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28040 Madrid. E-mail: ji−diaz@mat.ucm.es.

(3) Center for Computational Science and Engineering, University of California, Davis, ca

95616, usa.

Short title: Analysis of an elastic-gravitational model

1



2

Abstract. In early eighties Rundle (1980, 1981a, b, and 1982) developed the techniques

needed for calculation of displacements and gravity changes due to internal sources of strain

in layered linear elastic-gravitational media. The approximation of the solution for the half-

space was obtained by using the propagator matrix technique. The Earth model considered is

elastic-gravitational, composed by several homogeneous layers overlying a bottom half-space.

Two dislocation sources types can be considered, representing magma intrusions and faults.

In the last decades theoretical and computational extensions of that methodology have been

developed by Rundle and co-workers (e.g., Fernández and Rundle, 1994a, b; Fernández et al.,

1997; Tiampo et al., 2004; Fernández et al., 2005; Charco et al., 2006, 2007a, b). The source

can be located at any depth in the media. In this work we prove that the perturbed equations

representing the elastic-gravitational deformation problem, with the natural boundary and

transmission conditions, leads to a well-posed problem even for very domains and general data.

We give a constructive proof of the existence and we show the uniqueness and the continuous

dependence with respect to the data of weak solutions of the coupled elastic-gravitational field

equations.

Keywords: Gravity changes, elastic-gravitational earth model, displacement, weak solution.
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1. Introduction

Geological hazards have a great destructive power (e.g., Sigurdsson et al., 2000; national

research council of the national academies, 2003), being able to cause an instantaneous and total

destruction of the life in the proximities of a volcano, fault or landslide. Geodetic techniques

for the measurement of surface displacements, starting from classical terrestrial ones to the

most modern space techniques like gps campaigns, continuous gps observation (e.g., Segall et

al., 1997; Dixon et al., 1997; Sagiya et al., 2000; Larson et al., 2001; Fernández et al., 2004),

satellite radar interferometry (e.g., Puglisi et al., 2001; Pritchard and Simons, 2002; Wright,

2002; Dzurisin, 2003; Fernández et al., 2005; Manzo et al., 2006; Tamisiea et al., 2007), or

their combination (e.g., Gudmunsson et al., 2002; Lundgren and Stramondo, 2002; Bustin et

al., 2004; Lanari et al., 2004; Samsonov and Tiampo, 2006) they have broadly demonstrated

his capacity of detection of surface displacements useful to study seismic and volcanic events.

These techniques allow determining displacements with a precision of a centimeter or better.

Now a day, there is a clear tendency to make a joint interpretation of displacement and vari-

ations of gravity, considering the clear improvements obtained in the results (see e.g., Rundle,

1982; Fernández et al., 2001; Yoshiyuki et al., 2001; Tiampo et al., 2004; Charco et al., 2006).

The subject is of continuous interest (Tamisiea et al., 2007).

If we concentrate on hazards geological associated with volcanism, surface ground defor-

mation and gravity changes can be indicators of volcanic activity as well as precursors of an

eruptions. Usually they appear together with other volcanic activity indicators, such as seismic-

ity, gas emission, fumarolic activity, etc. Considering that, ideal monitoring should consider all

the possible parameters allowing to detect their changes on the active area and to obtain infor-

mation about the magmatic source below surface from them (see e.g., Sigurdsson et al., 2000;

Dı́az and Talenti, 2004; Tiampo et al., 2004); deformations, gravity or temperature changes,

emitted gases, etc. within the dangerous zone.

Thus volcanic eruptions are the outcome of significant physical and geological processes.

Among others there is magma formation in the mantle or crust, as well as its ascent to more
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superficial zones. These phenomenons become apparent through changes in the volcanic build-

ing and the surroundings alike. One of the main challenges is to determine if an intrusion process

will entail or not an eruption. On the other hand, in order to interpret geodetic anomalies (dis-

placements, gravity changes, etc.) which may be tied to volcanic activity, mathematical models

allowing the resolution of the inverse problem which consists of obtaining a volcanic intrusion’s

properties from surface observation, are necessary. Therefore we need analytical models. Nu-

merical models more realistic in some aspects allow a better approximation to the real problem

in cases in which more time is available than in a critic situation. Each model is characterized

by a series of mathematical equations describing the problem’s physics. Specifically, the model

studied in this work is a deformation model in which surface deformation and gravity change,

understood as possible symptoms of a future eruption, are coupled. This model responds to a

system of partial differential equations.

As first elastic models we can consider Love’s work (1911). He showed that displacement field

produced by a center of expansion within an elastic medium may be obtained from a suitable

Green’s function. With base on these works, Rundle (1980) obtains and solves the equations

that represent the elastic-gravitational problem for point sources in an elastic-gravitational half

space, stratified in flat, isotropic and homogeneous layers. In order to introduce the layered

medium in the problem a matrix method is used to propagate the solutions from one layer to

the next. That is to say, he obtains the solution on each layer and with the aforesaid matrices he

joins these solutions together to obtain a global solution on the whole domain. Rundle (1981a)

achieves the numerical evaluation of this problem. He also studies the problem of obtaining

vertical displacements for a rectangular fault (Rundle, 1981b). This model (Rundle, 1982,

1983) allows to study variation on the displacements, on the perturbed potential and gravity

changes, as well as the sea level variation caused by volcanic loading. Rundle (1982) proves

the uniqueness of solutions for the elastic-gravitational case, but considering only a infinite

medium, the basic solutions for the used methodology, but not for the case of a layered model.
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The goal of this paper is to complete the work developed by Rundle (1982) and, applying

techniques of the weak solutions of partial differential equations theory, to prove the existence

and uniqueness of solutions of the coupled elastic-gravitational model for the layered configura-

tion on a general spatial section domain Ω. To consider a layered medium made necessary the

consideration of weak solution instead of the classical solutions in the whole of the spatial do-

main. Let’s point out that it is a necessary study to be done considering the broad applications

of this elastic-gravitational deformation model.

Therefore, the deformation model we are going to work with consist of an Earth model

composed by several elastic-gravitational layers overlying an elastic-gravitational half space.

We consider the contribution of source term will be magmatic intrusion, corresponding to body

forces acting on the medium. This will be due to both volumetric change of wall of the chamber

and sudden place of a mass into the medium result of injection of material into the chamber.

