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Abstract

We consider some singular second order semilinear problems which includes,
among many other special cases, the boundary layer equations such as they were
treated by O.A. Oleinik in her pioneering works. We consider diffusion linear oper-
ator with possible discontinuous coefficients and prove an optimal criterion to get
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a quantitative strong maximum principle what we call as Uniform Hopf Inequality
UHI. Since the solutions of the singular semilinear problems under consideration
are not Lipschtiz continuous we carry out a careful study of the regularity of solu-
tions when the coefficients of the diffusion matrix are merely in the vmo space and
bounded. We prove that the gradient of the solution is still p-integrable, in absence
of any continuity assumption on the spatial potential coefficient in the singular term.
To this end, the UHI property is used several times. We also apply and improve
previous a priori estimates due to S. Campanato in 1965.

AMS Subject Classification. 35J25, 35J60, 35850, 35B65,35Q35.

1 Introduction

The paper deals with the study of the singular semilinear problem

(SP) =

 Lu = a(x)
um

in Ω
u = 0 on ∂Ω.

where Ω is a regular open domain set of IRn, a(x) satisfies, m > 0

a ∈ L∞(Ω), a > 0, a 6= 0, (1.1)

and L denotes an elliptic second order operator with non-necessarily C1(Ω) coefficients.
We shall pay attention meanly to the "case of pure diffusion" in which

Lu = −div(A(x)∇u) (1.2)

with the coefficients of the "coercive" matrix A(x) = (aij(x))nij=1 such that

(H1)


aij ∈ L∞(Ω) ∀ i, j = 1, . . . , n
∃α > 0,∀ ξ = (ξ1, . . . ξn) ∈ IRn,

∑
i,j

aij(x)ξiξj > α|ξ|2 a.e. in Ω.

Problem (SP ) arises in many applied contexts, as for instance, in the study of the
boundary layer in Fluid Mechanics. One of the pioneering works of this type of equations
was the 1977 paper by M.G. Crandall, PH. Rabinowitz and L.Tartar [12] in which it
was mentioned as applied motivations the case of suitable chemical kinetics (Fulks and
Maybee [17]) and the consideration of some similar problems in the context of signal
transmission ([34] and [29]). But there are many other contexts in which problem (SP)
turn to be relevant. To indicate some other different motivation, we mention here the
study of the “boundary layer” flow past a flat plate such as it was considered by H.
Blasius [2], in 1908, after the seminal study by L. Prandlt [31] in 1905. It is well-known
that the so called “Crocco transformations” [13] lead the problem to the consideration of
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a suitable class of singular parabolic equations which by different arguments are reduced
to the study of equations of the type

(Pw)


−wηη +B(η)wη + C(η)w = a(η)

w
in (0, 1)

w(1) = 0
w′(0) = c0,

for suitable coefficients B and C, for some a satisfying (1.1) and C0 ∈ IR (see e.g. the
expositions made in the monograph Oleinik and Samoklin [36] or the paper Vajravelu et
al. [43]).

In spite of the great relevance of the study of the boundary layer in many problems of
engineering, meteorology, oceanography etc., the intensive mathematical treatment was
only successive after a series of papers by O.A. Oleinik starting in 1952 (see again the
exposition made in Oleinik and Samoklin [36]). In her 1968 paper ([35], see also [27])
she derived the a priori estimate

C(1− η)
√
−Lnµ(1− η) 6 w(η) 6 C(1− η)

√
−Lnµ(1− η) for any η ∈ (0, 1)

for suitable positive constants C, C, µ which shows that

w /∈ C0,1([ 0, 1 ]
)
.

Since the solution of the problem (SP) is not Lipschitz continuous, it is important
to show that it’s gradient is in some functional space smaller than L2(Ω). A related
boundary estimate was proved in Gui and Hua Lin [23] and in [27] for solutions of
(SP) when L = −∆. We will show that the situation is completely different when we
consider an operator L with variable coefficients. We shall show (see Theorem 3) that
u ∈W 1,p(Ω), for any p ∈ [1,+∞) assuming furthermore that the coefficients satisfy

aij ∈ vmo(Ω), ∀i, j = 1, ··, n.

(see below a full definition).

The regularity u ∈ W 1,p(Ω) for any p ∈ [1,+∞) already improves some previous
results in the literature (see e.g. Díaz, Hernández and Rakotoson [15], Bougherara-
Giacomoni and Hernández [4], Rakotoson [16], and their references). In fact, under the
additional regularity aij ∈ C0,1(Ω), ∀i, j = 1, ··, n we shall show (Theorem 4.3) that
∇u ∈ bmor(Ω)n, a functional space already used by Campanato [8] under the name
L2,n(Ω) and which can be obtained through some variations from the BMO space of
John and Nirenberg [20] (see also Chang [10], Chang Dafni and Stein [11]).

One of our key arguments, in this paper, is a suitable application of the so-called "Uni-
form Hopf Inequality" which says that if v is a very weak solution of the linear problem{

Lv = f(x) in Ω,
v = 0 on ∂Ω, (1.3)
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then there exists a positive constant CΩ,L, depending only on Ω and the coefficients of
L, such that

v(x) > CΩ,Lδ(x)
∫

Ω
f(y)δ(y) dy a.e. x ∈ Ω. (1.4)

Here, δ(x) stands for the distance of x ∈ Ω to the boundary ∂Ω.
This inequality was used by first time in the paper Díaz, Morel and Oswald [33] for
the study of a singular semilinear problem (with L = −∆) in which the singular term
arises in the right hand side of the equality. In fact, the detailed proof of the inequality
was announced as a separated independent work by Morel and Oswald [33] but it was
unpublished. A proof of it (always with L = −∆) was offered in the paper Brezis and
Cabré [5]. The proof is still valid when L = −div(A(x)∇·) and the coefficients aij of
A are in C0,1(Ω). Here, we shall show that the Uniform Hopf Inequality holds even
for the case in which L has discontinuous coefficients satisfying aij ∈ C0,1(Ωb), aij ∈
L∞(Ωl), where we assume that Ω admits a partition i.e., Ω = Ωl ∪ Ωb, with Ωl ⊂⊂ Ω
and Ωb contained in a neighborhood of ∂Ω. We shall also prove that the condition
aij ∈ C0,1(Ωb), aij ∈ L∞(Ωl) is sharp by giving a counter example of it for the case in
which aij are not continuous in some neighborhood of the boundary.

Section 4 and 5 will deal with the main regularity results of this paper ( first concerning
with u−1 as nonlinear term and then, in Section 5, with u−m as a general case).

2 Notations and Preliminaries

We shall consider Ω an open bounded smooth (say C0,1 at least) of IRn. We recall some
spaces

(
namely the bounded mean oscillation functions (bmo)

)
that we shall use later

(see e.g. [20], [10] [11], [24], [21], [37], [42], . . . )

Definition 1 (of bmo(IRn)) A locally integrable function f on IR is said to be in
bmo(IRn) if

sup
0<diam(Q)<1

1
|Q|

∫
Q
|f(x)− fQ| dx+ sup

diam(Q)>1

1
|Q|

∫
Q
|f(x)| dx

≡ ‖f‖bmo(IRn) < +∞,
where the supremum is taken over all cube Q ⊂ IRn whose sides are parallel to the
coordinate axis. diam (Q) stands for the diameter of Q, |Q| the measure of the cube and
fQ the average of f over the cube Q. The cube can be replaced by a ball.

Definition 2 (of bmor(Ω) and main property)
A locally integrable function f on a Lipschitz bounded domain Ω is said to be in bmor(Ω)
(r stands for restriction) if

sup
0<diam(Q)<1

1
|Q|

∫
Q
|f(x)− fQ| dx+

∫
Ω
|f(x)| dx ≡ ‖f‖bmor(Ω) < +∞,
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where the supremum is taken over all cubes Q ⊂ Ω whose sides are parallel to the
coordinate axis.
In this case, there exists a function f̃ ∈ bmo(IRn) such that

f̃
∣∣∣
Ω

= f and ‖f̃‖bmo(IRn) 6 cΩ · ‖f‖bmor(Ω).

Definition 3 (of the Campanato space L2,n(Ω))
A function u ∈ L2,n(Ω) if

‖u‖L2(Ω) + sup
x0∈Ω,r>0

[
r−n

∫
Q(x0,r)∩Ω

|u− ur|2 dx
] 1

2

= ‖u‖L2,n(Ω) < +∞.

Here
ur = 1

|Q(x0, r) ∩ Ω|

∫
Q(x0,r)∩Ω

u(x) dx.

Q(x0; r) (resp B(x0; r)) is the cube (resp the ball) of center at x0 of side (resp radius)
r0.

