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Abstract. We propose a modi�cation of the classical Navier-Stokes-Boussinesq system of equations,

which governs buoyancy-driven �ows of viscous, incompressible �uids. This modi�cation is motivated

by unresolved issues regarding the global solvability of the classical system in situations where viscous

heating cannot be neglected. A simple model problem leads to a coupled system of two parabolic

equations with a source term involving the square of the gradient of one of the unknowns. In the

present paper, we establish the local-in-time existence and uniqueness of strong solutions for the

model problem. The full system of equations and the global-in-time existence of weak solutions will

be addressed in forthcoming work.
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1 Introduction

The �ow of a viscous, heat-conducting �uid under the force of gravity is governed by a system

of balance equations for momentum, mass, and internal energy (see [1], Ch. 4.1�4.3). In the

so-called Boussinesq approximation, the system is reduced to the Navier-Stokes equations for

a homogeneous, incompressible �uid, coupled to a semilinear heat equation (see [16] or [20]).

The main coupling term is the buoyancy force (generation of momentum due to temperature

gradients); viscous heating (heat production due to internal friction) is neglected. The resulting

initial-boundary value problems are well posed in the same sense as for the classical Navier-

Stokes equations; in particular, they have local-in-time strong solutions and global-in-time weak

solutions (see [10], [11], [17]).
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Nevertheless, in many situations, viscous heating has a signi�cant e¤ect on the �ow and cannot

be neglected. It leads to a quadratic gradient term on the right-hand side of the heat equation,

which causes major mathematical di¢ culties. In the absence of thermal convection due to

buoyancy, these di¢ culties have been addressed and largely overcome (see, for example, [15],

Chapter 3.4, or [9], [18]); but open problems remain if both, buoyancy and viscous heating, are

relevant.

Various models have been proposed, incorporating both of the e¤ects, while maintaining the

relative simplicity of the Boussinesq approximation (see [13] and the references therein). Kagei

et al. [13] derive a model that, besides buoyancy and viscous heating, includes �adiabatic

heating,�which gives rise to an additional term in the heat equation that balances the term

representing viscous heating. This facilitates the energy estimates, based on which the authors

establish the existence and uniqueness of strong solutions, local in time, for a Rayleigh-Bénard

convection problem (i.e. under periodicity auxiliary conditions); for small data, these solutions

are global in time, after a process of simpli�cation of the model made by asymptotic analysis

and with a constant product of the heat capacity by the density. However, there are unresolved

issues regarding the global-in-time existence of (weak) solutions for large data. In the case of

a Newtonian �uid, the only result in this direction appears to be [12], Theorem 2.1, where a

two-dimensional Bénard problem is treated. Higher-dimensional analogues have been obtained

only for a non-Newtonian model [19].

That global existence should be an issue, in this context, is not very surprising: while the

primitive equations, supplemented with suitable boundary conditions, satisfy the principle of

conservation of energy, the simpli�ed equations violate this principle (except in special cases,

see [19], Remark 2). We refer to [6] for a detailed discussion of this inconsistency, which may

well cause solutions to blow up in �nite time (see [4] for a related problem with permanent

blow-up at the boundary).

In this paper we consider a rather simplistic model problem that may not be physically relevant,

yet captures the characteristic mathematical di¢ culty of the full problem. The paper enlarge

and improves the preliminar presentation made in the note [5]. Among other improvements

and as indicated above, our results apply to the case of variable thermal di¤usion coe¢ cient.

A suitable modi�cation of the classical Boussinesq approximation allows us to establish the

local-in-time existence of strong solutions for the resulting initial-boundary value problems

under some restrictions on the size of the initial data and without the simpli�cation made in

[13]. This sets the stage for a forthcoming analysis of the full system of equations and the

construction of global-in-time weak solutions (see [7]).

Consider a unidirectional �ow of a viscous, incompressible �uid, independent of distance in the

�ow direction, in a channel parallel to the constant force of gravity. The �ow can be described

in terms of two scalar variables, a velocity v (scalar since the �ow is unidirectional) and a

temperature �; both are functions of time t 2 R+ and position x 2 
, where 
 denotes the
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cross-section of the �ow channel (a bounded domain in R2). The functions v and � satisfy a
pair of parabolic PDEs of the form

�vt � ��v = �g + f(t); �c�t � div(kr�) = �jrvj2 in (0;1)� 
; (1)

where �, �, c, and �, respectively, denote the density, viscosity, heat capacity, and thermal

conductivity of the �uid; g is the gravitational acceleration (a positive constant). The function

f represents the component of the pressure gradient opposite to the �ow direction, which in

this situation is independent of the spatial variable and plays the role of a given, externally

applied force. The equations must be supplemented by suitable initial conditions at time t = 0

and boundary conditions on @
, for example, a homogeneous Dirichlet condition for v and

a homogeneous Neumann condition for � in the case of mechanically impermeable, thermally

insulated channel walls (bn denotes the unit outward normal vector �eld on @
):
v = 0;

@�

@bn = 0 on (0;1)� @
; (2)

v = v0; � = �0 on f0g � 
: (3)

Since we are interested in buoyancy e¤ects, we have to assume that the density � is a (nonin-

creasing) function of temperature. In general, also the remaining coe¢ cients, �, c, and �, may

depend on temperature; but here, these are assumed to be positive constants. Now suppose

that the temperature scale is chosen such that � can be expected to �uctuate in a fairly narrow

range about the reference temperature � = 0. Then, in a �rst-order approximation, � should

decrease linearly with �, and we can write

� = �0(1� ��); (4)

where �0 = �(0) > 0 is the density at the reference temperature and � = ��0(0)=�(0) > 0 is the
thermal expansion coe¢ cient at the reference temperature. The force of gravity is then given

by

�g = �0g � �0��g: (5)

The constant �0g represents the hydrostatic pressure gradient and may be absorbed into the

applied force f ; the term �0��g represents the force of buoyancy. Of course, (5) makes sense

only as long as � does not deviate too much from 0, and in particular, � must remain positive.