This way, a force will be added to both equations due to increase of pressure into the chamber

which called fu and fφ, giving way to final coupled system (Aki et al., 2002):
−∆u− 1

1− 2ν
∇ (divu)− ρg

µ
∇ (u · ez) +

ρg

µ
ezdivu =

ρ

µ
∇φ + fu

−∆φ = 4πρGdivu+fφ

(1)

The associate dynamic system will be the object of a different paper (Arjona et al., 2007).

2. Weak formulation

Let us define spatial domain in the following way: we will assume p layers ”overstrike”, that

we will denote as Ωi ∀i = 1, . . . , p, and which union determines global domain Ω, Ω =
p⋃

i=1

Ωi.

Each layer is given through common horizontal set: a open ω ⊂ R2 and so

Ω1 := ω × (d1, d1 + d2) , Ω2 := ω × (d1 + d2, d1 + d2 + d3) , etc., (2)

that is

Ωi := ω ×

(
i−1∑
j=1

dj,

i∑
j=1

dj

)
⊂ R3, when i = 1, . . . , p− 1, (3)

and

Ωp := ω × (H, H + dr) , (4)
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when H :=
i−1∑
j=1

dj and dr can be equal to +∞.

Let ui:Ωi −→ R3 be the displacement vector in each layer, ui =
(
ui

x, u
i
y, u

i
z

)
and f i

u =(
f i

x, f
i
y, f

i
z

)
. Both functions depend on x = (x, y, z) .

Let us describe the boundary of our domain to establish the boundary conditions of the

problem. We distinguish, for each layer comprised between the first and the (p − 1)-th, side,

upper and bottom boundary by means of the following notation (see figure1):



∂+Ωi = ω ×

{
i−1∑
j=1

dj

}
, top boundary,

∂−Ωi = ω ×

{
i∑

j=1

dj

}
, bottom boundary,

∂lΩi = ∂ω ×

[
i−1∑
j=1

dj,
i∑

j=1

dj

]
, side lateral boundary.

(5)

Then:

∂Ωi = ∂+Ωi ∪ ∂−Ωi ∪ ∂lΩi ∀i = 1, . . . , p− 1 (6)

For the last layer, that is, the p-th one we have: ∂+Ωp = ω × {H} ,

∂−Ωp = ω × {H + dp} .
(7)

INSERT FIGURE 1

Let us denote the displacement vector and the gravitational perturbed potential in the fol-

lowing manner: ui (x) represents the displacement vector field on each point of the layer i,

for i = 1, . . . , p. So actually the unknown we look for is u ≡ (ui)i=1,...,p. To simplify the

notation, we will use u when it is not ambiguous. Again to simplify equation the same way

we denote φi (x) vector as gravitational perturbed potential on the point x of the layer i,

that is the unknown we look for is: φ≡ (φi)i=1,...,p. Again, to simplify the notation, we use φ

when there is not ambiguity. Constitutive constants of the different layers take the following

notation: ρ≡ (ρi)i=1,...,p , µ≡ (µi)i=1,...,p and ν≡ (νi)i=1,...,p. In relation to the functions due to

magmatic intrusion we use: fu≡ (f i
u)i=1,...,p and fφ≡

(
f i

φ

)
i=1,...,p

.
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On each layer Ωi, i = 1, . . . , p, the following system of equations holds:
−∆ui (x)− 1

1− 2νi
∇ (divui (x))− ρig

µi
∇ (ui (x) · ez) +

ρig

µi
ezdivui (x) =

ρi

µi
∇φi (x) + f i

u (x) ,

−∆φi (x) = 4πρiGdivui (x) + f i
φ (x) , in Ωi.

(8)

To the set of partial differential equations we will add the boundary conditions that we will

specify. With regard to displacement field we assume that:

on the side boundary, ∂lΩi, of i = 1, . . . , p, so let:

ui (x) = 0,x ∈ ∂lΩi, (9)

on upper boundary of the first layer ∂+Ω1:

∂u1 (x)

∂z
= 0,x ∈ ∂+Ω1, (10)

and on bottom boundary, ∂−Ωp, gives:

up (x) = 0,x ∈ ∂−Ωp. (11)

In general, we can assure only that the first derivatives of u are continuous on the boundaries

of the layers, that is, on the boundary between layers. We will require ”transmission conditions”

between both upper and bottom boundaries of the layers excepting on the first layer and the

last layer. So, we must have, on ∂−Ωi = ∂+Ωi+1 with i = 1, . . . , p− 1, the next conditions: ui (x) = ui+1 (x) ,x ∈∂−Ωi,

∂ui (x)

∂z
=

∂ui+1 (x)

∂z
,x ∈∂−Ωi.

(12)

In relation to gravitational perturbed potential we will assume that: on side boundary ∂lΩi

for i = 1, . . . , p:

φ (x) = 0,x ∈ ∂lΩi, (13)

on the upper boundary of the first layer ∂+Ω1:

φ1 (x) = φ0 (x) ,x ∈ ∂+Ω1, (14)
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and on the bottom boundary, ∂−Ωp:

φp (x) = 0,x ∈ ∂−Ωp. (15)

Like before, we will require a transmission conditions between upper boundary and bottom

boundary of the next layers excepting on the first layer and the last layers. So, we must have,

on ∂−Ωi = ∂+Ωi+1 with i = 1, . . . , p− 1, the following conditions: φi (x) = φi+1 (x) ,x ∈∂−Ωi,

∂φi (x)

∂z
=

∂φi+1 (x)

∂z
,x ∈∂−Ωi.

(16)

Remark 1. In what follows, we shall work with the boundary data φ0 by extending it to the

interior of the domain Ω1: i.e. we assume that there exists a function φ̂0 (x) defined on the

upper layer Ω1 such that

φ̂0 ∈ H1(Ω1), φ̂0 (x) = φ0 (x) on ∂+Ω1 and φ̂0 (x) = 0 on ∂−Ω1 ∪ ∂lΩ1. (17)

Here, and in what follows, H1(Ω) denotes the Sobolev space given by

H1(Ω) = {φ ∈ L2(Ω1),
∂φ

∂xi

∈ L2(Ω1)∀i = 1, 2, 3}. (18)

(see, e.g. Brézis, 1984, for more details).

It is clear that under the above conditions any classical solution does not need to exist. So

we have to introduce the notion of weak solution which allows a greater generality.