Lemma 2.1 (Equivalence of the two definitions)
For a Lipschitz bounded domain Ω, one has:

L2,n(Ω) = bmor(Ω),

with equivalent norms.

This theorem is not essential for our purpose. (we refer to [38] for its proof).

We shall also use the associated Sobolev space

W 1
0 bmor(Ω) :=

{
u : Ω→ IR; u ∈W 1,1

0 (Ω) and ∇u ∈ bmor(Ω)n
}
.

As in [42], we also introduce the space.

vmo(Ω) :=
{
f ∈ bmor(Ω) and lim

R→0
sup
r6R
x0∈Ω

1
rn

∫
B(x0,r)∩Ω

|f − fr| dx→ 0
}
.

We recall that the Sobolev-Poincaré inequality implies thatW 1,n(Ω) ↪→ vmoloc(Ω). This
gives how we can construct elements vmo.

For a measurable set E in IRn we denote by |E| its Lebesgue measure, and for a measur-
able function u from the open bounded set Ω into IRn we define the following auxiliary
functions :
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1. The distribution function of u. It is a m : IR →]0, |Ω|[, such that

m(t) = meas {x ∈ Ω : u(x) > t} = |u > t|,

2. The monotone rearrangement of u (denoted by u∗), is the generalized inverse of
m, i.e.

u∗(s) = inf{t ∈ IR : |u > t| 6 s, }, s ∈]0, |Ω|[,

u∗(0) = ess sup
Ω
u.

We also define |u|∗∗ = 1
t

∫ t

0
|u|∗(s) ds for t > 0.

The Lorentz spaces Lp,q(Ω) are defined, for 1 6 p < +∞, 1 6 q < +∞, as

Lp,q(Ω) =
{
u : Ω→ IR measurable :

∫ |Ω|
0

[
t

1
p |u|∗∗(t)

]q dt
t
< +∞

}
,

Lp,∞(Ω) =
{
u : Ω→ IR measurable : sup

t6|Ω|
t

1
p |u|∗∗(t) < +∞

}
,

W 1
0L

p,q(Ω) =
{
u ∈W 1,1

0 (Ω) : |∇u| ∈ Lp,q(Ω)
}
.

We shall also use the usual notation

C0,1(Ω) :=
{
u : Ω→ IR measurable , ∃K > 0; |u(x)− u(y)| 6 K|x− y|, for any x, y ∈ Ω

}

:=
{
u : Ω→ IR : ∃ũ ∈ C0,1(IRn), ũ restricted to Ω is u : ũ|Ω = u

}
.

We define the following operator

L∗ = −div(A∗∇·); A∗ is the adjoint matrix of A.

It is well-known that we can define the Green function associated to those operators and
Dirichlet boundary conditions :

Theorem 2.1 (Green function for L∗ and L)([41], [26],[44])

There exists a unique function GL∗ : Ω× Ω −→ IR such that

1) ∀y ∈ Ω, GL∗(·, y) ∈W 1
0L

n′,∞(Ω) and sup
y
‖GL∗(·, y)‖W 1

0L
n′,∞(Ω) 6 C(Ω), satisfying

∫
Ω
A(x)∇GL∗(x, y)∇ϕdx = ϕ(y),∀ϕ ∈W 1

0L
n,1(Ω).
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2) GL∗(·, y) ∈ C(Ω\{y}) ∩H1(Ω\B(y, r)), ∀r > 0.

3) ∀ϕ ∈ C(Ω) ∩H1
0 (Ω) such that L∗ϕ ∈ C(Ω), we have∫

Ω
GL∗(x, y)L∗ϕ(x) dx = ϕ(y).

4) GL(x, y) = GL∗(y, x), ∀(x, y) ∈ Ω2.

5) Given f ∈ L2(Ω), if u ∈ H1
0 (Ω) verifies Lu = f then

u(x) =
∫

Ω
GL(x, y)f(y) dy.

GL(resp GL∗) is called the Green kernel associated to L (resp L∗) for Dirichlet
conditions.

Remark 1 Statement 3) in Theorem 2.1 is due to G. Stampacchia [41]. Here the defi-
nition of the Green kernel is given according to Stampacchia. But, such as it is pointed
by this author, this definition is stable by approximation (his proof relies on the approxi-
mation of A). Nevertheless, it is already known that it holds for measure data problems,
(here the measure is e.g. the Dirac measure ). In this case the problem stated in 1) has
a solution whenever A(x) ∈ L∞(Ω)n2(see [39], [40], [41], [44]).

Theorem 2.2 is then a combination of all those properties.

Theorem 2.2 (Comparison of Green kernel)[41]
Suppose we have the following operator defined by L1ϕ = −div(A1(x)∇ϕ) such that

A1(x) =
(
a1
ij(x)

)
i,j
, a1

ij ∈ C0,1(Ω),

with the coercivity condition in all the domain Ω,
n∑

i,j=1
a1
ij(x)ζiζj > α|ζ|2,∀ζ ∈ IRn, α > 0

and let GL1 be the Green function associated to L1. Then for any relatively open compact
set Ω′`,0 of Ω there exists a constant K1 = K1(Ω′`,0) > 0 such that

K−1
1 G−∆(x, y) 6 GL1∗(x, y) 6 K1GL∗(x, y), ∀(x, y) ∈ Ω′`,0 × Ω′`,0.

In all this paper, we shall use the notation δ(x) = dist(x, ∂Ω). We shall also use the
following,
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Lemma 2.2 Hardy Inequality ([16, 30],)
Let Ω be of class C0,1. Then, ∃c > 0 such that ∀u ∈ C1

c (Ω)∫
Ω

( |u(x)|
δ(x)

)2
dx 6 c

∫
Ω
|∇u|2 dx.

Moreover, for a > 1, ∃Ca(Ω) > 0, such that ∀u ∈ C1
c (Ω).∫

Ω

|u(x)|
δa

dx 6 Ca(Ω)
∫

Ω
|∇u|δ1−a dx.

Lemma 2.3 (Iteration [22, 8, 14]) Let Φ(ρ) be a non negative and non decreasing
function. Assume that for some non negative constants A, α, β, r0, B with β < α, we
have ∀ r ∈] 0, r0[, ∀ρ ∈] 0, r [

Φ(ρ) 6 A
(
ρ

r

)α
Φ(r) +Brβ.

Then, there exists c > 0 such that

Φ(ρ) 6 c
(
ρ

r

)β
Φ(r) +Bρβ, ∀ 0 < ρ 6 r 6 r0.

3 On the Uniform Hopf Inequality

To solve (SP), our approach will not be based on the notion of sub-solution and super-
solution such as it is done in [25], [27], when A(x) = (aij(x)), aij ∈ C1,α(Ω) (smooth).
We shall apply the following inequality :

Definition 4 (Uniform Hopf Inequality)
We say that the operator L satisfies the Uniform Hopf Inequality if there exists a constant
CΩ,L > 0 such that for all f ∈ L∞+ (Ω), the unique solution v ∈ H1

0 (Ω) of −div(A∇v) = f
in D′(Ω) satisfies

v(x) > CΩ,Lδ(x)
∫

Ω
f(y)δ(y) dy, a.e x ∈ Ω. (3.1)

The inequality (3.1) still holds for (v, f) which can be approximate pointwise almost
everywhere by a sequence of (vn, fn) ∈ H1

0 (Ω)× L∞(Ω) with the same matrix A.

Inequality (3.1) holds true if the coefficients of the matrix A are Lipschitz as it is shown in

Theorem 3.1 ([33], [7]).
Suppose that f ∈ L∞+ (Ω), and consider L1 the operator given in Theorem 2.2. Let v be
a solution of {

L1v = f in Ω,
v = 0 on ∂Ω.
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Then
v(x) > Cδ(x)

∫
Ω
f(y)δ(y) dy, a.e. x ∈ Ω,

where C > 0 is a constant depending on Ω and δ(x) = dist(x, ∂Ω).

Remark 2 (on the proof of Theorem 3.1) In the mentioned references, the proofs are
given for the Laplacian operator they can be modified to hold for the case where A = A1.
An alternative proof can be given using the equivalence of Green functions (see [28]).

Our first result wants to point out that if A is only bounded near the boundary but not
Lipschitz continuous then (3.1) may fail to be true.

Theorem 3.2
There exist a smooth open set Ω ⊂ IR2, a matrix A with bounded coefficients, f ∈ L

3
2 (Ω)

and u ∈ H1
0 (Ω) solution of

∫
Ω
A(x)∇u∇ϕdx =

∫
Ω
fϕ dx (∀ϕ ∈ H1

0 (Ω) ), such that the
Uniform Hopf Inequality fails to be true.

