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ELLIPTIC PROBLEMS ON THE SPACE OF WEIGHTED WITH
THE DISTANCE TO THE BOUNDARY INTEGRABLE

FUNCTIONS REVISITED

JESÚS IDELFONSO DÍAZ, JEAN-MICHEL RAKOTOSON

Abstract. We revisit the regularity of very weak solution to second-order
elliptic equations Lu = f in Ω with u = 0 on ∂Ω for f ∈ L1(Ω, δ), δ(x) the

distance to the boundary ∂Ω. While doing this, we extend our previous results
(and many others in the literature) by allowing the presence of distributions

f+g which are more general than Radon measures (more precisely with g in the

dual of suitable Lorentz-Sobolev spaces) and by making weaker assumptions
on the coefficients of L. One of the new tools is a Hardy type inequality

developed recently by the second author. Applications to the study of the

gradient of solutions of some singular semilinear equations are also given.

1. Introduction

In recent works [1, 11, 12, 13, 23, 24, 25] a complete study of the differentiability
of very weak solutions (the so called Brezis’ problem) was done. This problem reads
as follows

u ∈ L1(Ω),
∫

Ω

uL∗ϕdx =
∫

Ω

fϕ dx ∀ϕ ∈ C2(Ω), ϕ = 0 on ∂Ω,

where f is an integrable function with the distance function to the boundary as
weight.

In those works strong regularity on the data were assumed either for Ω (which was
at least of class C2 at least) or for the coefficients of the linear operator L (assumed
to be in C0,1) and always for f ∈ L1(Ω, δ). We want to show here that we can
weaken all the data that we have considered namely we can replace f by f−

∑
i
∂fi
∂xi

,
fi ∈ L1(Ω). This result can be seen as an extension of Stampacchia [27] and Brezis-
Strauss results for L1(Ω)-data [4]. More precisely, we shall show that we can replace
f by a more general datum f+g with g ∈W−1LN

′,∞(Ω) =
(
W 1

0L
N,1(Ω)

)∗. Notice
that since W 1

0L
N,1(Ω) ⊂ C(Ω) thenM(Ω) ⊂W−1LN

′,∞(Ω), whereM(Ω) denotes
the set of bounded Radon measures. Moreover, if f ∈ L1

(
Ω, δ(1 + | log δ|)

)
we can

weaken the regularity of Ω, that is the boundary is of class C1,γ for some γ ∈ (0, 1]
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and to assume the coefficients of L less regular. These improvements have been
obtained thanks to a better use of some old or new Hardy inequalities. As an
application, we will show that the use of those Hardy inequalities to some singular
semilinear problems allows to get results proved previously by different authors as
Ghergu [16], Mancebo-Hernandez [15], Del Pino [10], Dı́az-Hernandez-Rakotoson
[13] , Gui-Lin [17].

Finally, we also give new applications of the new Hardy inequalities considered
here, as the existence and regularity of the very weak solution to the nonlinear
Dirichlet equation

−∆u =
â(x)

ua(1 + log+ u)m +K(x, u)
= f(x) in Ω,

with K(x, 0) = 0.

2. Notation and preliminary results

For a Lebesgue measurable set E of Ω we denote by |E| its measure and χE its
characteristic function.

The decreasing rearrangement of a measurable function u : Ω→ R is given by

u∗ : Ω∗ =
]
0, |Ω|

[
→ R, u∗(s) = inf{t ∈ R : |u > t| 6 s},

u∗(0) = ess supΩ u, u∗(|Ω|) = ess infΩ u,

|u|∗∗(t) =
1
t

∫ t

0

|u|∗(s)ds for t ∈ Ω∗ =
]
0, |Ω

[
.

We shall use the following Lorentz spaces (see [2, 26] for example), for 1 < p 6 +∞,
1 6 q 6 +∞:

Lp,q(Ω) =
{
v : Ω→ R measurable |v|qLp,q =

∫ |Ω|
0

[t1/p|v|∗∗(t)]q
dt

t
< +∞

}
,

for q < +∞.

Lp,∞(Ω) =
{
v : Ω→ R measurable |v|Lp,∞ = sup

t6|Ω|
t1/p|v|∗∗(t) < +∞

}
.

