
Potential symmetry properties of a family of
equations occuring in ice sheet dynamics

J. I. Díaz (+) and R. J. Wiltshire (*)
(+) Departamento de Matemática Aplicada, Facultad de Matemáticas,

Universidad Complutense de Madrid,
28004-Madrid, Spain

(*) The Division of Mathematics and Statistics,
The University of Glamorgan,

Pontypridd CF37 1DL, Great Britain

June 2, 2008

Abstract

In this paper we derive some similarity solutions of a nonlinear equa-
tion associated with a free boundary problem arising in the shallow-water
approximation in glaciology. In addition we present a classical potential
symmetry analysis of this second order non-linear degenerate parabolic
equation related to non-Newtonian ice sheet dynamics in the isother-
mal case. After obtaining a general result connecting the thickness func-
tion of the ice sheet and the solution of the nonlinear equation (without
any unilateral formulation), a particular example of a similarity solution
to a problem formulated with Cauchy boundary conditions is described.
This allows us to obtain several qualitative properties on the free moving
boundary in presence of an accumulation-ablation function with realistic
physical properties.
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1 A model for ice sheet dynamics

In recent years there has been much interest on modelling ice sheet dynam-
ics especially because of its importance in the understanding of global climate
change, global energy balance and circulation models. Although various phys-
ical theories for large ice sheet motion have been presented there exists still
many open questions related to its mathematical treatment. In this paper we
consider an obstacle formulation of slow, isothermal, one dimensional ice slow
on a rigid bed due to FOWLER 1992.
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The model describing the ice sheet dynamics is formulated in terms of an
obstacle problem associated with a one dimensional non-linear degenerate dif-
fusion equation (see CALVO et al. 2002). The original strong formulation can
be stated in the following terms: let T > 0, L > 0 be positive �xed real num-
bers and let 
 = (�L;L) be an open bounded interval of IR (a su¢ ciently
large, �xed spatial domain). Given an accumulation/ablation rate function
a = a(x; t) and a function f(x; t) (a sliding velocity, eventually zero) de�ned on
Q = (0; T )� (�L;L) (a large, �xed, parabolic domain) and an initial thickness
h0 = h0(x) � 0 (bounded and with h0(x) > 0 on its support I(0) � 
), �nd two
curves S+; S_ 2 C0([0; T ]), with S_(t) � S+(t), I(t) := (S_(t); S+(t)) � 

for any t 2 [0; T ], and a su¢ ciently smooth function h(x; t) de�ned on the set
QT :=

[
t2(0;T )

I(t) such that

(SF ) :=

8>>><>>>:
ht =

h
hn+2

n+2 jhxj
n�1hx � fh

i
x
+ a in QT ;

h = (h
n+2

n+2 jhxj
n�1hx � fh) = 0; on fS_(t)g [ fS+(t)g; t 2 (0; T );

h = h0 on I(0);

and h(x; t) > 0 on QT . We recall that n denotes the, so called, Glen exponent,
and that several constitutive assumptions are admitted, the most relevant case
corresponds to n = 3 (see, for example FOWLER 1992):
Notice that, for each �xed t 2 [0; T ], I(t) = (S_(t); S+(t)) = fx 2 
 :

h(x; t) > 0g denotes the ice covered region. The curves S�(t) are called the
interface curves or free boundaries associated to the problem and are de�ned
by:

S_(t) = Inffx 2 
 : h(x; t) > 0g; S+(t) = Supfx 2 
 : h(x; t) > 0g

These curves de�nes the interface separating the regions in which h(x; t) > 0
(i.e, ice regions) from those where h(x; t) = 0 (i.e. ice-free regions). In the
physical context they represent the propagation fronts of the ice sheet.
The qualitative description of solutions of this problem is quite di¢ cult due

to the doubly nonlinear terms appearing at the di¤erential operator and, spe-
cially, to its formulation involving the unknown fronts S�(t) (the free bound-
aries). Nevertheless, some mathematical and numerical results are already avail-
able in the literature. So, for instance, the physical problem may be character-
ized by the following properties as have recently been discussed by CALVO et
al. 2002 :

� Given an initial ice sheet initial h (x; 0), and known a (x; t), f (x; t) the
nonlinear partial di¤erential equation determine h (x; t) over its parabolic
positivity set.