Proof. Consider Ω :=
{
(x, y) ∈ IR2 such that x > 0 and x2 + y2 < 1

}
.

Define the function

v(x, y) = x

(x2 + y2)
1
4
− x := v1(x, y) + v2(x, y),

and the following matrix (already used in Meyers [32]).

A(x, y) := 1
4(x2 + y2)

(
4x2 + y2 3xy

3xy x2 + 4y2

)
.

We have v ∈ H1
0 (Ω). Now, we claim that −div(A∇v) = f > 0 on Ω. Indeed, since

∇v1 =


x2 + 2y2

2(x2 + y2)
5
4

−xy
2(x2 + y2)

5
4

 ,

then

A∇v1 =


2x2 + y2

2(x2 + y2)
5
4

xy

4(x2 + y2)
5
4

 .
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Moreover
∂

∂x

(
2x2 + y2

2(x2 + y2)
5
4

)
= −2x3 + 3xy2

4(x2 + y2)
9
4
,

∂

∂y

(
xy

4(x2 + y2)
5
4

)
= 2x3 − 3xy2

4(x2 + y2)
9
4
.

Consequently, we have
−div(A∇v1) = 0 in Ω. (3.2)

On the other hand, for v2(x, y) = −x, we have

∇v2 =
(
−1
0

)
,

and then

A∇v2 =


− 4x2 + y2

4(x2 + y2)

−3xy
4(x2 + y2)


In a similar way, we have

−div(A∇v2) = 3x
4(x2 + y2) in Ω. (3.3)

Thus, by (3.2)-(3.3) we conclude that

−div(A∇v) = 3x
4(x2 + y2) := f > 0, in Ω.

We have f ∈ L
3
2 (Ω) since, by using polar coordinates, we have that

∫
Ω
|f(x, y)|

3
2 dx dy 6 c

∫ π
2

−π2

∫ 1

0

∣∣∣∣3r cos θ
4r2

∣∣∣∣ 32 r dr dθ
6 c

∫ 1

0
r
−1
2 dr < +∞.

Let us calculate inf
(x,y)∈Ω

v(x, y)
δ(x, y) . We observe that since v(x, y) > 0, then

v(x, y)
δ(x, y) > 0 a.e. on Ω.

By using polar coordinates again, we get

v(x, y) = r cos θ
( 1√

r
− 1

)
.
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Then,
v(r, θ)
δ(r, θ) 6

√
r cos θ −→ 0 as r ↘ 0.

Therefore,
inf

(x,y)∈Ω

v(x, y)
δ(x, y) = 0. (3.4)

Arguing by contradiction, (3.4) infers that the Uniform Hopf Inequality cannot hold in
this case. �

We shall assume that

(H2)


there exists a matrix A1(x) =

(
a1
ij(x)

)
i,j
, x ∈ Ω, witha

1
ij ∈ C0,1(Ω), α-coercive i.e ∀ ξ ∈ IRn (A1(x)ξ, ξ

)
> α|ξ|2, ∀x ∈ Ω,

a1
ij restricted to Ωb coincides with aij , ∀ i, j : aij

∣∣∣
Ωb

= a1
ij .

Here Ω = Ω` ∪ Ωb, Ω` ⊂⊂ Ω.
In Ω, we shall associate to A1 the operator L1 = −div

(
A1(x)∇ ·

)
. The main result of

this section is the following :

Theorem 3.3 Under the above assumptions (H1), and (H2) there exists CΩ,L > 0, such
for any f ∈ L∞+ (Ω), the solution u ∈ H1

0 (Ω) of (1.3) satisfies for a.e. ∀y ∈ Ω

u(y) > CΩ,Lδ(y)
∫

Ω
f(x)δ(x) dx. (3.5)

For its proof, for Ω` ⊂⊂ Ω, we shall consider the open set Ω′`,0 ⊂⊂ Ω such that Ω` ⊂ Ω′`,0.
In addition, for Ωb = Ω\Ω` we consider its subset Ω′b,0 = Ω\Ω′`,0. We shall need the
following lemmas to prove the inequality (3.5).

Lemma 3.1 Under the same assumptions as in Theorem 3.3, and if Ω′`,0 is given as
above, the constant K1 given in Theorem 2.2, is such that K1 = K1(Ω′`,0) > 0 and

K1GL∗(x, y) > GL1∗(x, y), ∀x ∈ Ω′b,0, ∀y ∈ Ω′`,0.

Proof. Let ϕ ∈W 1
0L

n,1(Ω′b,0) and let ϕ̃ its extension to Ω by zero.
Then, ϕ̃ ∈W 1

0L
n,1(Ω). For y ∈ Ωl fixed, let w(x) = K1GL∗(x, y)−GL1∗(x, y), x ∈ Ω′b,0.

Then w ∈ H1(Ω′b,0) and∫
Ω
A(x)∇w · ∇ϕ̃ dx = K1

∫
Ω
A(x)∇GL∗(x, y)∇ϕ̃ dx−

∫
Ω
A(x)∇GL1∗(x, y)∇ϕ̃ dx.
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Since A(x) = A1(x) on Ω′b,0, thanks to Theorem 2.1, we obtain∫
Ω
A(x)∇w · ∇ϕ̃ dx = K1ϕ̃(y)−

∫
Ω′
b,0

A1(x)∇GL1∗(x, y)∇ϕdx, for any y ∈ Ω′`,0

Using again ϕ̃ in the last term and Theorem 2.1∫
Ω
A(x)∇w · ∇ϕ̃ dx = K1ϕ̃(y)−

∫
Ω
A1(x)∇xGL1∗(x, y)∇ϕ̃ dx

= K1ϕ̃(y)− ϕ̃(y) = 0.

Thus, ∫
Ω′
b,0

A(x)∇w · ∇ϕdx = 0. (3.6)

Moreover, its trace verifies that, γ0w(x) = 0 on ∂Ω, and from Theorem 2.2

w(x) = K1GL∗(x, y)−GL1∗(x, y) > 0 for x ∈ ∂Ω′`,0.

Consequently, by the maximum principle, w > 0 on Ω′b,0. �

Corollary 3.1 ( of Theorem 2.2 and Lemma 3.1)
Under the same assumptions as in Theorem 3.3, the constant K1 > 0 found in Lemma
3.1 satisfies

K1GL∗(x, y) > GL1∗(x, y), ∀x ∈ Ω, ∀y ∈ Ω′`,0.

Proof. Since Ω = Ω′b,0 ∪ Ω′`,0 and we have shown that ∀y ∈ Ω′`,0,

w(x) = K1GL∗(x, y)−GL1∗(x, y) > 0, ∀x ∈ Ω′b,0,

and w(x) > 0, ∀x ∈ Ω′`,0, ( from Theorem 2.2), thus, w(x) > 0 on Ω′b,0 ∪ Ω′`,0 = Ω. �

Corollary 3.2 (lower estimates on the subset Ωl)
Let f ∈ L∞+ (Ω), and let u and v in H1

0 (Ω) satisfying Lu = f and L1v = f respectively.
Then, a.e. y ∈ Ω`

1) u(y) > 1
K1

∫
Ω
GL1(y, x)f(x) dx,

2) there exists CΩ,L1 > 0 such that

v(y) =
∫

Ω
GL1(y, x)f(x) dx > CΩ,L1δ(y)

∫
Ω
f(x)δ(x) dx.

In particular,
u(y) > CΩ′

`,0

∫
Ω
f(x)δ(x) dx > 0. (3.7)
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Proof. Let f ∈ L∞+ (Ω). Then from Corollary 3.1, for a.e. y ∈ Ω`, after integrating over
Ω, we have

u(y) =
∫

Ω
GL∗(x, y)f(x) dx > 1

K1

∫
Ω
GL1∗(x, y)f(x) dx = v(y). (3.8)

Recalling that the coefficients of L1 are Lipschitz continuous, we can apply Theorem 3.1
to obtain that ∃CΩ,L1 > 0 such that, for a.e. y ∈ Ω`,

u(y) > v(y) > CΩ,L1δ(y)
∫

Ω
f(x)δ(x) dx. (3.9)

�

Lemma 3.2 (Lower estimates on Ωb near the boundary)
Under the same assumptions as in Theorem 3.3, there exists CΩ,L > 0 such that

u(y) > CΩ,Lδ(y)
∫

Ω
f(x)δ(x) dx, a.e. y ∈ Ωb = Ω\Ω`.