We recall that

Lp,p(Ω) = Lp(Ω), Lp,s(Ω) ⊂ Lr,q(Ω) once r < p, for any q, s ∈ [1,+∞].

Finally we notice that

Lp,1(Ω) ⊂ Lp,s(Ω) ⊂ Lp,q(Ω) ⊂ Lp,∞(Ω) if 1 6 s < q 6 +∞,

for any p ∈]1,+∞]. We denote ∂i = ∂
∂xi

, ∂ij = ∂2

∂xi∂xj
, and by χE the characteristic

function of a set E ⊂ Ω.
For α > 0, we introduce now Zygmund spaces Lαexp(Ω) and L(logL). They satisfy

the following inclusions L∞ ⊂ Lαexp ⊂ Lp ⊂ L(logL) ⊂ L1 for any p ∈ (1,+∞).
Although there are several equivalent formulations we prefer the following ones:

Lαexp(Ω) =
{
v : Ω→ R measurable: ‖v‖α = sup

t6|Ω|

|v|∗∗(t)(
1 + log |Ω|t

)α < +∞
}
,

It is a Banach space under the norm

‖v‖Lαexp(Ω) = sup
0<t<|Ω|

|v|∗∗(t)
(1 + log |Ω|t )α

.



EJDE-2014/CONF/21 ELLIPTIC PROBLEMS 47

W 1Lαexp(Ω) =
{
v ∈ L1(Ω) : |∇v| ∈ Lαexp(Ω)

}
,

W 1
0L

α
exp(Ω) = W 1Lαexp(Ω) ∩W 1,1

0 (Ω).

L(logL) =
{
v : Ω→ R measurable, |v|L(logL) =

∫ |Ω|
0

|v|∗∗(t)dt < +∞
}
.

We note that L1
exp(Ω) = Lexp(Ω) and L(logL) are associate each other (see [2]).

In particular, one has a constant c > 0 such that for all f ∈ Lexp(Ω) and all
g ∈ L(logL), ∫

Ω

|fg|dx 6 c|f |Lexp(Ω) · |g|L(logL).

Finally, we define the Sobolev-Lorentz spaces

W 1(Ω, | · |p,q) = W 1Lp,q(Ω) =
{
v ∈W 1,1(Ω) : |∇v| ∈ Lp,q(Ω)

}
and

Cmc (Ω) =
{
ϕ ∈ Cm(Ω), ϕ has compact support in Ω

}
,

C0,1(Ω) =
{
v : Ω→ R is a Lipschitz function

}
,

Cm,1(Ω) =
{
v ∈ Cm(Ω) : Dαv ∈ C0,1(Ω) for |α| = m

}
,

C0,γ(Ω) =
{
v ∈ C0(Ω) : v is γ-Hölder continuous

}
,

W 1
0L

p,q(Ω) is the closure of C1
c (Ω) in W 1Lp,q(Ω).

We shall use some other functional spaces but we prefer to postpone their in-
troduction to the precise moment in which they will be used. We shall denote
by c various constants depending only on the data. The notation ≈ stands for
equivalence of nonnegative quantities; that is,

Λ1 ≈ Λ2 ⇐⇒ ∃ c1 > 0, c2 > 0 such that c1Λ2 6 Λ1 6 c2Λ2.

B(x; r) will denote the ball of RN centered at x of radius r > 0.

3. Hardy type inequalities and their applications

3.1. Revisiting and improving old results. For simplicity, we shall consider
the linear operator L defined by

Lv = −
N∑

i,j=1

∂

∂xi

(
aij

∂v

∂xj

)
with aij ∈ C0,γ(Ω), for some γ ∈ [0, 1],

∑N
i,j=1 aijξiξj > b0|ξ|2, for all ξ ∈ RN ,

x ∈ Ω and b0 > 0. Its formal adjoint is given by

L∗v = −
N∑

i,j=1

∂

∂xj

(
aij

∂v

∂xi

)
. (3.1)

We recall the following definition.