The ansatz (4) is one of the basic assumptions of the Boussinesq approximation; but it is

used only in computing the force of gravity in accordance with (5) � everywhere else in the

governing equations, � is set equal to �0. In other words, the �uid is considered �thermally

compressible, yet mechanically incompressible� (see [20] for a rigorous justi�cation). In the

case of a unidirectional �ow parallel to gravity, as described by the system (1), this means that

we have � = �0(1 � ��) on the right-hand side of the �rst equation, but � = �0 in the terms
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involving the time derivatives of v and �. This causes the characteristic di¢ culty alluded to

earlier (lack of energy conservation), and as far as we know, global-in-time existence of solutions

is an open problem, at least without restrictions on the size of the initial data.

It is natural to ask whether this di¢ culty can be circumvented by using the ansatz (4), or a

generalization thereof, not only in the force of gravity, but also in the rate of change of internal

energy (the term involving �t). In the rate of change of momentum (the term involving vt),

which is of lesser importance in this context, we may either use (4) or set � = �0. Assuming,

for simplicity, that the constants �0, �, g, c, �, and � are all equal to 1 and neglecting the

(nonessential) applied force f , we are led to the systems

vt ��v = �(�); �(�)�t ��� = jrvj2 in (0;1)� 
 (1�)

or

�(�)vt ��v = �(�); �(�)�t ��� = jrvj2 in (0;1)� 
; (1�)

respectively, where �(�) = 1� � or, more generally,

� : R! R is a nonincreasing function, being strictly positive on any interval [�1; a0] for any(6)
a0 2 (0; 1) and with �(0) = 1:

Of course, we should then assume that j�0j < 1 and verify that the solutions we construct satisfy
j�j < 1, at least on a small initial time interval. We point out that some similar ideas were

successfully exploited in [3] and [8], albeit in situations without the quadratic gradient term

(see also [2]). In the above mentioned references the authors consider the case by a function

depending on the own temperature � = �(�): Then, if we introduce the primitive functions

'(s) =

Z s

0

�(�)d� and �(s) =
Z s

0

�(�)d�

then the assumptions �(�); �(�) > 0 lead to the fact that '(s) and �(s) are nondecreasing

real functions. If, for simplicity, we assume that '�1 is a continuous increasing function, by

introducing the new variable � := �(�) we arrive to the equation

�(�)t ��� = jrvj2 in (0;1)� 
; (1�)

where �(s) = �('(s)): Then, our results are valid also to the case in which the di¤usion thermal

coe¢ cient is not constant once we do not made assumptions on how start and end growing the

function �(s) near its "saturation values" (let us say s = �1 and s = 1).
One type of result we prove for the systems (1�) and (1") is as follows:

Let �0 2 C(
) \ H1(
) with �1 6 Min



�0 6 Max



�0 = a0 < 1 and v0 2 H1
0 (
). Assume (6).

Then there exists a time T0 > 0 and a couple (�; v) in L2(0; T0;H2(
))2 � (C([0; T0];Hs(
)))2
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for all s < 2, with
@�

@t
and

@v

@t
in L2(QT0); QT0 =]0; T0[�
, satisfying the system (BS),

8>>>>>>><>>>>>>>:

�(�)n
@v

@t
��v = 1� � on ]0; T0[�
;

�(�)
@�

@t
��� = jrvj2 on ]0; T0[�
;

@�

@n
= v = 0 on ]0; T0[�@
;

�(0) = �0; v(0) = v0;

with n = 0 or n = 1. Moreover, �1 6 Min



�(t) 6 Max



�(t) 6 1 for all T0 > t > 0.
Our method consists in introducing an auxiliary truncated problem (TBS), for which we have

a global-in-time solution, by replacing the quadratic gradient term. For instance, in the above

system (BS), we replace jrvj2 by jrvj2�f�<1g, where f� < 1g = f(t; x) 2 QT ; �(t; x) < 1g,
to obtain the truncated system. We call the solutions of (TBS) �almost exact solutions�. If

the initial data are �small�, we obtain the same regularity properties as in the above system

(BS) for the �almost exact solutions�. In particular, � 2 L2(0; T ;H2(
)) � C([0; T ];Hs(
))

for all s < 2, for all T > 0, and then, using the continuity of the function �, we conclude

that the almost exact solution is a local-in-time solution for the initial problem (1�) or (1�).

Qualitative properties of the solution of (BS) can be derived from our method, for example,

using the truncated system associated with (BS). If we consider the maximal time for which

the truncated system has an exact solution, say,

Tm = supfT0 2]0; T ]; jrvj2�f�<1g = jrvj2 in QT0g;

then we have two possibilities: either Tm = T , in which case the solution we found is a global-

in-time solution on QT ; or Tm < T , in which case there exists a time Tm 6 T1 6 T such that

jf�(T1) = 1gj _�measurefx 2 
 such that �(x; T1) = 1g is positive. Therefore, we have

Tm = inffT1 > Tm : jf�(T1) = 1gj > 0g:

In [7], a new approach will be given without restrictions on the initial data. In this new paper,

we will attempt to explain the link between the degeneracy of the function � and the (eventual)

fact that Tm < T . Moreover, this new approach will be used to treat the full Navier-Stokes-

Boussinesq system of equations.