� The ice free region (melt zone) h (x; t) = 0 always exists (from the as-
sumptions on h (x; 0)) and de�ne the two free boundaries S� (t) and S+ (t)
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which are extended to the interval [0; T ] if, for t 2 [0; T ], a(x; t) > 0 on
some subinterval of 
:

� The more realistic solutions (from a physical point of view) are non-
negative solutions h (x; t) � 0 corresponding to ablation data functions
such that a > 0 except in a region near the two free boundaries where
a < 0.

In section 4 we prove that it is possible to obtain estimates on the ice covered
region I(t) and the solution h(x; t) (the thickness of the ice sheet) by means of
the comparison with the solution u(x; t) of the nonlinear equation

	(x; t; u; ut; ux; uxx) � ut � a�
�
un+2

n+ 2
juxjn�1ux � fu

�
x

= 0: (1)

So, any description of special solutions of the equation (1) (which do not involve
obstacle formulation) leads to useful estimates for the more complex formula-
tion for h(x; t). As a matter of fact, the study of the nonlinear equation (1) is
of importance in its own right since the equation arises in many other di¤erent
contexts (with di¤erent values of the exponent n) as, for instance, �ltration in
porous media with turbulent regimes, suitable non-Newtonian �ow problems,
and so on (see, e.g. the monograph ANTONTSEV et al. 2002 and its refer-
ences).
We emphasize that very few explicit solutions of the ice sheet free boundary

formulation are known in the literature. One of them corresponds to a stationary
solution due to PATERSON 1981 and was used as numerical test in the paper
. It corresponds to the special case of a no sliding case (i.e. f = 0) with n = 3
and the following piecewise constant accumulation-ablation function:

a(x) =

8<: a1 if 0 � jxj < R

�a2 if R � jxj � L;

where L > 1; a1 > 0; a2 > 0 and R 2 (0; 1). Moreover, it is assumed that
a1R = a2(1 � R): Thus, for the particular values a1 = 0:01 and a2 = 0:03, we
have the steady state solution

h(x) =

8>>>>>>>>>><>>>>>>>>>>:

H

"
1�

�
1 +

a1
a2

�1=3 � jxj
L

�4=3#3=8
if jxj � R

H

�
1 +

a2
a1

�1=8�
1� jxj

L

�1=2
if R � jxj � 1

0 if 1 � jxj � L;

(2)

where H = (40 a1R )
1=8 represents the thickness at x = 0.
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In sections 2-4 of this paper we shall carry out the study of some special
transient solutions of the equation (1) of a similarity type which are compati-
ble with the above statements. It should be noted that similarity solutions for
problems related to ice-sheet dynamics do exist in the literature. However nei-
ther HALIFAR 1981, 1083 or NYE 2000 consider surface accumulation whilst
neither HINDMARSCH 1990, 1993 or BUELER et al. 2005 conduct a compre-
hensive similarity analysis. In this paper similarity solutions will be obtained by
conducting a thorough Lie or classical symmetry analysis of (1). The method
is described in the next section. In addition BLUMAN et al. 1988, 1989, de-
scribed how the range of symmetries may be extended whenever a Lie symmetry
analysis is conducted on a partial di¤erential equation that may be written in a
conserved or a potential form. This is the case with (1) where the correspond-
ing equivalent ice model may be described in terms of the �rst order potential
system, 	 � (	1;	2) = 0 where

	1 = vx � u+ � = 0

	2 = vt �
un+2 juxjn�1 ux

n+ 2
+ fu = 0 (3)

for a potential function v = v (x; t) and with � = � (x; t) chosen such that

a � �t (4)

We recall that, as demonstrated in BLUMAN et al. 1988, 1989, the Lie
point symmetries of the potential system induce non-Lie contact symmetries for
the original partial di¤erential equation. The treatment presented in Sections
3 and 4 is made independently of the positiveness subset of the solution and so
it is carried out directly in terms of equation (1), without any other requisite
on the solution (no study on any free boundaries is made in these sections). An
application to the strong formulation of the free boundary problem, for some
concrete data, is given in the section 5.