Definition 3.1 (Very weak solution (v.w.s.)). Assume γ = 1, let f ∈ L1(Ω, δ). A
very weak solution of the Dirichlet problem Lu = f , u = 0 on ∂Ω is a function
u ∈ L1(Ω) satisfying∫

Ω

uL∗ϕdx =
∫

Ω

fϕdx, ∀ϕ ∈ C2(Ω), ϕ = 0 on ∂Ω.
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Definition 3.2 (weak solution (w.s.)). Assume γ ∈ [0, 1], let f ∈ L1(Ω, δ). A weak
solution of the Dirichlet problem Lu = f , u = 0 on ∂Ω is a function u ∈ W 1,1

0 (Ω)
satisfying ∫

Ω

aij
∂ϕ

∂xi

∂u

∂xj
dx =

∫
Ω

fϕdx, ∀ϕ ∈ C∞0 (Ω).

The first Hardy inequality that we have used in [11] was not the usual one which
we can get in the text books (see Theorem 3.3 below) but a simpler one which can
be easily proved by the mean value theorem.

Theorem 3.3 (L∞-Hardy-Sobolev inequality). Assume that Ω is a bounded Lips-
chitz open set. Then

∀ϕ ∈W 1,∞
0 (Ω),

|ϕ(x)|
δ(x)

6 |∇ϕ|∞ for any x ∈ Ω. (3.2)

Such relation was also given in [3] and gives a justification to the right hand
side term in definition 3.1 (which can be extended to right hand side term in
L1(Ω, δ) + W−1LN

′,∞(Ω) in an obvious way). An application of such inequality
is the following existence result extending the result of [11] and the one by Brezis
-Strauss [4], to the case of more general sourcing terms.

Theorem 3.4. Let f ∈ L1(Ω, δ), fi ∈ L1(Ω), i = 1, . . . , N , let L with γ = 1, and
let Ω be a C1,1 open bounded set. Then there exists an unique function

u ∈

{
LN

′,∞(Ω), N ′ = N
N−1 if N > 2,

L∞(Ω) if N = 1,

such that ∫
Ω

uL∗ϕdx =
∫

Ω

fϕ dx+
N∑
i=1

∫
Ω

fi
∂ϕ

∂xi
dx, (3.3)

for all f ∈ C2(Ω), ϕ = 0 on ∂Ω.

Proof. We follow the same scheme as in [11]. Consider gki = Tk(fi), Tk(f) = gk be
the truncation at level k. Then there exists ϕk ∈W 2LN,1(Ω)∩H1

0 (Ω) a solution of

L∗ϕk = χE sign(uk), (3.4)

where E ⊂ Ω is a measurable set and uk ∈ H1
0 (Ω) satisfies,

Luk = gk −
N∑
i=1

∂

∂xi
gik in H−1(Ω). (3.5)

Then

〈ϕk, Luk〉 =
∫

Ω

gkϕk +
N∑
i=1

∫
Ω

gik
∂ϕk
∂xik

dx, (3.6)

〈ϕk, Luk〉 =
∫

Ω

ukL
∗ϕk =

∫
E

|uk|dx, (3.7)∫
E

|uk|dx 6
(∫

Ω

|gk|δ dx
)
|ϕk(x)δ(x)−1|∞ + |∇ϕk|∞

∫
Ω

(∑
g2
ik

)1/2

dx. (3.8)
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Using Theorem 3.3,∫
E

|uk|dx 6
[( ∫

Ω

|gk|δdx
)

+
n∑
i=1

∫
Ω

|gik|dx
]
|∇ϕk|∞. (3.9)

By W 2,p regularity of ϕk, we have

|∇ϕk|∞ 6 c|χE |LN,1 6 c|E|1/N . (3.10)

Thus

|uk|LN′,∞(Ω) 6 c
[ ∫

Ω

|g|δ dx+
N∑
i=1

∫
Ω

|gi|dx
]

if N > 2,

|uk|∞ 6 c
[ ∫

Ω

|g|δ dx+
N∑
i=1

∫
Ω

|gi|dx
]

if N = 1.

(3.11)

We conclude as in [11] by applying the Hardy-Littlewood inequality. �

In [21], we give a more general framework for the right hand side. The second
Hardy type inequality that we used in [11] is as follows.

Theorem 3.5 (Hardy-Sobolev-Lorentz inequality). Let 0 < α < 1 and assume
that Ω is a bounded Lipschitz open set. Then there exists c > 0 such that

|ψ(x)|
δα(x)

6 c|∇ψ|
L

N
1−α (Ω)

, (3.12)

for all ψ ∈W 1
0L

N
1−α (Ω) and all x ∈ Ω.