Firstly, we define the space formed by the test functions (which we shall denote as space of

energy), for both displacement vector and gravitational perturbed potential, denoting by Vu

and Vφ. In order to simplify the presentation of the results we shall assume that the horizontal

projection ω is bounded, connected and ”regular”:

Vu:={(u1,φ1), ..., (up,φp) ∈
p∏

i=1

H1 (Ωi)
3 ×H1 (Ωi) such that ui verifies (9) to (12)},

Vφ:={((u1,φ1), ..., (up,φp)) ∈
p∏

i=1

H1 (Ωi)
3 ×H1 (Ωi) such that φi

verifies (13), (15), (16) and φi ≡ 0 on ∂+Ω1}.

(19)
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Remark 2. Vu and Vφ are Hilbert’s spaces with the natural inner product (for instance, for Vu

with the inherited one of the
p∏

i=1

H1 (Ωi)
3 ×H1 (Ωi) space), that is:

(u,w)Vu
=

p∑
i=1

{∫
Ωi
∇ui : ∇wi dx+

∫
Ωi

ui ·wi dx
}

,

(φ, θ)Vφ
=

p∑
i=1

{∫
Ωi
∇φi · ∇θi dx+

∫
Ωi

φiθi dx
}

.
(20)

Moreover, if we introduce the dual space we will have the following embedding chain (Brézis,

1984):

Vu ⊂
p∏

i=1

H1 (Ωi)
3 ⊂ L2 (Ω)3 = (L2 (Ω)3)′ ⊂

p∏
i=1

H−1 (Ωi)
3 ⊂ V ′

u

Vφ ⊂
p∏

i=1

H1 (Ωi) ⊂ L2 (Ω) = (L2 (Ω))′ ⊂
p∏

i=1

H−1 (Ωi) ⊂ V ′
φ,

(21)

where we have used the fact of that
p∏

i=1

L2 (Ωi) can be identified with L2 (Ω) since:

∫
Ω

φ2 (x) dx =

p∑
i=1

∫
Ωi

φ2
i (x) dx (22)

Here H−1(Ωi) denotes the dual space of H−1
0 (Ωi).

We also remark that the H−1 (Ωi) spaces are Hilbert spaces and their norm is alternatively given

in the following way: if f i∈H−1 (Ωi) then

f i (x) = f i
0 (x) +

3∑
k=1

∂f i
k (x)

∂xk

with f i
j ∈ L2 (Ωi) , j = 0, 1, 2, 3 and

‖f i‖H−1(Ωi)
= ‖f i

0‖L2(Ωi)
+

3∑
k=1

‖f i
k‖L2(Ωi)

.
(23)

We will assume the following regularity on the data:

fu ∈
p∏

i=1

H−1 (Ωi)
3 , (24)

fφ∈
p∏

i=1

H−1 (Ωi) , (25)

φ0 ∈
p∏

i=1

H1 (Ωi) and satisfy (17). (26)
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In order to justify the definition of following weak solution, we shall consider, for a while,

that (u,φ) is a classical solution of the system. Then we take a test functions (w,θ) ∈ V. We

multiply first equation of the system (8) by wi and apply Green’s theorem:∫
Ω

∇u : ∇w =

∫
Ω

∆u ·w +

∫
∂Ω

∇uw · n =

∫
Ω

∆u ·w+

∫
∂Ω

∂u

∂n
·w . (27)

If we assume transmission conditions (12) and (16), and lateral side boundary ∂lΩi, the sum

of normal derivatives vanishes since the normal vector to upper layers are opposites.

If moreover we assume that the test function vanishes on ∂−Ω, we conclude that:

∫
Ωi

(
−∆ui (x)− 1

1− 2νi
∇ (divui (x))− ρig

µi
∇ (ui (x) · ez) +

ρig

µi
ezdivui (x)

)
·wi (x) dx

=
∫

Ωi
(∇ui (x) : ∇wi (x) +

1

1− 2νi
divui (x) divwi (x)− ρig

µi
∇ (ui (x) · ez) ·wi (x) +

+
ρig

µi
ezdivui (x) wi (x) dx) .

(28)

We operate analogously with the second equation of (8) but now multiplying by a test function

θi:

−
∫

Ωi

∆φi (x) θi (x) dx =

∫
Ωi

∇φi (x) · ∇θi (x) dx . (29)

Same way, we multiply by wi and by θi to the right hand side of equations of the system (8).

By adding them we originate the terms:

p∑
i=1

(
−ρi

µi

)∫
Ωi
∇φi (x) ·wi (x) dx+ 〈fu,w〉V ′

u×Vu
,

p∑
i=1

(−4πρiG)
∫

Ωi
divui (x) θi (x) dx+ 〈fφ, θ〉V ′

φ×Vφ
.

(30)

We reach to some integral equalities which any classical solution must verify. So, we are

going to use it in order to define the notion of weak solution (without requiring the existence

of any classical second derivative).

Definition 3. We assume the regularity (24), (25) and (26), on the functions fu, fφ and φ0.

We say that (u, φ) is a weak solution of the problem (8) with the boundary conditions (9)-(16)

if (u,φ− φ0) ∈ V and for any test function (w,θ) ∈ V the following identities hold:
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p∑
i=1

[∫
Ωi

(∇ui (x) : ∇wi (x) +
1

1− 2νi
divui (x) divwi (x)− ρig

µi
∇ (ui (x) · ez) ·wi (x)

+
ρig

µi
ezdivui (x) wi (x) dx) =

p∑
i=1

(
−ρi

µi

)∫
Ωi
∇φi (x) ·wi (x) dx+ 〈fu,w〉V ′

u×Vu
,

(31)

and

p∑
i=1

∫
Ωi
∇φi (x) · ∇θi (x) dx = −

p∑
i=1

4πρiG
∫

Ωi
divui (x) θi (x) dx+ 〈fφ, θ〉V ′

φ×Vφ
. (32)

The mathematical treatment of the problem will require to apply some technical results which

may not be valid in some special cases. Due to that, it will be useful to introduce a change of

scale y = λx allowing to define a re-scaling function v(y) = u(λx) which makes emerge some

coefficients λ associated to first derivatives of u and λ2 associated to second derivatives of u.