2 Ice sheet equation, conservation and potential
symmetry analysis

In the classical Lie group method, one-parameter in�nitesimal point transfor-
mations,with group parameter " are applied to the dependent and independent
variables (x; t; u; v). In this case the transformation, including that of the po-
tential variable are

�x = x+ "�1 (x; t; u; v) +O
�
"2
�

�t = t+ "�2 (x; t; u; v) +O
�
"2
�

�u = u+ "�1 (x; t; u; v) +O
�
"2
�

�v = v + "�2 (x; t; u; v) +O
�
"2
�

(5)

and the Lie method requires form invariance of the solution set:

� � fu (x; t) ; v (x; t) ; 	 = 0g (6)
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This results in a system of over-determined, linear equations for the in�nitessi-
mal �1, �2, �1 and �2. The corresponding Lie algebra of symmetries is the set
of vector �elds

X = �1 (x; t; u; v)
@

@x
+�2 (x; t; u; v)

@

@t
+�1 (x; t; u; v)

@

@u
+�2 (x; t; u; v)

@

@v
(7)

The condition for invariance of (1) is the equation

X (1)
E (	) j	1=0;	2=0

= 0 (8)

where the �rst prolongation operator X (1)
E is written in the form

X (2)
E = X + �[t]1

@

@ut
+ �

[x]
1

@

@ux
+ �

[t]
2

@

@vt
+ �

[x]
2

@

@vx
(9)

where �[t]1 , �
[x]
1 and �

[t]
2 , �

[x]
2 are de�ned through the transformations of the

partial derivatives of u and v. In particular to the �rst order in ":

�u�x = ux + "�
[x]
1 (x; t; u; v) �u�t = ut + "�

[t]
1 (x; t; u; v)

�v�x = vx + "�
[x]
2 (x; t; u; v) �v�t = vt + "�

[t]
2 (x; t; u; v) (10)

Once the in�nitesimals are determined the symmetry variables may be found
from condition for invariance of surfaces u=u (x; t) and v=v (x; t):


1=�1��1ux � �2ut = 0

2=�2��1vx � �2vt = 0 (11)

In the following both Macsyma and Maple software have been used to calculate
the determining equations. In the case of the ice equation (3) there are nine
over-determined linear determining equations. From these equations it may be
shown that:

�1 = �1 (x; t) = (c0 � z (t))x+ s (12)

�2 = �2 (t) (13)

�1 = �1 (t; u) = z (t)u (14)

�2 = �2 (x; t; v) = g (x; t) + c0v (15)

where c0 is an arbitrary constant such that:

(3n+ 2) z (t) + �2t � (n+ 1) c0 = 0 (16)

(z (t)x� s (t)� c0x)�x � �2 (t)�t + z (t)�� g (t) (x; t)x = 0 (17)

x�z (t)t � �st � g (x; t)t = 0 (18)

(z (t)x� s (t)� c0x) fx � �2 (t) ft
= �f ((3n+ 1) z (t)� nc0) + xz (t)t � s (t)t (19)
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When it is assumed that s (t) and z (t) are known (see the next section) then
equation (16) may be used to determine �2 (t) whilst (17) to (19) may be used
to determine g (x; t), � (x; t) and the sliding velocity f (x; t).
We observe that we have shown that the potential symmetries of the con-

served form of the ice dynamics equations (3) are entirely equivalent to those
of single equation.(1). This is so because according to BLUMAN et al. 1989
additional symmetries can only be induced by the potential system when:

�21v + �
2
2v + �

2
1v 6= 0 (20)

Clearly substitution of equations (12), (13) and (14) demonstrate that this is
not the case.
In addition that a di¤erential consequence of equations (17) and (18) incor-

porating the relation (4) is the di¤erential equation for a, similar in form to
(??), namely:

(z (t)x� s (t)� c0x) ax � �2 (t) at = �a (n+ 1) (3z (t)� c0) (21)