Proof. This procedure is inspired by the method of proof used by Brezis-Cabré[4].
Let Γb := ∂Ω ∪ ∂Ω` = ∂Ωb and introduce the function w ∈ H1(Ω) solution of:

L1w = −div(A1(x)∇w) = 0 in Ωb,
w = 0 on ∂Ω,
w = 1 on ∂Ω`.

Since the coefficients of A = A1 are Lipschitz continuous on Ωb, then by the Hopf strong
maximum principle, there exists C ′Ωb > 0 such that

w(y) > C ′Ωbδ(y), ∀y ∈ Ωb. (3.10)

Now, let us set w(y) =
[
C ′Ωb

∫
Ω f(x)δ(x) dx

]−1
u(y). By the linearity of operator L1 and

since f > 0: 
L1w =

[
C ′Ωb

∫
Ω f(x)δ(x) dx

]−1
L1u > 0 = L1w in Ωb,

w|∂Ωb > w|∂Ωb .

Thus, thanks to the maximum principle, we obtain w > w on Ωb. This means that for
all y ∈ Ωb

u(y) > C ′Ω`C
′
Ωbδ(y)

∫
Ω
f(x)δ(x) dx. (3.11)

Finally, combining (3.11) with relation (3.9), we get

u(y) > Cδ(y)
∫

Ω
f(x)δ(x) dx, a.e. y ∈ Ω.

�
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4 On the singular problem : the case of u−1 as nonlinear
term.

The Uniform Hopf Inequality (UHI) is very useful to derive regularity results for the
singular semilinear problem

(P) =

 −div(A(x)∇u) = a(x)
u

in Ω,
u = 0 on ∂Ω.

An existence and uniqueness results are also proved in [3, 9] for linear operators and
in [18, 19] for non linear operators. The main difference with our results is double.
Indeed, firstly our method to prove the positivity of the solution is different than
the above mentioned papers. For instance, in [3] it is obtained by a monotonicity
result, nevertheless our method of proof can be extended to a general operator as
Lu = −div(A∇u) + B∇u + div(Cu) + a0u, (as it will be presented in the Nada El
Berdan’s thesis). Secondly the additional regularity that we shall obtain in the follow-
ing theorem (the term a

u
∈ H−1(Ω) or the results given in Theorem 5.2 below) is not

mentioned in the above papers.

Theorem 4.1 Let a ∈ L∞+ (Ω), a 6= 0. Then, there exists a unique solution u ∈ H1
0 (Ω)

of (P), such that

i) a

u
∈ L1

loc(Ω) ∩H−1(Ω), u > 0 in Ω,

ii)
∫

Ω
A(x)∇u · ∇ϕdx =

∫
Ω

a(x)ϕ
u

dx, ∀ϕ ∈ H1
0 (Ω).

Proof. Let us start with the uniqueness of u. If u, ū satisfy ii) then by the coercivity
condition on A and choosing ϕ = u− ū;

α

∫
Ω
|∇(u− ū)|2 dx 6

∫
Ω
a(x)

[1
u
− 1
ū

]
(u− ū) dx 6 0.

This implies that, necesarely, u = ū. For the existence part, we introduce the following
regularized problem:

(Pε) =

 Luε = −div(A(x)∇uε) = a

|uε|+ ε
in Ω,

uε = 0 on ∂Ω,

with, ε > 0. The weak (variational) formulation for (Pε) reads

aL(uε, ϕ) :=
∫

Ω
A(x)∇uε · ∇ϕdx =

∫
Ω

a(x)ϕ
|uε|+ ε

dx, ∀ϕ ∈ H1
0 (Ω). (4.1)
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Using the Schauder fixed point theorem (see e.g. [23]), we get the existence of uε. In
addition, if we apply the weak maximum principle [23], we obtain that uε > 0. The
same argument as the used for u ensures that uε is unique.

Estimate on uε: Taking ϕ = uε as test function in (4.1), we can write

aL(uε, uε) =
∫

Ω

auε
uε + ε

dx,

and then
α‖∇uε‖2L2(Ω) 6 ‖a‖L∞

∫
Ω

uε
uε + ε

dx 6 CΩ‖a‖L∞ . (4.2)

Therefore, uε is uniformly bounded in H1
0 (Ω), and then there exists u ∈ H1

0 (Ω) such
that (for a subsequence) uε converges to u a.e.

Now, we shall prove that a

uε
remains in a bounded set of L1

loc(Ω)∩H−1(Ω). By Theorem
2.1 (see also Theorem 9.3 of [41]), we have

uε(x) =
∫

Ω
GL(x, y) a(y)

(uε(y) + ε) dy a.e. x ∈ Ω, (4.3)

where GL is the Green function associated to L as it is defined in section 1.
Let Ω′ be a relatively compact open set in Ω. Let f0(y) = a

uε + ε
χΩ′(y) and consider

the following problem {
−∆w(x) = f0 in Ω
w = 0 on ∂Ω.

This problem has a unique solution w in H1
0 (Ω) ∩ H2(Ω). According to the Uniform

Hopf Inequality (see Theorem 3.1), there exist CΩ,∆ > 0 such that

w(x) > CΩ,∆δ(x)
∫

Ω′

a

uε + ε
δ(y) dy, a.e. x ∈ Ω.

Returning to Theorem 2.1 and to the inequality in Theorem 2.2, then for K = K(Ω′) > 0

K−1w(x) = K−1
∫

Ω
G−∆(x, y)f0(y) dy 6

∫
Ω
GL(x, y)f0(y) dy

6
∫

Ω
GL(x, y) a(y)

uε(y) + ε
dy = uε(x), a.e. x ∈ Ω.

Consequently,

+∞ > uε(x) > K−1w(x) > CΩ,∆δ(x)
∫

Ω′

a

uε + ε
δ(y) dy, a.e. x ∈ Ω′, (4.4)

which yields that a

uε
∈ L1

loc(Ω) and uε > 0 a.e. in Ω. To prove that a
u
∈ L1

loc(Ω), it is
enough to pass to the limit at (4.4), since from Fatou’s Lemma, we get

+∞ > u(x) > CΩ,∆δ(x)
∫

Ω′

a(y)
u(y) dy, a.e. x ∈ Ω′.
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In particular, this implies that inf
0<ε<ε1

∫
Ω′

a

uε + ε
δ(y) dy > 0. We now have

a

uε + ε
−−−→
ε→0

a

u
a.e., on Ω,

and for all Ω′ relatively compact in Ω, since inf
y∈Ω′

δ(y) > 0, then (4.4) yields for a.e. x ∈ Ω′

0 6 a

uε + ε
(x) 6 a

uε
(x) 6 CΩ′

a∫
Ω′

a(x)
uε(x) + ε

(y) dy
6 CΩ′ a(x) < +∞.

Then, by using the Lebesgue dominated convergence theorem, we obtain∫
Ω

a

uε + ε
ψ(x) dx −−−→

ε→0

∫
Ω

a

u
ψ(x) dx, ∀ψ ∈ D(Ω).

Now, we want to show that∫
Ω
A(x)∇u · ∇ψ =

∫
Ω

a

u
ψ, ∀ψ ∈ H1

0 (Ω).

For this we observe that a

uε + ε
belongs to a bounded subset of H−1(Ω)∩L1

loc(Ω) since,

∀ψ > 0, ψ ∈ H1
0 (Ω) we have∫

Ω

aψ

uε + ε
dx =

∣∣∣∣ ∫
Ω
A(x)∇uε · ∇ψ dx

∣∣∣∣ 6 C‖∇uε‖L2(Ω)‖∇ψ‖L2(Ω) 6 C‖∇ψ‖L2(Ω).

But, a

uε + ε
converges to a

u
a.e. Thus by Fatou’s lemma, we deduce (knowing that

|ψ| ∈ H1
0 (Ω) once that ψ ∈ H1

0 (Ω))

sup
ψ∈H1

0
‖∇ψ‖

L2(Ω)=1

∣∣∣∣ ∫
Ω

aψ

u
dx

∣∣∣∣ 6 CΩ < +∞.

This shows that a
u
∈H−1(Ω) and following the property defined by Brezis-Browder ([6]),

aψ

u
∈L1(Ω) for ψ∈H1

0 (Ω)
and also

<
a

u
;ψ >H−1,H1=

∫
Ω

aψ

u
dx, ∀ψ ∈ H1

0 (Ω).

But ∀ψ ∈ D(Ω), ∫
Ω
A(x)∇u · ∇ψ dx =

∫
Ω

a

u
ψ dx.

So, by density, we have

lim
ψn∈D
ψn→ψ

<
a

u
;ψn >=< a

u
;ψ >, ∀ψ ∈ H1

0 (Ω).
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This ends the proof. �

Our next results show that the gradient of the solution is more regular. We start with
the study in the Lp(Ω) spaces.