The new system of equations satisfies by v(y) are:


−∆vi (y)− 1

1− 2νi
∇ (divvi (y))− ρigλ

µi
∇ (vi (y) · ez)

+
ρigλ

µi
ezdivvi (y) = −ρiλ

µi

∇φi (λ−1y) + λ2f i
u (λ−1y)

in Ωi, (Dilatated equation)

The main goal of this paper is to prove that under the above assumptions the system (8) is

well possed (in the sense of Hadamard) on the space V .

Theorem 4. Assume the regularity (24), (25) and (26) on the data fu, fφ and φ0 . Then

there exists a unique weak solution {u, φ} of the problem (8). Moreover, we have the following

estimate on the continuous dependence with respect to the data:

p∑
i=1

2πρiG
∥∥∇ui

∥∥2

L2(Ωi)
+

p∑
i=1

ρi

2µi

∥∥∇φi
∥∥2

L2(Ωi)

≤ K(2 ‖fu‖2
V ′

u
+

1

2
‖fφ‖2

V ′
φ

+ 4Cρ1
∥∥φ0
∥∥

H1/2(∂+Ω1)
), (33)

where K is a constant which depends on the scale λ and where C is the constant of the traze

embedding H1(Ω1) → H1/2(∂+Ω1).
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Firstly, we shall prove the uniqueness of the solution of weak solution. Then we shall get the

estimate on the continuous dependence with respect to the data. Finally we shall prove the

existence of weak solutions by means of an iterative method which can be useful for numerical

purposes.

3. Uniqueness of solution

Let us first prove the uniqueness of solutions of the coupled system. We assume two weak

solutions for system (8), ui
1,u

i
2, φ

i
1 and φi

2 with i = 1, . . . , p, and let:

 ui (x) = ui
1 (x)− ui

2 (x) ,

φi (x) = φi
1 (x)− φi

2 (x) .
(34)

Since ui
1,u

i
2, φ

i
1 y φi

2 are weak solutions, the verify (14), so by subtracting we obtain:

p∑
i=1

(− (∆ui
1 (x)−∆ui

2 (x))−
(

1

1− 2νi
∇ (divui

1 (x))−∇ (divui
2 (x))

)
−

ρig

µi
(∇ (ui

1 (x) · ez)−∇ (ui
2 (x) · ez)) +

ρig

µi
(ezdivui

1 (x)− ezdivui
2 (x)))

=
p∑

i=1

(
ρi

µi
(∇φi

1 (x)−∇φi
2 (x)) .

(35)

Then, by the linearity of the differential operators we have:

p∑
i=1

(
−∆ui (x)− 1

1− 2νi
∇ (divui (x))− ρig

µi
∇ (ui (x) · ez) +

ρig

µi
ezdivui (x)

)
=

p∑
i=1

ρi

µi
∇φi (x) .

(36)

Analogously:

p∑
i=1

(−∆φi (x)) =
p∑

i=1

4πρiGdivui (x) . (37)

Concerning the boundary conditions, since ui
1,u

i
2, φ

i
1 and φi

2 verify the same boundary con-

ditions of the system. So, on the lateral side boundary ∂lΩi, for i = 1, . . . , p, we have

ui
1 (x) = 0,x ∈ ∂lΩi,

φi (x) = 0,x ∈ ∂lΩi.
(38)
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The transmission conditions on the top and bottom boundary, except first layer and last

layer, i.e. on ∂−Ω1 ∪ (∂+Ω2 ∪ ∂−Ω2) ∪ . . . ∪ ∂+Ωp for i = 1, . . . , p− 1 lead to:

ui (x) = ui+1 (x) ,

∂ui (x)

∂z
=

∂ui+1 (x)

∂z
,

φi (x) = φi+1 (x) ,

∂φi (x)

∂z
=

∂φi+1 (x)

∂z
,

(39)

on top boundary, ∂+Ω1: 
∂ui (x)

∂z
= 0,x ∈ ∂+Ω1,

φi (x) = 0,x ∈ ∂+Ω1

(40)

and on bottom boundary, ∂−Ωp:  up (x) = 0,x ∈ ∂−Ωp,

φp (x) = 0,x ∈ ∂−Ωp.
(41)

Multiplying the equation (36) by the term 4πρiGui and the equation (37) by
ρi

µi
φi, and we

conclude that

p∑
i=1

(
−∆ui (x)− 1

1− 2νi
∇ (divui (x))− ρig

µi
∇ (ui (x) · ez) +

ρig

µi
ezdivui (x)

)
· 4πρGui (x)

=
p∑

i=1

ρi

µi
∇φi (x) · 4πρGui (x) .

(42)

Let us omit for a while the symbol
p∑

i=1

. Multiplying term by term and integrating on the domain

we obtain:

−
∫

Ωi
4πρiG∆ui (x) · ui (x) dx−

∫
Ωi

4πρiG

1− 2νi
∇ (divui (x)) · ui (x) dx

−
∫

Ωi

4π (ρi)
2
Gg

µi
∇ (ui (x) · ez) · ui (x) dx +

∫
Ωi

4π (ρi)
2
Gg

µi
ezdivui (x) ui (x) dx

=
∫

Ωi

ρi

µi
∇φi (x) · (4πρiG)ui (x) dx,

4πρiG(−
∫

Ωi
∆ui (x) · ui (x) dx +

∫
Ωi

1

1− 2νi
divui (x) divui (x) dx

−
∫

Ωi

ρig

µi
∇ (ui (x) · ez) · ui (x) dx+

∫
Ωi

ρig

µi
ezdivui (x) ui (x) dx)

=
∫

Ωi

4π (ρi)
2
G

µi
∇φi (x) · ui (x) dx .