Moreover, we note that equation (17) may be obtained directly by di¤eren-
tiating the second surface invariant condition (11) with respect to x and then
applying (3), (12) -(15) together with the �rst of (11).
In summary, the results (16) to (21) together with the �rst invariant con-

dition at (11) may be simpli�ed by eliminating z (t) using (16) and combined
to give three �rst order partial di¤erential equations which u (x; t), a (x; t) and
f (x; t) must satisfy, namely:�

s (t) +
((2n+ 1) c0 + rt (t))

3n+ 2
x

�
ux + r(t)ut =

(n+ 1) c0 � rt (t)
3n+ 2

u (22)

�
s (t) +

((2n+ 1) c0 + rt(t))

3n+ 2
x

�
ax + r(t)at =

(n+ 1)

3n+ 2
(c0 � 3rt(t)) a (23)�

s (t) +
((2n+1)c0+r(t)t)

3n+2 x

�
fx + r(t)ft

= ((2n+1)c0�(3n+1)rt(t))
3n+2 f + xrtt(t)

3n+2 + st (t) ;
(24)

where r (t) � �2 (t) has been used to simplify the notation.

3 Symmetry analysis results for the case n = 3

As stated in Section 1 the exponent n which occurs in (1) is Glen�s exponent
and FOWLER 1992 suggests that n � 3 in physically realistic situations Thus
in the following we will assume that n = 3 although the analysis is unchanged
for any non-Newtonian values n > 1. The results presented assumed that each
of the functions u; a and f explicitly depend on x and t:
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3.1 The case f(x; t) = 0

Firstly, substitution of f(x; t) = 0 into equation (24) gives r(t) = c1t + c2 and
s(t) = c3 .

3.1.1 The subcase 7c0 + c1 6= 0, c1 6= 0

The solution of (22) and (23) may be expressed in terms of the similarity variable
! = ! (x; t) for which:

! (x; t) = (x+ c3) (c1t+ c2)
� 7c0+c1

11c1 when 7c0 + c1 6= 0 (25)

with:
u (x; t) =  (! (x; t)) (c1t+ c2)

4c0�c1
11c1 (26)

a (x; t) = A (! (x; t)) (c1t+ c2)
4c0�12c1

11c1 (27)

Substituting the relationships into equation (1) with n = 3 gives rise to the
ordinary di¤erential equation :

d

d!

�
 5 3!
5

+
(c1 + 7c0)! 

11

�
� c0 �A = 0 (28)

3.1.2 The subcase 7c0 + c1 = 0, c1 6= 0

For this subcase it may be shown that:

! (x; t) = x+ c3 ln (c1t+ c2) when 7c0 + c1 = 0 (29)

with
u (x; t) =  (! (x; t)) (c1t+ c2)

� 1
7 (30)

a (x; t) = A (! (x; t)) (c1t+ c2)
� 8
7 (31)

Substituting the relationships into equation (1) with n = 3 gives rise to the
ordinary di¤erential equation :

d

d!

�
 5 3!
5

+ 7c0c3 

�
� c0 �A = 0 (32)

3.1.3 The subcase c1 = 0

Without loss of generality consider the case c2 = 1. The solution of (22) and
(23) may be expressed in terms of the similarity variable ! = ! (x; t) for which:

! (x; t) = (x+ c3) e
� 7c0t

11 (33)

with:
u (x; t) =  (! (x; t)) e

4c0t
11 (34)
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a (x; t) = A (! (x; t)) e
4c0t
11 (35)

Substituting the relationships into equation (1) with n = 3 gives rise to the
ordinary di¤erential equation :

d

d!

�
 5 3!
5

+
7c0! 