Theorem 4.2 Assume furthermore that operator L satisfies the Uniform Hopf Inequal-
ity, ∂Ω is C1 and that aij ∈ vmo(Ω). Then, ∀p ∈ [1,∞[, u ∈W 1,p(Ω), and

‖u‖
W 1,p

0 (Ω) 6 C
1
Ω(A, p) ‖a‖∞∫

Ω

a(x)δ(x)
u(x) dx

, (4.5)

for some positive constant C1
Ω(A, p).

Proof. Since L satisfies the Uniform Hopf Inequality, there exists a constant CL > 0
such that we have

0 6 a(x)
uε(x) 6 CL

‖a‖∞

δ(x)
∫

Ω

a(y)δ(y)
(uε + ε)(y) dy

, a.e. x ∈ Ω.

Then, if ψ ∈W 1,p′
0 (Ω) with 1

p′
= 1− 1

p
, ψ > 0, we then have,

0 6
∫

Ω

a(x)
uε(x)ψ(x) dx 6 CL

∫
Ω

a(x)ψ(x)

δ(x)
∫

Ω

a(y)
(uε + ε)(y) dy

dx

6 CL
‖a‖∞∫

Ω

a(y)
(uε + ε)(y) dy

∫
Ω

ψ(x)
δ(x) dx

6 CΩ,L(a)
∫

Ω

ψ(x)
δ(x) dx.

By using the Hardy inequality, we obtain :

0 6
∫

Ω

a(x)
uε(x)ψ(x) dx 6 CΩ,L(a)‖∇ψ‖Lp′ (Ω), (4.6)

for some positive constant CΩ,L(a). Therefore, we deduce
a

uε + ε
belongs to a bounded set of W−1,p(Ω).

From the regularity result applied to the associed linear equation, the unique solution
uε of (Pε) is in W 1,p(Ω) (see Simader [40], Auscher-Quafsaoui [1] and Byun [5]) and

‖∇uε‖Lp(Ω) 6 CΩ‖
a

uε + ε
‖W−1,p(Ω) 6 CΩ

‖a‖∞∫
Ω

a(y)δ(y)
uε + ε

dy

6 C(Ω, a). (4.7)
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(
Notice that

lim
ε1→0

[
inf

0<ε<ε1

∫
Ω

a(y)δ(y)
uε + ε

dy

]
>
∫

Ω

a(y)δ(y)
u(y) dy > 0

which implies the uniform estimates in (4.7)
)
.

Therefore, ∇uε is bounded in Lp(Ω)n, and since uε converges to u weakly in H1
0 (Ω), thus

∇uε converges weakly to ∇u in Lp(Ω)n. Then

‖∇u‖Lp(Ω) 6 lim
ε→0

inf ‖∇uε‖Lp(Ω)

6 lim
ε→0

inf CΩ‖a‖∞∫
Ω

a(y)δ(y)
uε + ε

dy

= CΩ(a).

This gives relation (4.5). �

Theorem 4.3 Assume that aij ∈ C0,1(Ω), ∀i, j and ∂Ω is C1,1. Then the solution sat-
isfying ii) of Theorem 4.1, belongs to W 1

0 bmor(Ω).

Proof. First let us notice that according to Theorem 3.1, the operator L satisfies the
Uniform Hopf Inequality. Therefore the uniform estimates given by (4.6) and Theorem
4.2 hold true. We will prove that ∇u ∈ bmor(Ω)n. For this statement, we will partly use
some arguments from Campanato [8]. We shall establish two new a priori estimates:

i) Interior local estimate:

Lemma 4.1 For any open smooth sets Ω0, Ω̃0 with Ω0 ⊂ Ω̃0 and Ω̃0 ⊂ Ω, for all
1 6 p <∞, there exists a constant C(p; Ω̃0) such that:

‖D2uε‖Lp(Ω0) 6 C(p; Ω̃0).

Proof. Consider δ̃ = dist(Ω̃0; ∂Ω) and introduce function θ0 be such that:
θ0 ∈ C∞c (Ω̃0), 0 6 θ0 6 1 and supp θ0 ⊂ Ω̃0 ⊂ Ω,

θ0 = 1 on Ω0, |Dαθ0| 6
M

δ̃|α|
, α = (α1, . . . , αn) ∈ Nn, |α| = α1 + . . .+ αn.

Let vε = uεθ0 ∈ H1
0 (Ω). Then vε verifies the local problem:

(Pl) :

 −div(A(x)∇vε) = aθ0
uε + ε

− div(A(x)uε∇θ0) in Ω̃0,

vε = 0 on ∂Ω̃0.
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Let Fε := aθ0
uε + ε

−div(A(x)uε∇θ0), and let U0 = A(x)∇θ0. Then Fε = aθ0
uε + ε

+U0∇uε+

uεdiv(U0), support U0 ⊂ Ω̃0 \ Ω0 and

‖div(U0)‖L∞ + ‖U0‖L∞ 6
M

δ̃2
= M(Ω̃0).

Therefore,using estimates (4.7)

‖Fε‖Lp(Ω̃0) 6 Ca(Ω̃0)
(
‖θ0

δ̃
‖Lp(Ω) + C(Ω, a)

)
. (4.8)

By the well known Agmon-Douglis-Nirenberg regularity results we have,

‖vε‖W 2,p(Ω̃0) 6 CΩ(p)‖Fε‖Lp(Ω̃0). (4.9)

Since Dαvε = Dαuε on Ω0, then relation (4.9) leads finally to

‖uε‖W 2,p(Ω0) 6 C‖vε‖W 2,p(Ω̃0) 6 Cp(Ω̃0).

�

As a consequence of Lemma 4.1 on has,

Lemma 4.2 For all p > 1, for all open smooth set Ω0 relatively compact in Ω, the
sequence uε remains in a bounded set of W 2,p(Ω0). Moreover,the sequence remains in a
bounded set of C1(Ω0).

Proof. It is a consequence of Lemma 4.1 and the Sobolev embedding,

W 2,p(Ω0) ↪→ C1(Ω0), p > n.

�

ii) Estimates in a neighborhood of the boundary: Since we assume that Ω is of
class C1,1, for every x ∈ ∂Ω, we can find, an open neighborhood of x denoted by Ω0,1(x)
and a bijection

τ : Ω0,1 = Ω0,1 −→ I+(1),

such that

τ ∈ C1,1 (Ω0,1(x))n , τ−1 ∈ C1,1
(
I+(1)

)n
and τ(∂Ω ∩ Ω0,1) = Γ1,

where
I+(1) :=

{
x = (x′, xn) ∈ IRn such that |x| < 1 and xn > 0

}
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and
Γ1 :=

{
x = (x′, 0) : |x′| 6 1

}
.

This means that we can continuously deform the boundary to an hyperplane and that
this transformation is regular. After this transformation the problem (Pε) reads

τ(Pε) :

 −div(B(y)∇wε) = ã(y)
wε + ε

in I+(1),
wε = 0 on Γ1,

with B(y) ∈ C0,1
(
I+(1)

)
, ã(y) ∈ L∞(I+(1)) and ∀ζ = (ζ1, · · ·, ζn) ∈ IRn,∃ν > 0 such

that
∑
i,j

bijζiζj > ν|ζ|2. On each ball I+(0, r) = I+(r), more generally, for x0 ∈ I+(1),

we set

I+(x0, r) :=
{
x ∈ I+(1) : |x− x0| < r

}
, Γr =

{
x ∈ I+(r) : xn = 0

}
,

I(x0, r) is the ball of radius r centered at x0.
We will construct two Dirichlet problems with constant coefficients such that the sum
of the two solutions of these two problems coincides with wε.
Let us fix 0 < R < 1, x0 ∈ I+(R), R closed to 1. The first problem will be defined
without the right-hand side of τ(Pε), and having the same trace of wε, i.e.,

τ(Pε)1 :
{
−div(B(x0)∇w1

ε) = 0 in I+(x0, r),
w1
ε = wε on ∂I+(x0, r),
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Here, 0 < r 6
1−R

2 .

Theorem 4.4 Campanato [pages 338, 352]
τ(Pε)1 admits a positive solution w1

ε with∫
I+(x0;r)

|∇w1
ε |dx 6 cB

∫
I+(x0;r)

|∇wε|2dx 6 c(Ω, a) (independent of x0, and r).

