of the time step is calculated in an iterative way according to the formula

(∆t)n = min(α∆x2((1− x2)KH)−1, α∆z2(KV )−1, α∆x2((1− x2)KH0

∣∣∣∣
dun−1

dx

∣∣∣∣)−1), (5.2)

where α = 0.3 for stability reasons. Other values used here are k1 = k2 = 1, ε = 0.01 and L = 3.
The numerical experiment with latent heat shows more clearly (than the experiment without this
term) the crucial role of the deep ocean: indeed, besides a suitable justification of the formation of
sea ice sheets (the level lines of the lower values of the sea temperature are now more separated,
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Figure 1. Temperature without latent heat (γ(u) = u) and t = 5.

Figure 2. Temperature with latent heat and t = 5.

Figure 3. Mean Surface Temperature without latent heat effect (left) and with latent heat effect (right) at t = 4.

which corresponds to the presence of large regions without great abrupt temperature changes),
most of the higher level lines of the sea temperature does not arrive to touch the sea surface
(except, at most, some of them which do that around the Equator).

We can generate solutions of (P3D) from the solutions of (P2D) under suitable conditions.
In Figure 3 we can see the distribution of temperature on the Earth surface obtained by the
numerical approximation of (P2D) and rotated thanks to the spherical coordinates. We observe
that the surface temperature is lower in the case of presence of latent heat than when this effect
is neglected. This is precisely what may be considered as an alarm about the gravity of the global
change, since if a realistic deep ocean (that means with latent heat) is heated, the time to return to
previous colder situations may be very large.
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A numerical experiment carried out considers the delay effect. The results can be seen in
Figure 4. The range of temperatures is more narrow when considering this term than without
its influence. Therefore the delay term is like a memory one, which remembers the temperature of
previous time steps and, therefore, tends to smooth the spatial evolution of the temperature. In
this example we have taken µ = 0.5, but no latent heat, for simplicity. Another interesting feature
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Figure 4. Delay effect in the upper boundary (without latent heat effect) at t = 5 for different values of the time of delay τ .

of the effect of the delay term is depicted in Figure 5 where the temperature is plotted as a function
of time for the particular latitude 38◦S and for different values of the parameters µ and τ . The
results show that, in both situations, a stationary state is reached. Nevertheless, when the time
of delay τ is larger the solution becomes more oscillating and takes a longer time in reaching the
stationary state. This effect is more evident for larger values of µ. This conclusion is similar to that
pointed out in [58]. Also Figure 5 reveals that the consideration of the latent heat effect give rise
to less oscillating solutions.

Figure 5. Temperature in the upper boundary as a function of time, with (full lines) and without (dashed lines) latent heat

effect, for the latitude 38◦S, being µ = 2 (left) and µ = 3 (right) and, in both cases, for two different values of the time

delay τ .
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