The proof of the existence of solutions for the truncated problem (TBS) is based on two ap-

proximations: we �rst introduce a family of smooth problems depending on a small parameter

", and we solve it via the Galerkin process. The role of the "-family problem is to derive the

necessary regularity and to prove the maximum principle in order to pass (easily) to the limit,

proving in this way the existence of an �almost exact solution�for the truncated system.
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2 Notation, assumptions and main results

Let V = H1
0 (
); H = H1(
); with 
 � RN ; be a smooth bounded set with N = 2 or 3. We

shall use the following eigenfunctions which are elements of C1(
) \H2(
)

��'j = �Dj 'j in 
; 'j = 0 on @
; j = 1; 2; : : : :

�� j +  j = �Nj  j in 
;
@ j
@n

= 0 on @
 j = 1; 2; : : : :

(we note that  1 is the constant function 1). For T > 0, we set QT =]0; T [�
. We set
Vm = spanf'j; j 6 mg, Hm = spanf j; j 6 mg for m > 1. We recall that

[
m>1

Vm (resp.[
m>1

Hm)(see e.g [22], [14].) is dense in V (resp. in H). We will use the following orthogonal

projections Pm : L2(
) ! Vm; Qm : L
2(
) ! Hm. We suppose that there are two constants

a > b and a function � such that:

� is non increasing on [b; a]; �(a) > 0; �(t) > 0; a < t 6 b and (7)

�+ = max(�; 0) is continuous on [b;+1[:

We denote by � a primitive of � say �(s) =
R s
b
�(�)d�.

We shall introduce the following de�nition of truncated problem :

De�nition 1 Let T be in ]0;1[. A couple (�; v) such that � 2 C([0; T ];L2(
))\L2(0; T ;H1(
))

with �(�) 2 L2(QT ) and v 2 C([0; T ];L2(
))\L2(0; T ;H2(
)) is called a "(weak in � and strong

in v) solution" for the following truncated system (TBS) associated to the equations (1�), if there

exist a real � and a function gv 2 [jrvj2�f�<�g; jrvj2] a.e in QT such that

d

dt

Z



v'dx+

Z



rv � r'dx =
Z



�(�)'dx; in D0(0; T ); 8' 2 H1
0 (
);

d

dt

Z



�(�) dx+

Z



r� � r dx =
Z



gv dx in D0(0; T ); 8 2 H1(
);

A weak solution (�; v) is called an "exact (weak in � and strong in v) solution" on QT if it

satis�es the following condition :

jrvj2 = gv; a.e in QT :

A weak solution (�; v) is called an "almost exact (weak in � and strong in v) solution" on QT
if :

gv = jrvj2�f�<�g a.e in QT :

An exact (resp. almost exact solution with � 2 L2(0; T ;H2(
)) is called a (strong in � and

strong in v) exact solution (resp. strong-strong and almost exact solution).
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The same de�nition holds for the truncated system associated to the equations (1").

If there is a time T0 < T for which one those de�nitions are ful�lled, we will say that it is a

local exact (respectively almost exact) solution.

Remark 1. We note that

jrvj2�f�<�g = jrvj2 � jrvj2�f�>�g

which proves the relationship with the dissipative (in �) term jrvj2�f�>�g (for a prescribed
v).Moreover, if (�; v) is a (weak in � and strong in v) solution and � > �1, with �1 = ess sup

QT

�.

Then,

jrvj2�f�<�1g 6 jrvj2�f�<�g
and equality holds if (�; v) is an almost exact solution.

Now, we give some su¢ cient conditions to obtain an almost solution and an exact solution:

Proposition 1
Let � be a function such that (�; v) is a weak solution for the truncated system with � 2
L

3
2
loc(0; T ;W

2; 3
2

loc (
)), �(�) 2 L1loc(0; T ;W
1;1
loc (
)) and �1 = ess sup

QT

� 6 �. Assume that gv 2

L
3
2 (QT ). Then

gv = jrvj2�f�<�1g:

Furthermore, if � 2 C(QT ) and �0 < �� � for some � > 0 then the couple (v; �) is a local exact
solution.

Proof of Proposition 1. Let us observe that � satisfy

@�(�)

@t
��� = gv in 
:

If � 2 L
3
2
loc(0; T ;W

2; 3
2

loc (
)), and gv 2 L
3
2 (QT ) then

@�(�)

@t
2 L

3
2
loc(QT ). Thus by a well-known

result (see e.g [14]) we have �� =
@�(�)

@t
= 0 a.e. on the set

E =
n
(t; x) 2 QT : �(t; x) = �1

o
:

This means gv(t; x) = 0 a.e on E, since gv = jrvj2 on f� < �1g, then we have the result If
� 2 C(QT ) then the choice of � > 0 so that �0+ � < � and the continuity of � imply that there

exists a time T0 > 0, such that �(t; x) < �� �
2
for all (t; x) 2 QT0 : Therefore, one has

jrvj2�f�<�g = jrvj2; in QT0 :

This shows that the couple is a local exact solution.�
We want to prove that :
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Theorem 1
Let (�0; v0) 2 H1(
)�H1

0 (
); b 6 �0 6 a.

For any T > 0, there exists at least a weak solution (�; v) for the truncated system (TBS)

associated to equations (1�) with b 6 � 6 a, v(0) = v0; �(0) = �0; gv 2 [jrvj2�f�<ag; jrvj2] a.e
in QT .

If �(a) > 0 then this weak solution is a strong and almost exact solution. Moreover � 2
L2(0; T ;H2(
)) \ C([0; T ];Hs(
)); 8s < 2:
In this case if the initial data is such that �0 < a � � with some � > 0, then this strong and

almost exact solution is a local exact solution, that is a local-in-time solution of the Boussinesq

system (1�) .