11

�
� c0 �A = 0 (36)

3.2 The case s (t) = 0, r (t) 6= 0, f(x; t) 6= 0
In this case equations (22) to (24) may be integrated immediately to give solu-
tions in terms of the similarity variable ! = ! (x; t) for which:

! (x; t) = xr(t)�
1
11 exp

�
�7c0
11

Z
dt

r (t)

�
(37)

with:

u (x; t) =  (! (x; t)) r (t)
� 1
11 exp

�
4c0
11

Z
dt

r (t)

�
(38)

a (x; t) = A (! (x; t)) r (t)
� 12
11 exp

�
4c0
11

Z
dt

r (t)

�
(39)

f (x; t) =

�
!(x; t)rt(t)

11
+ F (! (x; t))

�
r (t)

� 10
11 exp

�
7c0
11

Z
dt

r (t)

�
(40)

Substituting the relationships into equation (1) with n = 3 gives rise to the
ordinary di¤erential equation :

3 5 2! !!
5

+  4 4! +
7c0! !
11

� 4c0 
11

�  F! �  !F �A = 0 (41)

That is:
d

d!

�
 5 3!
5

+
7c0! 

11
�  F

�
� c0 �A = 0 (42)

3.3 The case s (t) 6= 0, r (t) 6= 0, f(x; t) 6= 0
In this case the similarity variable has the form:

! (x; t) = xr(t)�
1
11 exp

�
�7c0
11

Z
dt

r (t)

�
� b (t) (43)

where

b (t) =

Z (
s (t)

r (t)
12
11

exp

�
�7c0
11

Z
dt

r (t)

�)
dt (44)

and the solutions (380 and (39) for u (x; t) and a (x; t) still apply. However the
solution for f (x; t) now becomes:

f (x; t) =

�
!(x; t)rt(t)

11
+ F (! (x; t)) + h (t)

�
r (t)

� 10
11 exp

�
7c0
11

Z
dt

r (t)

�
(45)
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where

h (t) =
(r (t)t + 7c0)

11
b+ r(t)bt (46)

The resulting ordinary di¤erential equation is once again (42).

3.4 The case r (t) = 0, f(x; t) 6= 0
In the following only the non-trivial case c0 6= 0 is considered. Equations (22)
to (24) may be integrated immediately to give the following solutions:

u (x; t) = m (11s+ 7c0x)
4
7 (47)

a (x; t) = n (11s+ 7c0x)
4
7 (48)

f (x; t) = p (11s+ 7c0x)�
xst
7c0

(49)

where the relationship between the functions m = m (t), n = n (t) and p = p (t)
may be found upon substitution of equations (47) to (49) into (1). The following
equation holds:

mt = �11c0mp� n+
704c40m

8

5
(50)

4 A comparison result and some particular ex-
amples.

We start by showing a useful result connecting the solution of the obstacle
problem and the solutions of the nonlinear equation (1).

Theorem 1 Let a 2 L1(Q), f 2 L1(Q) and a compactly supported initial data
h0 2 L1(
). Let h(x; t) be the unique solution of the obstacle problem (SF ):
Also let u(x; t) be any continuous solution of the equation (1) corresponding to
an ablation function ea 2 L1(Q) and for which there exists two Lipschitz curves
x�(t) such that

u(x�(t); t) = 0 and u(x; t) > 0 for a.e. x 2 (x�(t); x+(t)) and any t 2 [0; T ]:

Assume that ea(x; t) � a(x; t) for a.e. (x; t) 2 Q;

u(x; 0) � h0(x) for a.e. x 2 (x�(0); x+(0)):

Then, if S�(t) denotes the free boundaries generated by function h(x; t) we have
that

S�(t) � x�(t) � x+(t) � S+(t) and any t 2 [0; T ];

and
h(x; t) � u(x; t) for a.e. x 2 (x�(t); x+(t)) and any t 2 [0; T ]:
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Moreover, ifea(x; t) = a(x; t) a.e. (x; t) 2 Q, u(x; 0) = h0(x) a.e. x 2 (x�(0); x+(0)); (51)

and

un+2

n+ 2
juxjn�1ux � fu = 0 on f(x_(t); t)g [ f(x+(t); t)g; for t 2 (0; T ); (52)

then S�(t) = x�(t); x+(t) = S+(t) and h(x; t) = u(x; t) for a.e. x 2 (x�(t); x+(t))
any for any t 2 [0; T ]:

Proof. We shall assume, additionally that ht; ut 2 L1(Q) and that f � 0:
The general case, without this information, follows some technical arguments
which can be found, for instance, in CARRILLO et al. 1999. We take as a
test function the following approximation of the sign+0 (u

m�hm) function (with
m = 2(n + 1)=n) given by 	�(�) := min(1;max(0; �� )); for � > 0 small. Then
we de�ne v = 	�(um � hm): Notice that v 2 L1

�
[t2[0;T ](x�(t); x+(t))� ftg

�
and that v(:; t) 2W 1;p

0 ((x�(t); x+(t)))) for p = n+ 1 with

vx =

�
1
� (u

m � hm)x if 0 < u� h < �
0 otherwise.