(43)



14

Then:

4πρiGai
u

(
ui,ui

)
=

4π (ρi)
2
G

µi

∫
Ωi

∇φi (x) · ui (x) dx , (44)

where we used ai
u (ui,ui) to denote to the corresponding bilinear form on ui. Integrating by

parts we can see that terms of the second member of the equation can be simplified. Bearing

in mind the boundary conditions we get:

p∑
i=1

4πρiGai
u (ui,ui) =

p∑
i=1

(
4π (ρi)

2
G

µi
[(
∫

∂Ωi
φi (s)ui (s) · nds)−

∫
Ωi

φi (x) divui (x) dx]

)
,

(45)

and then:
p∑

i=1

4πρiGai
u

(
ui,ui

)
=−

p∑
i=1

4π (ρi)
2
G

µi

∫
Ωi

φi (x) divui (x) dx . (46)

We proceed with second equation:

p∑
i=1

(
−∆φi (x)

ρi

µi
φi (x)

)
=

p∑
i=1

4πρiGdivui (x)
ρi

µi
φi (x) , (47)

integrating on the domain Ωi:

p∑
i=1

(
−ρi

µi

∫
Ωi

∆φi (x) φi dx

)
=

p∑
i=1

4πρiG

µi

∫
Ωi

φi (x) divui (x) dx . (48)

Using Green’s theorem and the boundary conditions we get:

p∑
i=1

ρi

µi

∫
Ωi
∇φi (x) · ∇φi (x) dx =

p∑
i=1

ρi

µi

∫
Ωi
|∇φi (x)|2 dx =

p∑
i=1

4πρiG

µi

∫
Ωi

φi (x) divui (x) dx .

(49)

Summarizing, we have following equations:

p∑
i=1

4πρiGai
u (ui,ui) = −

p∑
i=1

4π (ρi)
2
G

µi

∫
Ωi

φi (x) divui (x) dx,

p∑
i=1

ρi

µi

∫
Ω
|∇φi (x)|2 =

p∑
i=1

4πρiG

µi

∫
Ωi

φi divui (x) dx.

(50)

Adding both relations we necessary reach that:

p∑
i=1

4πρiGai
u

(
ui,ui

)
+

p∑
i=1

ρi

µi

∫
Ωi

∣∣∇φi (x)
∣∣2 dx = 0, (51)

and using the coercive inequality satisfied by ai
u (ui,ui) (which we shall show later) we get:

p∑
i=1

4πρiGK
∥∥∇ui

∥∥2

L2(Ωi)
+

p∑
i=1

ρi

µi

∫
Ωi

∣∣∇φi (x)
∣∣2 dx = 0, (52)



15

for some constant K which can depend on the spatial scale. So we deduce that

ui (x) = 0, and φi (x) = 0. (53)

since ∇ui = 0 and from the boundary conditions we conclude that ui (x) = 0.. Similarly

|∇φi (x)|2 = 0 implies that φi (x) = cte. But as φi (x) ≡ 0 on the upper surface, necessarily

φi (x) = 0 holds in all Ωi. We conclude that ui
1= ui

2 y φi
1 = φi

2 ∀i = 1, . . . , p, this prove the

uniqueness of weak solution.

4. Continuous dependence estimate

The argument of cancellation to prove the uniqueness of solutions can be applied in the same

way to every possible weak solutions ui, φi. Now, it appears f i
φ and f i

u, the contributions of the

body force terms and the term of the integration by parts ∂+Ω1. In particular, on top of the

first layer appears the next inequality

p∑
i=1

4πρiGA(λ)
∥∥∇ui

∥∥2

L2(Ωi)
+

p∑
i=1

ρi

µi

∫
Ωi

∣∣∇φi (x)
∣∣2 dx

≤
p∑

i=1

4πρiG
〈
f i
u,u

i
〉

+

p∑
i=1

ρi

µi

〈
f i

φ, φ
i
〉

+
4π (ρ1)

2
G

µ1

∫
∂+Ω1

φ0 (s) φ1 (s) · nds, (54)

where A(λ) is a positive constant depending on the scale. Applying Young inequality (with

ε =
1

4
in the first and third term and ε = 1 in the second one) and using the theorem of traces

H1(Ω1) → H1/2(∂+Ω1), the estimate follows without difficulty.

5. Existence of weak solution

To prove the existence of a weak solution we are going to divide the proof in two different

uncoupled problems: the first one when gravitational perturbed is known and the second one

in which the displacements are known. In both cases we shall use the Lax-Milgram’s theorem

(see, e.g. Brézis, 1984) which for the sake of the reader we recall here:

Let H be a Hilbert space and a (u, v) : H×H −→ R being a continuous and coercive bilinear

form on H. Let L : H −→ R be a linear and continuous form on H. Then there exists a

solutionu ∈ H such that a (u, v) = L (v) ∀v ∈ H. We shall also use an extension of this result

stated in terms of the Fredholm alternative is presented in Gilbarg et al., 1977.
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5.1 Uncoupled problem for the potential (u assumed to be known).

Firstly, we are going to consider the following problem namely (P1) [φ1
0,u

i
0, f

i
φ], on the space

of energy Vφ, where we assume that u is a priori known.

(P1) [φ1
0,u

i
0, f

i
φ]



−∆φi (x) = 4πρiGdivui (x) + f i
φ (x) in Ωi,

φi (x) = 0 on ∂lΩi∀i = 1, . . . , p,

φi (x) = φi+1 (x)

∂φi (x)

∂z
=

∂φi+1 (x)

∂z

on ∂+Ωi = ∂−Ωi+1 ∀i = 1, . . . , p− 1,

φ1 (x) = φ1
0 (x) on ∂+Ω1,

φp (x) = 0 on ∂−Ωp.

(55)

Definition 5. We assume the above regularity (25)and (26) on the data fφ and φ0 . We say

that function φ is a weak solution of the problem (55) if φ∗ := φ− φ0 ∈ Vφ and for every test

function θ ∈ Vφ the following integral identity holds:

p∑
i=1

∫
Ωi
∇φ∗i (x) · ∇θi (x) dx =

p∑
i=1

(−4πρiG)
∫

Ωi
divui (x) θi (x) dx+ 〈fφ, θ〉V ′

φ×Vφ
. (56)

Theorem 6. Assumed the (25) and (26) on the data fφ and φ0 , there exists a unique weak

solution, φ, of problem (P1) [φ1
0,u

i
0, f

i
φ].