Proof. Consider a sequence �m 2 W 1;+1([b;+1[), j�m � �+jC[b;d] ! 0; as m ! 1 8d <

+1; �m is non increasing on [b;+1[. Let 0 < " < 1 and de�ne the real functions, for � 2 R

�0(�) = �+((� � b)+ + b); �"(�) = �0(�) + "; S"(�) =
(a� (� � b)+ � b)+

(a� (� � b)+ � b)+ + "
:

We shall associate the following functions, for � 2 R

�";m(�) = �m((� � b)+ + b) + ":

We note that " 6 �";m 6 �m(b) + 1 6 k = max
j>0

�j(b) + 1; 0 < " 6 �" 6 �(b) + 1.

From the Cauchy-Peano�s theorem, there exists for all m > 1 �m 2 C1([0; Tm);Hm) and vm 2
C1([0; Tm);Vm) for some 0 < Tm 6 T , satisfying : 8' 2 Vm; 8 2 Hm, for all t 2 [0; Tm),
�m(0) = Qm�0, vm(0) = Pmv0

d

dt

Z



vm(t)'dx+

Z



rvm(t) � r'dx =
Z



�0(�m(t))'dx; (8)

d

dt

Z



�m(t) +

Z



r�m(t) � r
�

 

�";m(�m(t))

�
dx =

Z



 

�";m(�m(t))

jrvm(t)j2
1 + "jrvm(t)j2

S"(�m(t))dx:

(9)

To show that Tm = T , we need some estimates on vm and �m. Those estimates will be uniform

in m.�

Lemma 1 For all t 2 [0; Tm)

(a)
d

dt

Z



jrvm(t)j2dx+
Z



j�vm(t)j2dx 6 (�(b))2j
j; in D0(0; Tm)

(b)
d

dt

Z



jr�m(t)j2 +
Z



j��m(t)j2
�";m(�m(t))

6 1

"3
j
j; in D0(0; Tm):
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Proof. To prove (a) we use the fact that vm 2 C1([0; Tm);Vm), for each t 2 (0; Tm). Then we
have :

��vm(t) 2 H1
0 (
) and,

d

dt

Z



vm(t)'dx =

Z



@vm
@t
(t)'(x)dx 8' 2 H1

0 (
);

and therefore, we can ' = ��vm(t): An integration by part yields

1

2

d

dt

Z



jrvm(t)j2dx+
Z



j�vm(t)j2dx = �
Z



�0(�m(t))�vm(t)dx:

Since 0 6 �0(�m) 6 �(b), then by the Young�s inequality we deduce

d

dt

Z



jrvm(t)j2dx+
Z



j�vm(t)j2dx 6 (�(b))2j
j:

(b) A similar argument holds for �m. Choosing  = ���m(t) and noticing that
@ 

@n
= 0 on

@
, an integration by parts gives :

1

2

d

dt

Z



jr�m(t)j2 +
Z



j��m(t)j2
�";m(�m)

dx 6 1

"

Z



j��m(t)j
�";m(�m(t))

dx:

But " 6 �";m(�m(t)), thus the Young�s inequality yields

d

dt

Z



jr�m(t)j2 +
Z



j��m(t)j2
�";m(�m)

6 1

"3
j
j:�

Lemma 1 shows that Tm = T . Moreover, one has an uniform boundedness for vm as m! +1.
Indeed, since vm(t) 2 H1

0 (
), the Sobolev-Poincaré inequality with estimate (a) implies that vm
remains in a bounded set of L2(0; T ;H2(
)) and in L1(0; T ;H1

0 (
)):While for �m, we need to

control for instance
Z



�m(t; x)
2dx . To do this, we shall denote by c or ci where i is an integer

greater than one, various constants independent of m and ", the constants depending on " will

be denoted by c":

Lemma 2 For all t 2 [0; T ] Z



j�m(t; x)j2 dx 6 c":

Proof. We take  = �m(t) in relation (9). An integration by part and relation (9) yield

1

2

d

dt

Z



�2m(t; x)dx 6 c"

Z



j�m(t; x)jdx+
Z



��m(t; x)

�";m(�m(t))
�m(t; x)dx: (10)

The statement (b) of Lemma 1 implies thatZ T

0

Z



j��mj2(t; x)
�";m(�m(t))

dxdt 6 c"(T; �0): (11)
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Relation (10) gives the following Gronwall inequality,

1

2

d

dt

Z



�2m(t; x)dx 6 c" +
c

"

Z



�2m(t; x)dx+

Z



j��mj2(t; x)
�";m(�m(t))

dx: (12)

From relations (11) and (12), we conclude the Lemma 2.�
The Lemma 1 and Lemma 2 show that �m remains in a bounded set of L2(0; T ;H2(
)) and in

L1(0; T ;H1(
)) as m! +1.While for the time derivative, those uniform estimates combined
with the equations satis�ed by vm and �m imply :

Lemma 3 We have:

i)

����@vm@t
����
L2(QT )

6 j�vmjL2(QT ) + j�0(�m)jL2(QT ) 6 c;

ii)

����@�m@t
����
L2(QT )

6
���� ��m
�";m(�m)

����
L2(QT )

+
(T j
j) 12
"2

6 c":

Proof. The time derivatives satisfy the following equations :

@vm
@t

= �vm + Pm(�0(�m)); (13)

@�m
@t

= Qm

�
��m

�";m(�m)

�
+Qm

�
S"(�m)jrvmj2

(1 + "jrvmj2)�";m(�m)

�
(14)

Since the projection is a contraction, relations (13), (14) with Lemma 2 imply Lemma 3. }
Proof of Theorem 1 (continuation). By Aubin-Lions-Simon�s classical compactness results
(see e.g [15], [21]), [22] , we have a couple (�"; v") such that vm ! v" strongly in C([0; T ]; Hs(
)\
H1
0 (
)) for all s < 2; and weakly in L