Then, de�ning the set

A� := f(x; t); such that t 2 [0; T ]; x 2 (x�(t); x+(t)) and 0 < u(t; x)� h(t; x) < �g ;

and multiplying the di¤erence of both partial di¤erential equations and inte-
grating by parts (that is, by taking v as a test function) we �ndZ T

0

Z
(x�(t);x+(t))

(ut � ht)	�(um � hm)dxdt+ I (�) � 0

where

I(�) =
1

�

Z T

0

Z
A�

f�((um)x)� �((hm)xg ((um)x � (hm)x)dxdt;

with �(r) = � jrjn�1 r, � = nn=[2n(n+ 1)n(n+ 2)] and where we used the fact
that u(x�(t); t) = 0 � h(x�(t); t) for any t 2 [0; T ]: Then, from the monotonicity
of �(r) we can pass to the limit when � & 0 and conclude thatZ

(x�(t);x+(t))

maxfu(t; x)� h(t; x); 0gdxdt � 0:

which implies that u � h on the set (x�(t); x+(t)).
In the special case of u satisfying (51) and (52) we �nd that the function u#(x; t)
de�ned as

u#(x; t) =

�
u(x; t) if x 2 (x�(t); x+(t)), t 2 [0; T ];
0 otherwise,

satis�es all the conditions required to be weak solution of the obstacle problem
and by the uniqueness of such solutions we also �nd that h(x; t) = u#(x; t) .
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Remark 2 We note that no information on the global boundary conditions sat-
is�ed by u on @
� [0; T ] is required in the above result.

Remark 3 Notice also that the conditions satis�ed by h(x; t) on the free bound-
ary S�(t) indicate that the Cauchy problem on the curves [t2[0;T ](S�(t); t) do
not satisfy the unique continuation property since h is identically zero to the left
or the right sides of those curves. Some sharper information on the growth with
t and the study of the di¤erential equation satis�ed by the free boundaries can
be found by means of some arguments involving Lagrangian coordinates. This is
the main object of the work DIAZ ET AL. 2008 concerning a di¤erent simpli�ed
obstacle problem.

We consider now the particular example of a non-sliding ice sheet at the
base so that f(x; t) = 0 and consider the values, c0 = �0:1, c1 = 1, c2 = 1 and
c3 = 0 with the initial condition for the ice sheet pro�le:

u (x; 0) =  (! (x; 0)) =
1

2
cos

�
! (x; 0)

4

�
(53)

Note that the cosine has been chosen because it is a simple mathematical exam-
ple of an initial pro�le with with compact support. Clearly in a more detailed
enquiry it would interesting to discuss broader classes of families of initial condi-
tions with this property. However for this particular example and according to
the subcase 7c0+ c1 6= 0, c1 6= 0 and equations (25), (26) the similarity solution
is

! (x; t) =
x

(1 + t)
0:0273 (54)

u (x; t) =
 (! (x; t))

(1 + t)
0:1272 (55)

with accumulation-ablation function (which now is denoted by ea (x; t)) given by
(27) and (28) using c0 = �0:1, c1 = 1, c2 = 1 and c3 = 0 so:

ea (x; t) = A (! (x; t)) (1 + t)
�1:1273 (56)

with

A(!) = 0:153� 10�4 cos4
�!
4

�
sin4

�!
4

�
� 0:916� 10�5 cos6

�!
4

�
sin2

�!
4

�
+ 0:636� 10�1 cos

�!
4

�
� 0:341� 10�2! sin

�!
4

�
: (57)