Remark 3.6. If α = 0, we have

|ψ(x)| 6 c|∇ψ|LN,1(Ω), ∀x ∈ Ω, ∀ψ ∈W 1
0L

N,1(Ω). (3.13)

Theorem 3.5 implies the following major lemma.

Lemma 3.7. Let 0 < α < 1. Under the same assumption as in Theorem 3.5, we
have

L1(Ω, δα) ⊂> W−1, N
N−1+α (Ω).

If α = 0, then
L1(Ω) ⊂> W−1LN

′,∞(Ω) =
(
W 1

0L
N,1(Ω)

)∗
.

Proof. (implicitly given in [11]) Let ϕ ∈W 1, N
1−α

0 (Ω) ⊂> C0,α(Ω) ( N
1−α > N). Then,

we write ∫
Ω

|f | |ϕ|dx =
∫

Ω

|f | δα|ϕ| δ−α

6
∣∣∣ |ϕ|δ−α∣∣∣

∞

∫
Ω

|f |δα

6 c|∇ϕ|
L

N
1−α (Ω)

∫
Ω

|f |δα

= c‖ϕ‖
∫

Ω

|f |δα,

sup
‖ϕ‖61

∫
Ω

fϕ 6 c
∫

Ω

|f |δα.

The second inequality corresponding to α = 0 follows from the same argument
using relation (3.13). �
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A similar inequality related to W 1
0L

α
exp(Ω) can be provided (see [24]), for any

α > 0,
|ϕ(x)|

δ(x)
(
1 + | log δ(x)|

)α 6 c‖∇ϕ‖Lαexp(Ω), ∀x ∈ Ω.

Lemma 3.7 has been also observed by Amrouche after reading [11] (personal com-
munication). The following theorem can be found in [6] and extended in [23, 25]
for Lorentz spaces.

Theorem 3.8. Assume that Ω ∈ C1, and the coefficients aij are bounded with a
vanishing mean oscillation( for instance aij continuous in Ω). Let u ∈W 1,1

0 (Ω) be
the weak solution of

Lu = div(F ) in the sense of distributions (3.14)

whenever F ∈ Lp,q(Ω)N , 1 < p < +∞, 1 6 q 6 +∞. Then, there exists a constant
c(Ω) > 0 such that

|∇u|Lp,q(Ω) 6 c|F |Lp,q(Ω)N . (3.15)

We can apply Theorem 3.8 to Lemma 3.7, to deduce that for f ∈ L1(Ω, δα) and
0 < α < 1,

there exist F ∈ Lp(Ω)N with p =
N

N − 1 + α
, such that f = div(F ). (3.16)

If f ∈ L1(Ω), then f ∈W−1LN
′,∞(Ω), according to the inequality (3.13),

there exists F ∈ LN
′,∞(Ω) such that f = div(F ). (3.17)

With relations (3.16) and (3.17), we have the following result.

Theorem 3.9. The very weak solution (v.w.s.) of Lu = f , u = 0 on ∂Ω satisfies
• u ∈W 1

0L
N(α)(Ω) with N(α) = N

N−1+α , for 0 < α < 1,

|∇u|LN(α) 6 c|f |L1(Ω,δα);

• u ∈W 1
0L

N ′,∞(Ω), for α = 0,

|∇u|LN′,+∞ 6 c|f |L1(Ω).

Therefore, the v.w.s is then a weak solution so the assumption on the coefficients
can be relaxed, say aij being bounded but in VMO(Ω) is enough (see e.g. [28] for
a treatment of VMO(Ω)). For treating the limit case α → 1, the following Hardy
inequalities were introduced in [24].

Theorem 3.10 ([24]). Assume that Ω is a bounded Lipschitz open set and let β > 0.
Then there exists c(Ω) > 0, such that

|ϕ(x)|
δ(x)(1 + | log δ(x)|)β

6 c(Ω)‖∇ϕ‖Lβexp(Ω), ∀ϕ ∈W 1
0L

β
exp(Ω).

The proof is based on the following Lemma (see [24]).