2(0; T ;H2(
)); and �m ! �" strongly in C([0; T ]; Hs(
)) for all s <

2 and weakly in L2(0; T ;H2(
)):Moreover, we have the following weak convergences in L2(QT )

:
@vm
@t

*
@v"

@t
;

@�m
@t

*
@�"

@t
:

From the uniform convergence of �";m to �" on any bounded interval as m goes to1, we deduce
that : �";m(�m) ! �"(�

") uniformly in C(QT ): Due to the above convergences , one can see

easily that the couple (�"; v") is a solution of :

@v"

@t
= �v" + �0(�

") (15)

@�"

@t
=

��"

�"(�
")
+

S"(�
")jrv"j2

(1 + "jrv"j2)�"(�")
; (16)

10



with the initial data v"(0) = v0 and �
"(0) = �0: Moreover, on the boundary @
, we have that

the normal trace of �"(t), t 2 [0; T ]: @�
"(t)

@n
and the trace of v"(t) are zero . This system is

equivalent to the following one in D0(0; T ): for all ' 2 H1
0 (
); for all  2 H1(
)

d

dt

Z



v"'+

Z



rv" � r'dx =
Z



'�0(�
")dx; (17)

d

dt

Z



�"(�
") dx+

Z



r�" � r dx =
Z



S"(�
")jrv"j2

1 + "jrv"j2  dx:� (18)

Here, �"(s) =
R s
b
�"(y)dy. For the function �

", we need to show �rst the :

Lemma 4
If b 6 �0 6 a a.e in 
 then b 6 �" 6 a a.e in QT :

Proof . We multiply the equation by �"(�
")(�" � b)�. Relation (16) gives :Z




@�"

@t
�"(�

")(�" � b)�dx+

Z



r�" � r(�" � b)�dx =

Z



S"(�
")jrv"j2

1 + "jrv"j2 (�
" � b)�dx:

Since the right hand side is non negative, then one has :

�"+ �(b)

2

d

dt

Z



((�" � b)�)
2dx�

Z



jr(�" � b)�j2dx > 0;

thus one has : Z



((�" � b)�(t; x))
2dx 6

Z



((�"0 � b)�)
2(x)dx = 0

and so a.e in QT : �
" > b: Multiplying the equation by �"(�

")(�" � a)+ equation (16)Z



(�" � a)+�"(�
")
@�"

@t
dx+

Z



jr(�" � a)+j2dx =
Z



(�" � a)+S"(�
")jrv"j2

1 + "jrv"j2 dx = 0:

That is
d

dt

Z



Z �"

b

�
�0(�) + "

�
(� � a)+d� +

Z



jr(�" � a)+j2dx = 0:

Then for all t :Z



Z �"(t;x)

b

�
�0(�) + "

�
(� � a)+d�dx 6

Z



Z �0(x)

b

�
�0(�) + "

�
(� � a)+d�dx = 0

we deduce �" 6 a; a.e in QT :�

To get some uniform a priori estimates in " on v", we recall �rstly that Lemma 1, with the

previous convergence (or using directly the above equation (15)) imply :

Corollary 1 .We have:

(a)
d

dt

Z



jrv"(t)j2dx+
Z



j�v"(t)j2dx 6 (�(b))2j
j; in D0(0; T ).

11



(b)

����@v"@t
����
L2(QT )

6 c.�

Thus, we can conclude as before, by Aubin-Lions-Simon�s classical compactness results (see e.g.

[15] [21], [22]), that v" ! v strongly in C([0; T ]; Hs(
) \ H1
0 (
)) for all s < 2 and weakly in

L2(0; T ;H2(
)): Moreover, we have the following weak convergence in L2(QT ) :

@v"

@t
*

@v

@t
:

Lemma 5
�" remains in a bounded set of L2(0; T ;H1(
)) as "! 0.

Proof. We multiply the equation (16) by �"�"(�
") to get:Z




�"�"(�
")
@�"

@t
dt+

Z



jr�"j2dx =
Z



�"S"(�
")jrv"j2

1 + "jrv"j2 dx; (19)

Z T

0

dt

Z



jr�"j2dx 6 �
Z T

0

dt

Z



�"�"(�
")
@�"

@t
+max(jaj; jbj)

Z T

0

Z



jrv"j2dxdt; (20)

and Z T

0

dt

Z



�"(�
")
@�"

@t
dx =

Z T

0

d

dt

�Z



dx

Z �"

b

��"(�)d�

�
dt: (21)����Z T

0

dt

Z



�"�"(�
")
@�"

@t
dx

���� 6 �Z



(�")2(T; x)dx+

Z



�20(x)dx

�
(�(b) + 1) 6 c1: (22)

Thus relation (20) with corollary 1 give :Z T

0

Z



jr�"j2dxdt 6 c1 +max(jaj; jbj)T (�(b) + 1)2j
j+
Z



jrv0j2dx = c2:�

End of the proof of Theorem 1. Let �"(�") =
Z �"

b

�"(�)d�, then from equation (16), we

have : ����@�"(�")@t

����
H�1(
)

6 jr�"jL2(
) +
��jrv"j2��

L2(
)
:

An interpolation argument (see e.g. [22], [14])shows that for N = 2 :��jrv"j2��
L2(
)

= jrv"j2L4(
) 6 cjrv"jL2(
)jv"jH2(
) 6 cjv"jH2(
): (23)

Thus Z T

0

����@�"(�")@t

����2
H�1(
)

dt 6 c
h
jr�"j2L2(QT ) + jv

"j2L2(0;T ;H2(
)

i
6 c3:

If N = 3 then for all  2 H1
0 (
)Z




jrv"j2 dx 6 j jL3(
)jrv"j2L3(
): (24)
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Using an interpolation argument (see e.g. [22], [14]) we have

jrv"j2L3(
) 6 c4jv"jH2(
)jv"jL6(
) 6 c5jv"jH2(
):