Proof. In order to apply the Lax-Milgram theorem we define the bilinear form

aφ : Vφ × Vφ −→ R and the linear form Lφ : Vφ −→ R as follows:

aφ (φ∗,θ) :=
p∑

i=1

ai
φ (φ∗i,θi) =

p∑
i=1

∫
Ωi
∇φ∗i (x) · ∇θi (x) dx

=
∫

Ω
∇φ∗ (x) · ∇θ (x) dx

L
φ
(θ) := −

p∑
i=1

4πρiG
∫

Ωi
divui (x) θi (x) dx+ 〈fφ, θ〉V ′

φ×Vφ

(57)

To apply this theorem we have to prove that the bilinear form aφ (·,·) is continuous and

coercive, and that the linear form Lφ (·) is continuous. Let us see it:
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i) aφ (·,·) is bilinear form. It is easy to see that aφ (λφ1 + µφ2,θ) = λaφ (φ1,θ) + µaφ (φ2,θ) ,

aφ (φ, λθ1 + µθ2) = λaφ (φ,θ1) + µaφ (φ,θ2) .
(58)

ii) To prove that aφ (·,·) is continuous we should prove that there exists a constant C such that:

|aφ (φ∗,θ)| ≤ C ‖φ∗‖Vφ
‖θ‖Vφ

∀φ, θ ∈Vφ. (59)

But

|aφ (φ∗,θ)| ≤
∫

Ω
|∇φ∗ (x) · ∇θ (x)| dx ≤ ‖∇φ∗‖L2 ‖∇θ‖L2

(60)

and by some well-known results (see, e.g. Lions, 1981) we know that norm on H1 (Ω) is

equivalent to the space Vφ.

iii) To prove that aφ (·,·) is coercive we have to prove that there exists a constant α > 0 such

that:

aφ (φ∗,φ∗) ≥ α ‖φ∗‖2 ∀φ∗∈Vφ. (61)

However by Poincare’s inequality we have that

aφ (φ∗,φ∗) =
∫

Ω
|∇φ∗ (x)|2 dx = ‖φ∗‖2

Vφ
(62)

and so, by taking alpha equal to α = 1., we obtain it.

iv) It is easy to see that Lφ (·) is a linear.

v) To prove that Lφ (θ) is continuous we have to prove that there exists a constant D > 0 such

that

Lφ (θ) ≤ D ‖θ‖Vφ
∀θ ∈ Vφ. (63)

But

Lφ (θ (x)) ≤
∫

Ω
|(4πρGdivu (x) θ (x) + fφ (x) θ (x))| dx

≤ 4π(maxi=1,...,p ρi)G ‖u‖L2(Ω)3 ‖θ‖Vφ
+ ‖fφ‖V ′

φ
‖θ‖Vφ

,
(64)

so, by taking D as

D = 4π( max
i=1,...,p

ρi)G ‖u‖L2(Ω)3 + ‖fφ‖V ′
φ

(65)

we get (63)
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5.2 Uncoupled problem for the potential (φ assumed to be known).

Now, we consider the next problem on Vu:

(P2) [φi
0, f

i
u]



−∆ui (x)− 1

1− 2νi
∇ (divui (x))− ρig

µi
∇ (ui (x) · ez)

+
ρig

µi
ezdivui (x) = −ρi

µi

∇φi (x) + f i
u (x)

in Ωi,

ui (x) = 0 on ∂lΩi∀i = 1, . . . , p,

ui (x) = ui+1 (x)

∂ui (x)

∂z
=

∂ui+1 (x)

∂z

on ∂+Ωi = ∂−Ωi+1

∀i = 1, . . . , p− 1,

u1 (x) = 0 on ∂+Ω1,

up (x) = 0 on ∂−Ωp.

(66)

Definition 7. We assume the regularity (24) and (26) on the data fφ and φ0. Given φ, with

φ − φ0 ∈ Vφ, we say that function u is a weak solution of the problem (66) if u ∈ Vu and for

every test function w ∈ Vu the following integral identity holds:

p∑
i=1

[
∫

Ωi
(∇ui (x) : ∇wi (x) +

1

1− 2νi
divui (x) divwi (x)− ρig

µi
∇ (ui (x) · ez) ·wi (x)

+
ρig

µi
ezdivui (x) wi (x) dx)] = −

p∑
i=1

ρi

µi

∫
Ωi
∇φi (x) ·wi (x) dx+ 〈fu,w〉V ′

u×Vu
.

(67)

Theorem 8. Assume (24) and (26) on the data fφ and φ0. Assume also that

H(ρ, µ, ν)
(maxi=1,...,p

ρi

µi
)g

2(mini=1,...,p
1

1− 2νi
)

is enough small. (68)

Then there exist a unique weak solution, u, of problem (P2) [φi
0, f

i
u].
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Proof. We define the bilinear form au : Vu × Vu −→ R and the linear form

Lu : Vu −→ R as follows:

au (u,w) :=
p∑

i=1

[
∫

Ωi
(∇ui (x) : ∇wi (x) +

1

1− 2νi
divui (x) divwi (x)−

−ρig

µi
∇ (ui (x) · ez) ·wi (x) +

ρig

µi
ezdivui (x) wi (x) dx)],

Lu (w) := −
p∑

i=1

ρi

µi

∫
Ωi
∇φi (x) ·wi (x) dx+ 〈fu,w〉V ′

u×Vu

(69)

We shall apply the version of the Lax-Milgram theorem given in Gilbarg et al. (1977). We have

to prove that the bilinear form au (·,·) is continuous and coercive, and the lineal form Lu (·) is

continuous. Indeed:

i) It is easy to see that au (·,·) is a bilinear form.

ii) To prove that au (·,·) is continuous we have to prove the existence of a constant C such that:

|au (u,w)| ≤ C ‖u‖Vu
‖w‖Vu

∀u,w ∈Vu . (70)

We have

|au (u,w)| ≤ ‖∇u‖L2 ‖∇w‖L2 + (maxi=1,...,p
1

1− 2νi
) ‖divu‖L2 ‖divw‖L2

+(maxi=1,...,p
ρi

µi
)g[‖∇u‖L2 ‖w‖L2 + ‖divu‖L2 ‖w‖L2 ].

(71)

So, by taking the constant C as

C = 1 + ( max
i=1,...,p

1

1− 2νi
) + 2( max

i=1,...,p

ρi

µi
)g. (72)

the inequality (70) holds.

iii) To prove that au (·,·) is coercive we have to prove the existence of a constant α > 0 such

that:

au (u,u) ≥ α ‖u‖2
Vu

∀u ∈Vu . (73)
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But due to:

p∑
i=1

ρig

µi

∫
Ωi

[−∇
(
ui (x) · ez

)
· ui (x) + ezdivui (x) ui (x) dx)]

= 2

p∑
i=1

ρig

µi

∫
Ωi

ezdivui (x) ui (x) dx (74)

we have that,∣∣∣∣∣
p∑

i=1

∫
Ωi

ρig

µi
[−∇

(
ui (x) · ez

)
· ui (x) + ezdivui (x) ui (x) dx)]

∣∣∣∣∣ ≤ 2( max
i=1,...,p

ρi

µi
)g ‖divu‖L2 ‖u‖L2 .