Lemma 3.11 ([24]). Let Ω be an open set in RN , r > 0, B(x, r) ⊂ Ω, u ∈
W 1Lαexp

(
Ω). Then

OscB(x,r) u 6
α

1− 1
N

N

αN−1
e1/NNα+1|Ω|1/NΓ

(
α+ 1;ωN (r)

)
‖∇u‖Lαexp(Ω),
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where

Γ(x; a) =
∫ +∞

a

e−t · tx−1dt,

We recall that there exists a constant cN (α) > 0 such that

Γ
(
α+ 1;ωN (r)

)
6 cN (α)r

(
1 + | log r|

)α
.

In particular for α = 1, if we consider u ∈W 1Lexp(Ω), then

OscB(x,r) u 6 cNr
(
1 + | log r|

)
‖∇u‖Lexp .

Theorem 3.12. Assume that Ω ∈ C1,α for some 0 < α 6 1, aij ∈ C0,α(Ω).
Then, for f ∈ L1(Ω, δ(1 + log δ|)), there is an unique very weak solution of Lu = f

satisfying u ∈W 1,1
0 (Ω), and then∑

i,j

∫
Ω

aij(x)
∂u

∂xi

∂ϕ

∂xj
dx =

∫
Ω

fϕ dx,

i.e. u is also a weak solution of Lu = f .

Remark 3.13. When f ∈ L1(Ω, δα) with 0 6 α < 1, the weak solution exists
under the assumption that aij ∈ VMO(Ω) ∩ L∞(Ω); see [25].

Proof of Theorem 3.12. Let uk ∈ H1
0 (Ω) be the solution of Luk = Tk(f) = fk.

According to Campanato’s regularity results [8] and John-Nirenberg inequality [18,
28], we have ϕk ∈W 1

0Lexp(Ω) satisfying∑
i,j

∫
Ω

aij(x)
∂ϕk
∂xj

∂ψ

∂xj
dx =

∫
Ω

H(∇uk)∇ψ dx, ∀ψ ∈ H1
0 (Ω),

with H(∇uk) = ∇uk
|∇uk| if ∇uk 6= 0 and zero otherwise. Therefore, we can argue as

in [11, 24] to obtain∫
Ω

|∇uk|dx =
∑
i,j

∫
Ω

aij(x)
∂ϕk
∂xi

∂uk
∂xj

dx

=
∫

Ω

fϕk 6
∣∣ ϕk
δ(1 + log δ|)

∣∣
∞

∫
Ω

|f |δ(1 + log δ|) dx

6 c|∇ϕk|Lexp

∫
Ω

|f |δ(1 + log δ|)dx.

Since |∇ϕk|Lexp 6 c(Ω) we get the desired result. �

Remark 3.14. The Campanato results are given under the assumptions that aij =
aji but a closer look at his proof shows that these assumptions can be removed to
obtain the BMO regularity.

The following result is given in [24].

Theorem 3.15 (Hardy inequality in weighted space). Let Ω be a bounded Lipschitz
open set. Then there exists a constant c(Ω) > 0 such that∫

Ω

|ψ(x)|
δ(x)

dx 6 c(Ω)
∫

Ω

|∇ψ|(x)(1 + | log δ(x)|)dx.

for all ψ ∈W 1
0L
(
Ω, (1 + | log δ|)

)
, where

W 1
0L
(
Ω, (1 + | log δ|)

)
=
{
ϕ ∈W 1,1

0 (Ω) :
∫

Ω

|∇ϕ| | log δ(x)|dx < +∞
}
.
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We point out that other different versions of the Hardy inequality in weighted
spaces can be found in Brezis-Marcus [5]. From Theorem 3.15 we derive the fol-
lowing result (see [14, 24]).

Corollary 3.16. Under the hypothesis of Theorem 3.15, one has a constant c(Ω) >
0 such that for all ψ ∈W 1

0L(logL),∫
Ω

|ψ(x)|
δ(x)

dx 6 c(Ω)
∫

Ω∗

|∇ψ|∗∗(t)dt.

The link with the very weak solution and those theorems is contained the fol-
lowing theorem.

Theorem 3.17 ([24]). Let f ∈ L1(Ω, δ), f > 0 and u the very weak solution of
Lu = f , u = 0 on ∂Ω. Then

u

δ
∈ L1(Ω) if and only if f ∈ L1(Ω, δ(1 + | log δ|)).