Therefore, ����@�"(�")@t

����
H�1(
)

6 c6

h
jr�"jL2(
) + jv"jH2(
)

i
which implies Z T

0

����@�"(�")@t

����2
H�1(
)

dt 6 c7:

Thus, in any case �"(�
")t remains in a bounded set of L2(0; T ;H�1(
)). Since, we have

jr�"(�")j2L2(QT ) =
Z
QT

(�"(�
"))2jr�"j2dx 6 (�(b) + 1)2

Z
QT

jr�"j2dxdt 6 c8;

the Aubin-Lions-Simon�s compactness result implies the existence of a function w satisfying

�"(�
") converges to w strongly in C([0; T ];L2(
)) and a.e. in QT : Therefore,

R �"
b
�(�)d�+ "�"

converges to w strongly in C([0; T ];L2(
)) and a.e in QT and

0 6 w 6
Z a

b

�(�)d�; w(0; x) =

Z �0(x)

b

�(�)d�:

Since the restriction of � to [b; a], that is the map �0 : [b; a]! R+ given by �0(�) =
R �
b
�(s)ds,

is a continuous bijection from [b; a] onto
�
0;

Z a

b

�(s)ds

�
and its inverse ��10 is continuous, we

deduce that :

��10

�Z �"

b

�(�)d�

�
= �" ! ��10 (w)

almost everywhere on QT . Then, we can de�ne � _���10 (w): Thus � 2 L2(0; T ;H1(
)) and b 6
� 6 a a.e. in QT . Hence, we have the following convergences : �

" * � weakly in L2(0; T ;H1(
));

�"(�
") ! �(�) strongly in C([0; T ];L2(
)) and a.e. in QT : Therefore �0(�

") ! �0(�) in any

Lp(QT ); p < +1 and S"(�
")! 1 on f� < ag.

To show that lim
t!t0

Z



j�(t; x) � �(t0; x)jpdx = 0; it su¢ ces to show the case p = 1. We may

assume that t0 = 0: We know that

lim
t!0

Z



jw(t; x)� w(0; x)jdx = 0;

thus

lim
t!0

Z



j��10 (w(t; x))� ��10 (w(0; x))jdx = 0;

(arguing by contradiction and using the continuity of ��10 ), that is

0 = lim
t!0

Z



j�(t; x)� ��10 (w((0; x))jdx and ��10 (w(0; x)) = �0(x):

13



Passing to the limit in equation (17) and (18), we deduce that (v; �) is a solution of

d

dt

Z



v'dx+

Z



rvr' =
Z



'�(�)dx;

d

dt

Z



�(�) +

Z



r�r dx =
Z



 gvdx;

with gv 2
h
jrvj2�f�<ag; jrvj2

i
which proves the required question.

We �rst note that �(a) > 0 implies that �"(�) > �(a) > 0.

From relation (16) one has

1

2

d

dt

Z



jr�"j2dx+
Z



j��"j2
�"(�

")
dx 6

Z



jrv"j2j��"j
�"(�

")
dx: (25)

From which we deduce

1

2

d

dt

Z



jr�"j2dx+ 1

2(�(b) + 1)

Z



j��"j2dx 6 1

2�(a)

Z



jrv"j4dx: (26)

Since v" belongs to a bounded set of L2(0; T ;H2(
)) \ L1(0; T ;H1
0 (
)), we know that if N=2

jrv"j belongs to a bounded set of L4(QT ). This show thatZ T

0

Z



j��"j2dxdt+ sup
t

Z



jr�"(t; x)j2dx 6 c: (27)

If N = 3, the same estimate holds for the gradient of v� according to the Ladyzenskaja and al

result (see [14]) since the equation is linear in divergence form :

jrv"jL4(QT ) 6 c

then (27) holds. Therefore, ��t remains in a bounded set of L
2(0; T ;L2(
). We conclude using

standard compactness result: (v�; ��) converges to (v; �) in strongly C([0; T ];Hs
0(
))

2 for all

s < 2 and weakly in L2(0; T ;H2(
))2. This allows to pass easily to the limit in the equation.

If �0 < a � � with some � > 0, then this weak solution is a local exact solution since one has

� 2 C([0; T ];Hs(
)) � C(QT ) for s >
3

2
.Thus, we may apply the �rst proposition to arrive to

the conclusion.�

3 Some Extensions and Qualitative Properties

The following corollary is directly related to the model of � given in relation (4). Assuming for

simplicity that � = �0 = 1.

Corollary 2
Let �1 6 �0 6 1; (�0; v0) 2 H1(
) � H1

0 (
). Then for all T > 0, there exist a function � 2

14



L2(0; T ;H1(
)); �1 6 � 6 1 with � 2 C([0; T ];L2(
)), v 2 C([0; T ];H1
0 (
)) \ L2(0; T ;H2(
))

satisfying 8' 2 H1
0 (
);8 2 H1(
) that

d

dt

Z



v(t; x)'(x)dx+

Z



r'(x)rv(t; x)dx =
Z



'(x)(1� �(t; x))dx

and

�1
2

d

dt

Z



(1� �)2 (x)dx+

Z



r (x)r�(t; x)(t; x)dx =
Z



 (x)gv(t; x)dx; in D0(0; T )

with gv 2 [jrvj2�f�<1g; jrvj2] ; v(0) = v0; �(0) = �0,.