In this case the propagation fronts of the ice sheet region are are found from:

 (x; t) = 0 (58)

so
x�(t) = �2� (1 + t)0:0273 (59)

and the �nite velocity is:
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d

dt
x�(t) = �0:0546� (1 + t)�0:973 : (60)

Figures 1-3 illustrate the time evolution of the ice sheet u (x; t) and also the
accumulation-oblation function ea (x; t).

and Settings/jidiaz/Mis documentos/Ron/Auggraph1:wmf
Fig 1. Plots of the initial ice sheet pro�le, u (x; 0) [upper curve ] and also the

initial accumulation-ablation function, a (x; 0) [lower curve] versus x

.

and Settings/jidiaz/Mis documentos/Ron/Auggraph2:wmf
Fig 2. Plots of the ice sheet pro�le, u (x; 100) [upper curve ] and also the

accumulation-ablation function, a (x; 100) [lower curve] at time t = 100 versus
x

As a consequence of Theorem 1 we have
Corollary 1. Let 
 = (�L;L) with L > 2� and f(x; t) � 0. Let a 2 L1(Q)
with ea(x; t) � a(x; t) for a.e. (x; t) 2 Q; where ea(x; t) is given by (56) and
assume that

h0(x) �
�

1
2 cos

�
x
4

�
if x 2 (�2�; 2�),

0 if x 2 (�L� 2�) [ (L; 2�):

Let h(x; t) be the (unique) solution of the obstacle formulation (with f(x; t) � 0)
associated to the data a and h0. Then

S�(t) � �2� (1 + t)0:0273 < 2� (1 + t)0:0273 � S+(t) for any t 2 [0; T ];

and

h(x; t) �
 
�

x
(1+t)0:0273

�
(1 + t)

0:1272

for a.e. x 2 (�2� (1 + t)0:0273 ; 2� (1 + t)0:0273) and any t 2 [0; T ];

where  (!) satis�es (28).
This example clearly demonstrates the useful properties of the closed form

solutions of (1) for an accumulation-ablation function which changes sign and
is negative near the propagation fronts.
Remak. The research will be continued elsewhere and in the next phase we

are seeking similarity solutions corresponding to the strong formulation of the
problem, when it is written (in other equivalent terms, as indicated in DIAZ-
SCHIAVI 1995) by using the multivalued maximal monotone graph �(u) of R2
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given by �(r) = � (the empty set) if r < 0; �(0) = (�1; 0] and �(r) = f0g if
r > 0: Then, the formulation is(

	(x; t; u; ut; ux; uxx) � ut � a�
h
un+2

n+2 juxj
n�1ux � fu

i
x
+ ' = 0

with '(x; t) 2 �(u(x; t)) a.e. (x; t) 2 
� (0; T ):

In this case the focus is on both a classical and a non-classical symmetry reduc-
tion of the equation. If, for instance, we assume that f = 0 then it is possible
to �nd sharper assumptions on function a(x; t) guarantying the formation of
the free boundary. This is the main goal of the paper DIAZ-WILTSHIRE 2008
which deals with the multivalued formulation of general obstacle problems (also
arising in many other contexts: see, e.g. DUVAUT-LIONS, 1972).

5 Summary and conclusions

In this paper we have concentrated on the problem of determining closed form
similarity solutions of equation (1) (using potential symmetries) and its connec-
tions with the thickness function h(x; t) of ice sheets as solution of the associate
obstacle problem. The main aim has been to demonstrate that classes of such
solutions exist and that they contain physically realistic properties. We observe
that equation (1) contains certain modelling de�ciencies (with respect the obsta-
cle problem formulation) because inadmissible solutions for which u (x; t) < 0 (in
some subset) are possible. Certainly the similarity solution approach presented
here demonstrates the possibility of such unrealistic solutions for equation (1)
and so we obtain only some estimates for the physical relevant function h(x; t).
We use some comparison results in order to extend several conclusions to the
case of the free boundary formulation. Our paper illustrate the powerful of the
exact solution technics based in classical Lie groups when they coupled with an
ad hoc additional analysis for free boundary formulations.
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