(75)

So, by applying the Young’s inequality ab ≤ εa2 +
1

4ε
b2 with

ε =
(mini=1,...,p

1

1− 2νi
)

2(maxi=1,...,p
ρi

µi
)g

(76)

we deduce that

au (u,u) ≥ ‖∇u‖2
L2 − C ‖u‖2

L2
(coercive)

with

C =

(maxi=1,...,p
ρi

µi
)g

2(mini=1,...,p
1

1− 2νi
)
. (77)

If we use the equivalence of norms in Vu

‖∇u‖2
L2 ≥ Θ(‖∇u‖2

L2 + ‖u‖2
L2) (78)

we deduce that if

Θ >

(maxi=1,...,p
ρi

µi
)g

2(mini=1,...,p
1

1− 2νi
)

(ratio)

then

au (u,w) ≥ (Θ−
(maxi=1,...,p

ρi

µi
)g

2(mini=1,...,p
1

1− 2νi
)
) ‖∇u‖2

L2 (79)
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and taking

α = Θ−
(maxi=1,,p

ρi

µi
)g

2(mini=1,...,p
1

1− 2νi
)
. (80)

iv) It is easy to see that Lu (·) is a linear form.

v) To prove that Lu (·) is continuous we have to prove the existence of a constant D > 0 such

that:

Lu (w) ≤ D ‖w‖Vu
∀w ∈ Vu . (81)

But we have

Lu (w) ≤ ‖∇φ (x)‖L2 ‖w (x)‖L2 + ‖fu (x)‖L2 ‖w (x)‖L2

≤ (maxi=1,...,p
ρi

µi
) ‖∇φ‖L2 ‖w‖L2 + ‖fu‖V ′

u
‖w‖Vu

(82)

and so, is enough to take

D = ( max
i=1,...p

ρi

µi
) ‖∇φ‖L2 + ‖fu‖V ′

u
. (83)

To treat the general case we can take the Θ constant as

Θ =
1

2
min{ 1

C(Ω)
, 1} (84)

where C(Ω) is the Poincaré constant on the domain Ω. We introduce the change of scale

y = λx what allows to define a rescaling function v(y) = u(λx) which make to emerge terms

in λ associated to the first derivative of u and terms in λ2 associated to second derivatives of

u. In this way, equations satisfied by v(y) are:
−∆vi (y)− 1

1− 2νi
∇ (divvi (y))− ρigλ

µi
∇ (vi (y) · ez)

+
ρigλ

µi
ezdivvi (y) = −ρiλ

µi

∇φi (λ−1y) + λ2f i
u (λ−1y)

in Ωi, (Dilatation equation)

Next, we remark that new constant C(λΩ) can be taken as λC(Ω) since it depends only on

the diameter of Ω. So, in the new system of equations we have to require that the following

inequality is verified:

1

2
min{ 1

λC(Ω)
, 1} >

λ(maxi=1,...,p
ρi

µi
)g

2(mini=1,...,p
1

1− 2νi
).

(85)
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But this is obtained by taking λ small enough. This allows to avoid consider the hypothesis on

H(ρ, µ, ν).

Remark 9. If we do not have hypothesis H(ρ, µ, ν) Fredholm’s alternative (as stated e.g. in

Gilbarg et al., 1977) can be also applied. Uniqueness of solutions of the problem with zero data

would lead to the existence of solution of the problem for arbitrary data.

Remark 10. In fact, by remarking that the last inequality and the change of variable do not

modify the contour of level of u, without loss of generality, we can assume that the coercive

constant is α ≥ 1.

Once proved the above theorems on the uncoupled problems we proceed with the proof of

the main theorem of this paper, that is, the existence of weak solutions for the coupled system

(8).

5.3 General idea of the proof of existence of solutions of the coupled system

The existence of weak solutions for both cases (φ known, problem (P1) [φ1
0,u

i
0, f

i
φ], and u

known, problem (P2) [φi
0, f

i
u]) has been proved. To prove the existence of weak solutions of the

coupled system we will use an iterative scheme which, as matter of facts, is also interesting

for the numerical analysis of the system. Firstly, we shall construct two sequences {un (x)}

and {φn (x)} in following way. We start with the vector φ0 (x) which has the boundary date

φ0 (x) as a first component and the rest of the components 0. With this vector and problem

(P2) [φi
0, f

i
u] we obtain a unique vector u1 (x). Then, putting it in problem (P1) [φ1

0,u
i
0, f

i
φ] we

obtain a unique vector φ1. In way we build the sequences:

φ0 (x) =



φ0 (x)

0

.

.

.

0



(P2)[φi
0,f i

u]
−→ u1 (x) =



u1
1 (x)

u1
2 (x)

.

.

.

u1
p (x)



(P1)[φ1
0,ui

0,f i
φ]

−→ φ1 (x) =



φ1
1 (x)

φ1
2 (x)

.

.

.

φ1
p (x)



(P2)[φi
0,f i

u]
−→
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u2 (x) =



u2
1 (x)

u2
2 (x)

.

.

.

u2
p (x)


...φn−1 (x) =



φn−1
1 (x)

φn−1
2 (x)

.

.

.

φn−1
p (x)



(P2)[φi
0,f i

u]
−→ un (x) =



un
1 (x)

u1
2 (x)

.

.

.

un
p (x)



(P1)[φ1
0,ui

0,f i
φ]

−→

φn (x) =



φn
1 (x)

φn
2 (x)

.

.

.

φn
p (x)


.

Then we prove weak convergence on Vu and Vφ

{un} Vu⇀ u, {φn}
Vφ
⇀ φ (86)

to some functions (u, φ) and more later we will see {u, φ} is weak solution of the coupled

system.