There exists c(ν) > 0, ∀ 0 < ρ < r such that

1. If ΓR ∩ I(x0, r) = ∅ then

‖∇w1
ε − {∇w1

ε}ρ‖2L2(I+(x0,ρ)) 6 c(ν)
(
ρ

r

)n+2
‖∇w1

ε − {∇w1
ε}r‖2L2(I+(x0,r)). (4.10)

2. If ΓR ∩ I(x0, r) 6= ∅ then∫
I+(x0;ρ)

∣∣∣Djw
1
ε

∣∣∣2dx 6 c(ν)
(
ρ

r

)n+2 ∫
I+(x0;r)

∣∣∣Djw
1
ε

∣∣∣2dx, j = 1, . . . , n− 1, (4.11)

∫
I+(x0;ρ)

∣∣∣Dnw
1
ε −

{
Dnw

1
ε

}
ρ

∣∣∣2 6 c(ν)
(
ρ

r

)n+2 ∫
I+(x0;ρ)

∣∣∣Dnw
1
ε −

{
Dnw

1
ε

}
r

∣∣∣2dx.
(4.12)

Here Dj denotes the partial derivative in the xj-direction, j = 1, . . . n and {·}ρ is the
average over I+(x0, ρ).

Proof. The problem τ(Pε)1 is identical to the one considered by Campanato [8]. There-
fore, his proof can be reproduced line by line to get (4.10),

(
this estimate is proven in

p.338 by Campanato [8], see relation (8.12) for the local estimate, observing in that case
I(x0, r) = B(x0; r) ⊂ I+(1)

)
.

The second set of relations (4.11) and (4.12), are given in page 352 (Corollary I.11 and
Lemma II.11) of Campanato [8].

�

Now, we construct the second problem as follows:

τ(Pε)2 :=

 −div(B(x0)∇w2
ε) = ã(y)

wε + ε
+ div((B(y)−B(x0))∇wε) in I+(x0, r),

w2
ε = 0 on ∂I+(x0, r).
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Theorem 4.5
τ(Pε)2 admits a unique solution w2

ε ∈ H1
0 (I+(x0; r)) and for all λ ∈ [0, n[,

‖∇w2
ε‖2L2(I+(x0;r)) 6 c

∫
I+(x0;r)

ã(y) dy + rλ+2CΩ(λ, a),

for some c > 0, which depends only on Ω.

Proof. This problem is well-posed since the right hand side is in H−1(I+(x0, r)) and
admits a unique solution w2

ε ∈ H1
0 (I+(x0, r)) (by using Lax-Milgram Theorem). Note

that we have wε = w1
ε + w2

ε .

Estimate on ∇w2
ε : By multiplying τ(Pε)2 by w2

ε , we get

ν

∫
I+(x0,r)

|∇w2
ε |2 dy 6

∫
I+(x0,r)

ã(y)w2
ε(y)

wε + ε
dy +

∫
I+(x0,r)

(B(y)−B(x0))∇wε∇w2
ε dy.

Since w2
ε = wε − w1

ε and w1
ε > 0 then w2

ε 6 wε the Lipschitz continuity condition on B,
Cauchy-Schwartz inequality and Young’s inequality, yield

∫
I+(x0,r)

|∇w2
ε |2 dy 6 c

∫
I+(x0,r)

ã(y)w2
ε

wε + ε
dy +

∫
I+(x0,r)

cr|∇wε.∇w2
ε | dy,

6 c

∫
I+(x0,r)

ã(y) dy + c2r2

2

∫
I+(x0,r)

|∇wε|2 dy + 1
2

∫
I+(x0,r)

|∇w2
ε |2 dy.

Thus ∫
I+(x0;r)

|∇w2
ε |2 dy 6 c

∫
I+(x0;r)

ã(y) dy + cr2
∫
I+(x0;r)

|∇wε|2 dy.

Next, we want to show that∫
I+(x0;r)

|∇wε|2dx 6 rλcΩ(λ, a). (4.13)

From relation (4.6) of the proof of Theorem 4.2, we have proved that

‖∇uε‖Lp(Ω) 6 CΩ(p, a), ∀p ∈ [1,+∞[.

Lemma 4.3 Let λ ∈ [0, n[. Then, Lp(Ω) ↪→ L2,λ(Ω) provided for p > 2n
n− λ

. Moreover,
there exists C(Ω) > 0 such that

sup
x∈Ω
r>0

[
r−λ|v|L2(B(x,r)∩Ω)

]
6 C(Ω)|v|Lp(Ω).
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Proof. Setting Ω0,r = B(x, r) ∩ Ω, we have

r−λ
∫

Ω∩B(x,r)
|v|2 dx = r−λ

∫
Ω
|v|2χΩ0,r dx 6 r

−λ‖v‖2Lp(Ω)|Ω0,r|
p−2
p 6 c(Ω)‖v‖2Lp(Ω).

Thus,
sup
r>0
x0∈Ω

(r−λ
∫

Ω∩B(x,r)
|v|2 dx) 6 c(Ω)‖v‖2Lp(Ω).

�

Using Lemma 4.3 and relation (4.6), we obtain that

‖∇uε‖2L2(Ω∩B(x,r)) 6 r
λCΩ(n, λ, a). (4.14)

By applying the homeomorphism function τ , we obtain

‖∇wε‖2L2(I+(x0;r)) 6 r
λCΩ(λ, a). (4.15)

Therefore,
‖∇w2

ε‖2L2(I+(x0;r)) 6 c
∫
I+(x0;r)

ã(y) dy + rλ+2CΩ(λ, a). (4.16)

�

Next, we want prove that for all R < 1

sup
∀x0∈I+(R)
∀ρ>0

ρ−n‖∇wε − {∇wε}ρ‖2L2(I+(x0,ρ)) 6 C(R) <∞. (4.17)

Let x0 ∈ I+(R), se set δ0 = 1−R
2 with 0 < R < 1. We have two cases to be analyzed :

1st case : ρ > 1−R
2

In this case, we have for any x0

ρ−n
∥∥∥∇wε − {∇wε}ρ∥∥∥2

L2(I+(x0;ρ))
6
( 2

1−R

)n
‖∇wε‖L2(I+(1)) 6 cΩ

‖a‖∞
(1−R)n .

(4.18)

2nd case : 0 < ρ <
1−R

2 . Let r be such 0 < ρ < r 6
1−R

2 . We have two subcases : either
ΓR ∩ I(x0; r) = ∅ or ΓR ∩ I(x0; r) 6= ∅.

(a) For the first case, ΓR ∩ I(x0; r) = ∅, we first write wε = w1
ε + w2

ε and apply
estimate (4.10) of Theorem 4.4 to derive∥∥∥∇wε − {∇wε}ρ∥∥∥2

L2(I+(x0;ρ))
6 c(ν)

(
ρ

r

)n+2 ∥∥∥∇w1
ε −

{
∇w1

ε

}
r

∥∥∥2

L2(I(x0;r))

+
∥∥∥∇w2

ε −
{
∇w2

ε

}
ρ

∥∥∥2

L2(I(x0;ρ))
.
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x0
x0

1−1 R−R x0

ρ
1st case

2nd case

x′ ∈ IRN−1

xN

ΓR

I+(R)

Applying Theorem 4.5 and the decomposition w1
ε = wε − w2

ε ,

‖∇wε − {∇wε}ρ‖2L2(I+(x0,ρ)) 6 c(ν)
(
ρ

r

)n+2
‖∇wε − {∇wε}r‖2L2(I+(x0,r))

+rλ+2CΩ(λ, a) + 2
∫
I+(x0,r)

ã(y) dy.

Choosing λ = n− 1, one has for all 0 < ρ < r

‖∇wε−{∇wε}ρ‖2L2(I+(x0,ρ)) 6 c(ν)
(
ρ

r

)n+2
‖∇wε−{∇wε}r‖2L2(I+(x0,r))+c(Ω)rn.

(4.19)
Applying the iteration Lemma 2.3 (see [8] [14]) on (4.13) with

Φ(ρ) = ‖∇wε − {∇wε}ρ‖2L2(I+(x0,ρ)),

we get

‖∇wε − {∇wε}ρ‖2L2(I+(x0,ρ)) 6 c
(
ρ

r

)n
‖∇wε − {∇wε}r‖2L2(I+(x0,r)) + c(Ω)ρn.