Proof. We choose b = �1; a = 1; �(�) = 1� �; � 2 R.�

We may also �nd an almost exact solution for the truncated system associated to the equations

(1") if we assume that �(a) > 0 and N = 2. Then we have :

Theorem 2 (An almost exact solution(1") N=2)
Let �; �0; v0 be as in theorem 1. Assume N=2 and that �(a) > 0. Then, we have a regular

solution (�; v) satisfying also 8><>:
�(�)

@v

@t
��v = �(�);

�(� )
@�

@t
��� = jrvj2�f�<ag:

(28)

with 8>>>>>>><>>>>>>>:

(v; �) 2 L2(0; T ;H2(
))2 � C([0; T ]; Hs(
))2; s < 2
@�

@t
;
@v

@t
are in L2(QT );

v(0) = v0; �(0) = �0;
@�

@n
(t) = v(t) = 0 on @
 and a.e. in (0; T ):

Proof : Using the same function �" and mimicking the above method given in the proof of
theorem 1, we have from relations (15) and (16) the

Theorem 3 There exists (�"; v") 2 L2(0; T ;H2(
))2 � C([0; T ];H1(
))2 satisfying : b 6 �" 6
a; in D0(QT ) and a.e. in 
8>><>>:

@v"

@t
=

�v"

�"(�")
+
�0(�

")

�"(�
")

@�"

@t
=

��"

�"(�
")
+

S"(�
")jrv"j2

(1 + "jrv"j2)�"(�")

with
@�"

@n
(t) = v"(t) = 0 on @
 for a.e t 2 (0; T ); v"(0) = v0; �

"(0) = �0.
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Next, we shall need some uniform a priori estimates in ". The fact that b 6 �" 6 a follows from

Lemma 4.

Lemma 6 i)
Z



�"(�
")

�
@v"

@t

�2
dx+

d

dt

Z



jrv"j2 6
Z



�0(�
")dx 6 �(b)j
j < +1.

ii)
Z
QT

j�v"j2dxdt 6 c:

Proof. Using Galerkin�s approximation of v", one has :
1

2

d

dt

Z



jrv"j2dx =
Z



�v"
@v"

@t
dx in

D0(0; T ) and also a.e. in (0:T ). Thus multiplying the �rst equation of the above Lemma 6 by
�"(�

")
@v"

@t
, we then have :Z




�"(�
")

�
@v"

@t

�2
dx+

1

2

d

dt

Z



jrv"j2dx =
Z



�0(�
")
@v"

@t
dx: (29)

By the Cauchy Schwarz�s inequality, one has :Z



�0(�
")

�
@v"

@t

�
dx 6 1

2

Z



�0(�
")dx+

1

2

Z



�
@v"

@t

�2
�0(�

")dx: (30)

Since �"(�
") = �0(�

") + ", we deduce from relations (29) and (30) that :Z



�"(�
")

�
@v"

@t

�2
dx+

d

dt

Z



jrv"j2dx 6
Z



�0(�
")dx 6 �(b)j
j < +1:

To prove the second statement ii), we recall that

�v" = �"(�
")
@v"

@t
� �0(�

");

therefore,

j�v"jL2(QT ) 6
�����"(�")@v"@t

����
L2(QT )

+ j�0(�")jL2(QT ): (31)

Since �"(�
") 6 �(b) + 1 then, relation (31) yields

j�v"jL2(QT ) 6 (�(b) + 1)
 Z

QT

�"(�
")

�
@v"

@t

�2
dxdt

! 1
2

+ �(b)jQT j: (32)

Using the �rst statement i), we deduce the result.�
End of the proof of Theorem 2. As consequence of the above theorem, v" remains in a
bounded set of L2(0; T ;H2(
)) \ L1(0; T ;H1

0 (
)). Assuming that �(a) > 0, then we have :

�"(�
") > �(a) > 0 since b 6 �" 6 a:

Thus we deduce from Lemma 6 that

�(a)

Z
QT

�
@v"

@t

�2
dxdt 6 c:
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Therefore, applying the well-known compactness results, there exists a function v 2 L2(0; T ;H2(
))\
C([0; T ];H1

0 (
)) such that v
" ! v strongly in C([0; T ];Hs(
)\H1

0 (
)) for all s < 2 and weakly

in L2(0; T ;H2(
)).

The estimate on �" remains the same as for Lemma 5. That is �" remains in a bounded set of

L2(0; T ;H1(
)). Moreover, we also have the uniform boundedness of
@�"

@t
in L2(QT ). Indeed

since �"(�
") > �(a) > 0, relation (27) shows that �" remains in a bounded set of L2(0; T ;H2(
)).

By relation (23), if N = 2 on has:Z
QT

jrv"j4dxdt 6 cjv"j2L2(0;T ;H2) 6 c: (33)

Therefore, the equation

��" = �"(�
")
@�"

@t
� S"(�

")jrv"j2
1 + "jrv"j2 ;

yields

�(a)

����@�"@t
����
L2(QT )

6 j��"jL2(QT ) + jrv"j2L4(QT ) 6 c:

This shows that �" remains in a bounded set of L2(0; T ;H2)\C([0; T ];H1(
)) and
@�"

@t
remains

a bounded set of L2(QT ). Thus, we have a function �, �
" ! � strongly in C([0; T ];Hs(
)) for

all s < 2; and converging weakly in L2(0; T ;H2(
)): As before, we can easily pass to limit in

the equations given in Theorem 3 via the Proposition 1 that :8>>>>>>>>>><>>>>>>>>>>:

�(�)
@v

@t
��v = �(�) a.e. in QT ;

�(� )
@�

@t
��� = jrvj2�f�<ag a.e. in QT

(v; �) 2 L2(0; T ;H2(
))2 � (C[0; T ];Hs(
))2; s < 2;
@�

@n
(t) = v(t) = 0 on @
 and for a.e. t 2 (0; T );

v(0) = v0; �(0) = �0:�

As a Corollary of the above theorem, we can come back to the original equation :

Corollary 3 . Let N=2, �0 2 C(
)\H1(
) with �1 6 Min



�0 6 Max



�0 = a0 < 1��, for some
� > 0 and v0 2 H1

0 (
). Then there is a couple (�; v) in L
2(0; T ;H2(
))2� (C[0; T ];Hs(
))2 for

all s < 2, with
@�

@t
and

@v

@t
in L2(QT ) satisfying :8>>>>>>><>>>>>>>:

(1� �)n
@v

@t
��v = 1� �; in QT

(1� � )
@�

@t
��� = jrvj2�f�<1g in QT ;

@�

@n
= v = 0 on (0; T )� @
;

�(0) = �0; : v(0) = v0;
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whenever n = 0 or n = 1: Moreover, �1 6 Min



�(t) 6 Max



�(t) 6 1 � �

2
for all t > 0. This

solution is a local strong and exact solution, that is a solution of (1�) or (1�).