5.3.1 A priori estimates on {un, φn}

Now, we shall construct an iterative scheme by defining a linear operator L on the vector u

as following way:

Lu (x) :=−∆u (x)− 1

1− 2ν
∇ (divu (x))− ρg

µ
∇ (u (x) · ez) +

ρg

µ
ezdivu (x) . (87)

We also define

Fn−1 (x) :=
ρ

µ
∇φn−1 (x) + fu (x) . (88)
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Assuming φn−1 (x) given, then (by the above theorem) we can define un (x) as the unique weak

solution of:  Lun (x) = Fn−1 (x) ,

+ Boundary conditions (9)-(12).
(89)

On the other hand, by defining Jn (x) := 4πρGdivun (x)+fφ (x), we can define φn (x) as unique

weak solution of:  −∆φn (x) = Jn (x) ,

+ (13)-(16).
(90)

The iterative scheme we consider is the following

φ0 φ1 φ2 . . . φn−1 φn

↘ ↑ ↘ ↑ ↑ ↘ ↑

u1 u2 . . . un−1 un

(91)

where the step 2n is determined by iterative scheme (89) and the step 2n + 1 is determined by

(90). We are going to obtain some a priori estimates (independent on n) in order to pass to

the limit.

Lemma 11. We assume that

ε :=
4π2G

αu

( max
i=1,...,p

(ρi)2

µi
) < 1 (92)

Then, for any natural n

‖(φ∗)n‖Vφ
≤ ε

∥∥(φ∗)n−1
∥∥

Vφ
+ δu, (93)

‖un‖Vu
≤ ε

∥∥un−1
∥∥

Vu
+ δφ, (94)

δu =

(maxi=1,...,p
ρi

µi
)

αu

‖fφ‖V ′
φ

+
1

αu

‖f i
u‖V ′

u
+

(maxi=1,...,p
ρi

µi
)

αu

‖φ0‖L2(Ω)

and δφ =
4πG(maxi=1,...,p ρi)

αu

‖f i
u‖V ′

u
+

8πG(maxi=1,...,p
(ρi)2

µi
)

αu

‖φ0‖L2(Ω) + ‖fφ‖V ′
φ
.

(95)

In particular,

‖(φ∗)n‖Vφ
≤ δ

1− ε
, (96)

‖un‖Vu
≤ δ

1− ε
. (97)
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The proof of Lemma 11 is given in the Appendix.

Remark 12. If hypothesis of the last lemma is not verified we can carry out a change of scale in

the spatial variable y = λx so that the final coupled system for rescaled functions ϕ(y) = φ(λx)

and v(y) = u(λx) lead to some new constants (now dependent on λ) which implies that the

new ε verifies this hypothesis. Then, we can always reconsider the system in an appropriate

scale and, in this way, we can conclude that the subsequences {un, φn} are uniformly bounded

on the space V .

5.4 Passing to the limit.

As V is an Hilbert space, from the a priori estimates we can say there exists a subsequence

which converge weakly  um ⇀ u in Vu,

φm ⇀ φ in Vφ.
(98)

From the compact Sobolev embedding H1 ⊂L2 we can say that this subsequence {um, φm}

converges strongly in L2. Now, if we multiply by any test functions we can pass to the limit in

all expressions and so the vectorial function (u, φ) is a weak solution of the problem. Moreover,

from the uniqueness of solutions (already proved), we can affirm that any subsequence of

{un, φn} has to converge to the same vectorial function (u, φ). In this way the proof of the

Theorem 4 is now finished.

6. Conclusion

We have proved the existence and uniqueness of solutions of an elastic-gravitational model

representing an ideal Earth layered. We have now completed a part of the work started by

Rundle in 1982. We have applied some techniques of the weak solutions of partial differential

equations theory give a rigorous proof about the well-posedness of the model. Moreover, we have

given a constructive proof of the existence which will allow us to construct a computational

method, by means of an iterative scheme which we show to be convergent, to compute the

coupled effects of gravity and elastic deformations from possible sources embedded in the Earth.

We also discover that there are suitable spatial scales in which the model is better determined
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than in others due to the delicate balance between the second and first differential terms in the

displacement equation.
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Appendix: Proof of Lemma 11

Let φ∗n be such that

aφ (φ∗n, θ) = 〈Jn, θ〉V ′
φ×Vφ

∀θ ∈ Vφ . (99)

By taking θ = φ∗n then

aφ ((φ∗)n , (φ∗)n) = 〈Jn, (φ∗)n〉V ′
φ×Vφ

≤ ‖Jn‖V ′
φ
‖(φ∗)n‖Vφ

. (100)

But, on the other hand, as the bilinear form is coercive (with αφ = 1) we have

‖(φ∗)n‖2
Vφ
≤ aφ ((φ∗)n , (φ∗)n) ≤ ‖Jn‖V ′

φ
‖(φ∗)n‖Vφ

, (101)

and so

‖(φ∗)n‖Vφ
≤ ‖Jn‖V ′

φ
. (102)

Then, by the definition of the norm of the dual space, we obtain the a priori estimate:

‖φn‖H1(Ω) ≤ 4πρG ‖un‖L2(Ω)3 + ‖fφ‖V ′
φ
. (103)

On the other hand, we remind that if Fn−1 (x) := −ρ

µ
∇φn−1 (x) + fu (x) then we have that

au (un,w) =
〈
Fn−1,w

〉
V ′

u×Vu
∀w ∈ Vu . (104)

Taking as test function w = un we get

au (un,un) =
〈
Fn−1,un

〉
≤
∥∥Fn−1

∥∥
V ′

u
‖un‖Vu

(105)

and from the coerciveness of the bilinear form au we conclude that

αu ‖un‖Vu
≤
∥∥Fn−1

∥∥
V ′

u
, (106)

Substituting ‖φ∗n−1‖L2(Ω) into the estimate obtained in the last step we conclude that

‖un‖Vu
≤ 4πρ2G

µαu

∥∥un−1
∥∥

Vu
+

ρ

µαu

‖fφ‖V ′
φ

+
1

αu

∥∥f i
u

∥∥
V ′

u
+

ρ

µαu

‖φ0‖L2(Ω) . (107)
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Similarly, substituting ‖un‖L2(Ω)3 (in (103)) into the estimate obtained in the last step we arrive

to

‖φn‖H1(Ω) ≤
4πρ2G

µαu

∥∥φn−1
∥∥

H1(Ω)
+

4πρG

αu

∥∥f i
u

∥∥
V ′

u
+

8πρ2G

µαu

‖φ0‖L2(Ω) + ‖fφ‖V ′
φ
, (108)

which finishes the first part of the lemma. The uniform estimates of the statement are obtained

by a recurrence argument by using the sum of a geometrical progression.
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Captions 

 

Figure 1. Domain of the problem. 
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FIGURE 1