Dividing by ρn, we obtain

1
ρn

∥∥∥∇wε − {∇wε}ρ∥∥∥2

L2(I+(x0,ρ))
6

c

rn
∥∥∇wε∥∥∥2

L2(I+(1))
+ c(Ω). (4.20)
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(b) For the second case, ΓR ∩ I(x0; r) 6= ∅, we need to use relation (4.11) of
Theorem 4.4 by distinguishing the xj-direction, j 6 n− 1 and xn-direction.
For j = 1, . . . , n− 2, since wε = w1

ε + w2
ε , we have∫

I+(x0;ρ)
|Djwε|2dx 6 2

∫
I+(x0;ρ)

|Djw
1
ε |2dx+ 2

∫
I+(x0;ρ)

|Djw
2
ε |2dx (4.21)

Using Theorem 4.4 relation (4.11) and Theorem 4.5, we derive from this last relation
that∫
I+(x0;ρ)

|Djwε|2 6 c

(
ρ

r

)n+2 ∫
I+(x0;r)

|Djw
1
ε |2dx+ crn

6 c

(
ρ

r

)n+2 ∫
I+(x0;r)

|Djwε|2dx+ c

(
ρ

r

)n+2 ∫
I+(x0;r)

|Djw
2
ε |2dx+ crn.

(4.22)

Using again Theorem 4.5 with relation (4.21), we deduce∫
I+(x0;ρ)

|Djwε|2dx 6 c
(
ρ

r

)n+2 ∫
I+(x0;r)

|Djwε|2dx+ crn. (4.23)

This last relation is valid for all 0 < ρ < r we may appeal the iteration lemma (see [14],
[38]), to derive ∫

I+(x0;ρ)
|Djwε|2dx 6 c

(
ρ

r

)n ∫
I+(x0;r)

|Djwε|2dx+ c.ρn (4.24)

Thus

ρ−n
∫
I+(x0;ρ)

∣∣∣Djwε −
{
Djwε

}
ρ

∣∣∣2dx 6 ρ−n ∫
I+(x0;ρ)

|Djwε|2 6 c
1
rn

∫
I+(1)

∣∣Djwε
∣∣2dx+ c.

(4.25)
In the xn-direction, we have from Theorem 4.4, relation (4.12) and Theorem 4.5 with
λ = n− 1, for all 0 < ρ < r

∫
I+(x0;ρ)

∣∣∣Dnwε −
{
Dnwε

}
ρ

∣∣∣2 6
∫
I+(x0;ρ)

∣∣∣Dnw
1
ε −

{
Dnw

1
ε

}
ρ

∣∣∣2dx+
∫
I+(x0;ρ)

∣∣∣Dnw
2
ε

∣∣∣2dx
6 c

(
ρ

r

)n+2 ∫
I+(x0;r)

∣∣∣Dnw
1
ε −

{
Dnw

1
ε

}
r

∣∣∣2dx+ crn

6 c

(
ρ

r

)n+2 ∫
I+(x0;r)

∣∣∣Dnwε −
{
Dnwε

}
r

∣∣∣2dx. (4.26)

Thus, we may appeal the iteration Lemma 2.3 with Φ(ρ) =
∫
I+(x0;ρ)

∣∣∣Dnwε−
{
Dnwε

}
ρ

∣∣∣2dx
to derive

ρ−n
∫
I+(x0;ρ)

∣∣∣Dnwε −
{
Dnwε

}∣∣∣2dx 6 c

rn

∫
I+(1)

|Dnwε|2dx+ c. (4.27)
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In all the cases, from relations (4.20), (4.25), (4.27), there exists a constant c , ∀ 0 < ρ <
r, for all x0 ∈ I+(R)

ρ−n
∥∥∥∇wε − {∇wε}ρ∥∥∥2

L2(I+(x0;ρ))
6 c

1
rn
∥∥∇wε∥∥2

L2(I+(1)) + c, (4.28)

which infer that

sup
ρ>0, x0∈I+(R)

ρ−n
∥∥∥∇wε − {∇wε}ρ∥∥∥2

L2(I+(x0;ρ))
6

c

(1−R)n <∞.

This ends the proof of (4.17). �

Applying τ−1 on relation (4.17), we derive that

uε remains in a bounded set of W 1bmor
(
τ−1(I+(R)

))
for all R < 1.

In the local estimate, we have proved that ∇uε ∈ bmor(Ω0)n, ∀Ω0 ⊂⊂ Ω, and in the esti-
mate in a neighborhood of the boundary τ−1(I+(R)

)
= Ω0,R(x) for all R < 1, we proved

that ∇uε ∈ bmor(Ω0,R(x))n with x ∈ ∂Ω. Collecting both results on local estimates and
boundary estimates, we can conclude as in Campanato [8] that∇uε remains in a bounded
set of bmor(Ω)n. This implies that uε belongs to a bounded set of W 1

0 bmor(Ω). This
shows that u ∈W 1

0 bmor(Ω). �

5 Case where the right hand side is a(x)u−m(x), m > 0

In this paragraph, we want to discuss the existence and the regularity of solution for the
following problem {

Lu = −div(A(x)∇u) = a(x)u−m(x) in Ω
u = 0 on ∂Ω.

As we shall see the regularity of the solution relies not only on the value of m but also
on the regularity of the coefficients of A(x) = (aij(x))i,j the domain is still a Lipschitz
one. For an alternative proof see also [3]. More precisely, we want to show :

Theorem 5.1 (Existence)
Let a ∈ L∞+ (Ω), m > 0, and let A(x) = (aij(x))i,j be an α-coercive matrix with bounded
coefficients. Then there exists a positive function u ∈ H1

loc(Ω) such that

1) u ∈ Lq(Ω), q = 2∗

2 (m+ 1),
[
2∗ is the Sobolev exponent

]
, a

um
∈ L1

loc(Ω), and

∫
Ω
|u(x)|q dx 6 CΩ

(‖a‖∞
α

) 2∗
2
.
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2) ∀ψ ∈ D(Ω),
∫

Ω
A(x)∇u ·∇ψ dx =

∫
Ω

a(x)ψ(x)
um(x) dx, and u

m+1
2 ∈ H1

0 (Ω). Moreover,∫
Ω
|∇u|2um−1 dx 6

‖a‖∞
αm

(
m+ 1

2

)2
.

In the special case of 0 < m 6 1, then a

u
∈ L1(Ω, δ) and u ∈ H1

0 (Ω).

Proof. Let ε > 0. Then, there exists a non negative function uε ∈ H1
0 (Ω) ∩ L∞(Ω)

satisfying ∫
Ω
A(x)∇uε · ∇ϕdx =

∫
Ω

a(x)ϕ(x)
umε + ε

dx, ∀ϕ ∈ H1
0 (Ω). (5.1)

Then, one has the following a priori estimates∫
Ω
|∇(u

m+1
2

ε )|2 dx 6 ‖a‖∞
αm

(
m+ 1

2

)2
, (5.2)

and there exists CΩ > 0, such that

∫
Ω
|uε|q dx 6 CΩ

(‖a‖∞
α

) 2∗
2

(5.3)

with q = 2∗

2 (m+ 1), again [2∗ is the Sobolev exponent].
Indeed, for the first inequality, we choose ϕ = umε as a test function and we use the
coercivity condition on A to derive that

mα

∫
Ω
∇uε · ∇umε dx 6

∫
Ω
A(x)∇uε · ∇umε dx =

∫
Ω

a(x)umε
umε + ε

6 ‖a‖∞.

Therefore, ∫
Ω
|∇uε|2um−1

ε dx 6
‖a‖∞
αm

.

Consequently,∫
Ω
|∇(u

m+1
2

ε )|2 dx =
(
m+ 1

2

)2 ∫
Ω
|∇uε|2um−1

ε dx 6
(
m+ 1

2

)2 ‖a‖∞
αm

. (5.4)

While for the second inequality, we shall set vε = u
m+1

2
ε and we have

∫
Ω
|uε|q dx =

∫
Ω
|vε|2

∗
dx 6 CΩ

(∫
Ω
|∇vε|2 dx

) 2∗
2
6 CΩ

(‖a‖∞
αm

) 2∗
2
(
m+ 1

2

)2
.

Using the Rellich-Kondrachov compactness, we may assume that there exists v ∈ H1
0 (Ω)

such that v > 0 and vε(x) −→ v(x) a.e. in Ω. Then,

v
2

m+1
ε = uε −→ v(x)

2
m+1 = u(x), a.e. and vε −→ v weakly in H1

0 (Ω).
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So, ∫
Ω
|∇v(x)|2 dx 6 ‖a‖∞

αm

(
m+ 1

2

)2
.