}

4 Uniqueness of the Solution of (BS)

An example of results showing the continuous dependence with respect to the initial data and,

in particular, the uniqueness of the strong solution for the system (1�), is the following.

Proposition 2 Let N = 2; n = 0 in Corollary 3. Consider two solutions (vi; �i) satisfying

�1 < b < �i < a < 1 for i = 1; 2. Then,

jr(v1 � v2)j2L2(t) + j�1 � �2j2L2(t) 6
�
jr(v1(0)� v2(0))j2 + j�1(0)� �2(0)j2

�
exp

�Z T

0

g(�)d�

�
with Z T

0

g(�)d� 6 c(a; b; T )
�
1 + jrv1(0)j2L2 + jrv2(0)j2L2 + jr�1(0)j2L2 + jr�2(0)j2L2

�
:

In particular the couple (�; v) solution of the system (BS) is the unique solution on QT .

Proof. Let (�i; vi); i = 1; 2 be two couples satisfying the equations, regularities of Corollary 3

with the additional conditions j�ij1 6 1 � � < 1. To simplify our computations, we shall set

w = v1 � v2; u = �1 � �2, and denote j � jp the norm in Lp(
). Then, w and u satis�es :

wt ��w = �2 � �1 (34)

ut �
��1
1� �1

+
��2
1� �2

=
jrv1j2
1� �1

� jrv2j2
1� �2

(35)

Multiplying equation (34) by ��w, we then have :

d

dt
jrwj22 + j�wj22 6 cjuj22: (36)

Multiplying equation(35) by u, one has :

1

2

d

dt
juj2L2�

Z



u�u

1� �1
dx =

Z



��2
(�1 � �2)

2

(1� �1)(1� �2)
dx+

Z



jrv1j2 � jrv2j2
1� �1

dx+

Z



(�1 � �2)
2jrv2j2

(1� �1)(1� �2)
dx

(37)

Since 0 < 1� j�0j1 6 1, we deduce from relation (37), after integration by part, that :

d

dt
juj2L2 + c1

Z



jruj2dx (38)
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6 c

Z



jr�1jjrujjujdx+ c

Z



j��2jjuj2dx+ c

Z



jrwjjr(v1 � v2)jjujdx+ c

Z



jrv2j2juj2dx

= I1 + I2 + I3 + I4

We have the following estimates using usual interpolation arguments (see [22], [14]), for all

� > 0;

I1 = c

Z



jr�1jjrujjujdx

6 jrujL2jr�1jL4jujL4

6 �jruj2L2 + c�jr�1j2L4juj2L4
6 �jruj2L2 + c�jr�1j2L4jrujL2jujL2

6 �jruj2L2 + c�jr�1j4L4juj2L2 (39)

I2 = c

Z



j��2jjuj2dx

6 cj��2jL2juj2L4
6 cj��2jL2jujL2

h
jujL2 + jrujL2

i
6 cj��2j2juj2L2 + c�j��2j2L2juj2L2 + �jruj2L2 (40)

I3 = c

Z



jrwjjr(v1 � v2)jjujdx

6 cjrwjL2jr(v1 + v2)jL4jujL4

6 �jrwj2L2 + c�jr(v1 + v2)j2L4juj2L4
6 �jrwj2L2 + c�jr(v1 + v2)j2L4jujL2

h
jujL2 + jrujL2

i
6 �jrwj2L2 + c�jr(v1 + v2)j2L4juj2L2 + c�jr(v1 + v2)j4L4juj2L2 + �jruj2L2 (41)

I4 = c

Z



jrv2j2juj2dx

6 cjrv2j2L4juj2L4
6 cjrv2j2L4jujL2

h
jujL2 + jrujL2

i
6 cjrv2j2L4juj2L2 + c�jrv2j4L4 juj2L2 + �jruj2L2 (42)

Thus relation (38) becomes :

d

dt
juj2L2 + (c10 � 4�)jruj2L2 6 c�

�
jr�1j4L4 + j��2j2L2 + jrv1j4L4 + jrv2j4L4 + 1

�
juj2L2 + �jrwj2L2

Choosing � > 0 (enough small) and adding relation (36) and (??), one has for c11 > 0 :

d

dt

h
jrwj2L2 + juj2L2

i
+ c11

h
jruj2L2 + j�wj2L2

i
6 g(t)

h
juj2L2 + jrwj2L2

i
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with g(t) = c12

h
jr�1j4L4 + j��2j2L2 + jrv1j4L4 + jrv2j4L4 + 1

i
. Then g(t) 2 L1(0; T ) due to the

regularity of (�; v) say (�; v) 2 L2(0; T ;H2(
))2 \ C([0; T ];H1(
))2.

Thus, this Gronwall inequality shows that :

jrwj2L2(t) + juj2L2(t) 6
�
jrw0j2 + ju0j2

�
exp

�Z T

0

g(�)d�

�
= 0

�1 = �2 and v1 = v2. }
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