By Fatou’s lemma, we have from the estimate (5.5)

∫
Ω
|u|q dx 6 CΩ

(‖a‖∞
αm

) 2∗
2
(
m+ 1

2

)
. (5.5)

Then we deduce from the Theorem 2.2 that for all open set Ω0 relatively compact in Ω,
we have for a.e. y ∈ Ω0

uε(y) > C ′Ω0

∫
Ω0

a(x)δ(x)
umε + ε

dx > 0. (5.6)

We know from the Egorov theorem that there is a set B in Ω0 of positive measure on
which sup

y∈B
sup
ε>0

uε(y) = M is finite. Thus, there is a constant C(Ω0) > 0 such that ∀ε > 0

∫
Ω0

a(x)δ(x)
umε + ε

dx 6 C(Ω0). (5.7)

By Fatou’s lemma, we deduce

0 <
∫

Ω0

a(x)
um(x)δ(x) dx 6 C(Ω0) < +∞. (5.8)

• If 0 < m 6 1, we can choose ϕ = uε as a test function and get

α

∫
Ω
|∇uε|2 dx 6

∫
Ω
A(x)(∇uε)2 dx =

∫
Ω

a(x)uε
umε + ε

6 ‖a‖∞
∫

Ω
u1−m
ε dx.

This implies that∫
Ω
|∇uε|2 dx 6

‖a‖∞
α

∫
Ω
u1−m
ε dx 6 C(Ω, a, α),

(
since 0 6 1−m <

2∗

2 (m+ 1)
)
.

This and (5.7) yield that u ∈ H1
0 (Ω) and that uε converges weakly to u in H1

0 (Ω).

• If m > 1, then from (5.7) and (5.8), we have

λ0 = inf
ε<ε1

∫
Ω0

a(x)δ(x)
umε (x) + ε

dx > 0, for some ε1 > 0.

From (5.4) and (5.6), we have

‖a‖∞
α
>
∫

Ω0
|∇uε|2um−1

ε dx > C ′Ω0
m−1

λm−1
0

∫
Ω0
|∇uε|2 dx. (5.9)



Optimal regularity in bounded mean oscillation for singular problems 29

We then deduce that

∫
Ω0
|∇uε|2 dx 6 CΩ0 < +∞,

and jointly with the estimate on the Lq norm of uε, we deduce that uε remains in a
bounded set of H1

loc(Ω). Therefore, since for all ψ ∈ D(Ω), we have

lim
ε→0

∫
Ω

a(x)ψ(x)
umε (x) + ε

dx =
∫

Ω

a(x)ψ(x)
um(x) dx

∀ Ω0 ⊂⊂ Ω, recalling that uε(y) > C ′Ω0
λ0 > 0, and uε converges weakly to u in H1(Ω0)

for all Ω0 ⊂⊂ Ω, we get the statement 2) of the theorem.

�

Remark 3 (the uniqueness of uε and u.)

The function uε is unique since the mapping t→ a(x)
tm + ε

is decreasing and the regularity
of uε allows at to choose ϕ = uε − uε as a test function whenever uε and uε are two
differents solutions. The same remarks holds for u when 0 < m 6 1.

Next, we want to study the regularity of the function u = lim uε constructed in Theo-
rem 5.1.

Theorem 5.2 (regularity)
Assume that the operator L satisfies the Uniform Hopf Inequality. Then, the function
u = lim uε satisfies

1) a

um
∈ L1(Ω; δ) and u(y) > CΩδ(y)

∫
Ω

aδ

um
(x) dx for a.e. y ∈ Ω.

2) For all m > 1, ∫
Ω
|∇u|2δm−1 dx 6 C ′Ω

‖a‖∞

mα

(∫
Ω

aδ

um
(x) dx

)m−1 .

In particular, u ∈W 1,2(Ω; δm−1).

3) Assume that aij ∈ vmo(Ω) ∩ L∞(Ω) and ∂Ω is C1, then

a) if 0 < m 6 1, then u ∈W 1,p
0 (Ω) for all 1 6 p < +∞,

b) if 1 < m < 2, then u ∈W 1
0L

1
m−1 ,∞(Ω).

4) Assume that aij ∈ C0,1(Ω) and ∂Ω is C1,1. Then, if 0 < m 6 1, we have

u ∈W 1
0 bmor(Ω).
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Proof. By Fatou’s lemma, we have

lim
ε

inf
∫

Ω

aδ

umε + ε
(x) dx >

∫
Ω

aδ

um
(x) dx > 0, since a 6= 0, (5.10)

and u(x) < +∞ a.e. On the other hand, since L satisfies the Uniform Hopf Inequality,
we get

uε(x) > CΩδ(x)
∫

Ω

aδ

umε + ε
(y) dy. (5.11)

Relations (5.10) and (5.11) with the fact that uε(x) converges to u(x) a.e., infers state-
ment 1).

Now combining this last inequality with (5.4), one has, for m > 1,

mαCm−1
Ω

(∫
Ω

aδ

umε + ε
(y) dy

)m−1 ∫
Ω
|∇uε|2δm−1 dx 6 ‖a‖∞. (5.12)

Thanks to (5.10) and (5.12), we deduce that uε remains in a bounded set ofW 1,2(Ω; δm−1) =
{ϕ ∈ L2(Ω; δm−1) :

∫
Ω
|∇ϕ|2δm−1 dx < +∞}. Therefore, uε converges weakly to u in

W 1,2(Ω; δm−1) and from relation (5.12), we then have

mαCm−1
Ω

(∫
Ω

aδ

um
(y) dy

)m−1 ∫
Ω
|∇u|2δm−1 dx 6 ‖a‖∞. (5.13)

This proves the second statement.

To prove 3.a), let us show that a

umε + ε
∈ W−1,p(Ω) with 1 < p < +∞. If 0 < m 6 1,

one has from (5.11), by taking ϕ ∈W 1,p′
0 (Ω), 1

p
+ 1
p′

= 1, ϕ > 0,

0 6
∫

Ω

a

umε + ε
ϕ dx 6

C0
Ω‖a‖∞(∫

Ω

aδ

umε + ε
dy

)m ∫
Ω

ϕ

δm
dx 6 C1

Ω

(∫
Ω

ϕ

δm
dx

)
. (5.14)

If 0 < m 6 1, we have 1
δm

= 1
δ
δ1−m 6 CΩ

1
δ
, so the Hardy inequality leads to

0 6
∫

Ω

a

umε + ε
ϕ dx 6 C1

Ω

∫
Ω

ϕ

δ
dx 6 C2

Ω

∥∥∥∥ϕδ
∥∥∥∥
Lp′ (Ω)

6 C‖∇ϕ‖W 1,p′ (Ω), p
′ > 1,

which implies that ∥∥∥∥ a

umε + ε

∥∥∥∥
W−1,p(Ω)

6 C(p) uniformly in ε.

Now, to prove 3.b), let us show that a

umε + ε
∈W−1L

1
m−1 ,+∞(Ω), withW−1L

1
m−1 ,+∞(Ω)

being the dual of W 1
0L

1
m−1 ,+∞(Ω).
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If 1 < m < 2, we deduce from relation (5.11) and Hardy inequality with weights (see
statement 2, section 1) ∀ϕ ∈ C1

c (Ω)

0 6
∫

Ω

a

umε + ε
|ϕ| dx 6 C ′Ω

∫
Ω
|ϕ|δ−m dx 6 C ′Ω

∫
Ω
|∇ϕ|δ1−m dx

6 C ′Ω|∇ϕ|Lnm,1(Ω)‖δ1−m‖
L

1
m+1 ,∞(Ω)

, nm = 1
2−m,

according to Diáz-Rakotoson ([16], p.53-54), δ1−m ∈ L
1

m−1 ,+∞(Ω) Thus,
a

umε + ε
∈W−1L

1
m−1 ,∞(Ω).

Now, we apply the regularity result to uε satisfying −div(A(x)∇uε) = a

umε + ε
.

If 1 < m < 2,
‖∇uε‖

L
1

m−1 ,∞(Ω)
6 CΩ‖δ1−m‖

L
1

m−1 ,∞(Ω)
< +∞.

If 0 < m 6 1, for 1 < p < +∞,

‖∇uε‖Lp(Ω) 6 CΩ(p) < +∞.

Finally, for statement 4), if aij ∈ C0,1(Ω), then uε remains in a bounded set ofW 1bmor(Ω).
Indeed, we write a

umε + ε
= a

uε + ε
· uε + ε

umε + ε
= aε
uε + ε

. We have

0 6 aε = a · uε + ε

umε + ε
6 ‖a‖∞u1−m

ε 6 CΩ.

If 0 < m 6 1, since uε remains in a bounded set of W 1,p
0 (Ω), p > n according to

statement 3.a), thus uε ∈W 1,p
0 (Ω), ∀p < +∞ and satisfies

−div(A(x)∇uε) = aε
uε + ε

, (5.15)

with aε remaining in a bounded set of L∞(Ω). Thus, we conclude (following the bmor(Ω)
result previously proved) that the solution uε of (5.15) is in a bounded set ofW 1

0 bmor(Ω).

�
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