As a consequence of Theorem 3.15 and Theorem 3.17, we have the following
result.

Theorem 3.18 ([1, 24]). If f ∈ L1(Ω, δ)\L1(Ω, δ(1 + log δ|)), f > 0, then the very
weak solution of Lu = f, u = 0 on ∂Ω verifies∫

Ω

[∇u| log+ |∇u| dx = +∞, =
∫

Ω

|∇u| | log δ| dx = +∞,

where log+ σ =

{
log σ if σ > 1,
0 otherwise.

For the application of the above result, we want to select few previous results
and derive additional properties. For instance let us consider the following equation
treated by Ghergu see [16] (see [13] for a similar problem).

Theorem 3.19. [16] Let p > 0, A > diam(Ω), a ∈ R. Then the problem

−∆u = δ(x)−2[A− log δ(x)]−au−p,

u > 0, u ∈ C(Ω) ∩ C2(Ω),
u = 0 on ∂Ω,

has a solution if and only if a > 1. Moreover, if a > 1 then

c1
[
A− log δ(x)

] 1−a
1+p 6 u(x) 6 c2

[
A− log δ(x)

] 1−a
1+p for any x ∈ Ω .

The gradient behaviour is not included in this theorem, nevertheless we have the
following result.

Theorem 3.20. • If a > 2 + p then u ∈W 1,1
0 (Ω).

• If 1 < a 6 2 + p then∫
Ω

|∇u| log(1 + |∇u|)dx = +∞,
∫

Ω

|∇u| | log δ(x)|dx = +∞.

Proof. Indeed, f(x) = δ(x)−2[A−log δ(x)]−au−p is equivalent to f0(x) = δ(x)−2[A−
log δ(x)]−

a+p
1+p according to the growth of u. Then a direct computation shows that:∫

Ω
f0(x)

[
A − log δ(x)

]
dx is finite if and only if a > 2 + p. Hence for a 6 2 + p we

can apply the blow-up phenomena given in Theorem 3.18 or in [24]. �
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Next we have corollary to Theorem 3.20.

Corollary 3.21. Assume that Ω is B the unit ball of RN . Then the solution u
given in Theorem 3.19 is radial and then, u ∈ W 1,1(Ω). If 1 < a 6 2 + p, then∑N
i=0 |

∂u
∂xi
|H1(B) = +∞. Here H1(B) denotes the Hardy space defined in [24].

Proof. To prove that the solution is radial, is a slight modification of the Ghergu’s
argument adding to the fixed point set the constraint “radial function”. Since u
is radial therefore u ∈ W 1,1

0 (B) and when a 6 2 + p the right hand side is not in
L1(Ω, δ(1 + | log δ|)). We then conclude as in Theorem 3.20. �

Remark 3.22. The space W 1
0H1(Ω) is included in W 1

0L
1(Ω), and it contains

W 1
0L(logL)(Ω).

There are many Hardy inequalities that we can develop using the same argument
as in [19, 24]. Here are two of them.

Theorem 3.23 (Hardy inequality with weights). Let Ω ∈ C0,1 and a > 0. Then
there exists ca(Ω) > 0 such that∫

Ω

|ψ(x)|
δa(x)

dx 6 ca(Ω)
∫

Ω

|∇ψ|(x)δ1−a(x)dx if a > 1, ∀ψ ∈ C1
c (Ω)

Proof. The idea of proof is the same as it is done in [19, 24]. Using the same
notation as in those references, since Ω ∈ C0,1. Then∫

Ωi

|ψ(x)|
δa(x)

dx 6
ci

1− a

∫
Oi
dx′i

∫ ai(x
′
i)+β

ai(x′i)

|ψ| ∂

∂xiN
(xiN − ai(x′i))1−adxiN .

By integration by part and dropping non positive term (a > 1), we have∫
Ωi

ψ(x)|
δa(x)

6 ci(Ω)
∫
Oi

∫ ai(x
′
i)+β

ai(x′i)

∂

∂xiN
|ψ|
(
xiN − ai(x′i)

)1−a
dxiN

6 ci

∫
Ωi

|∇ψ|(x)δ(x)1−adx.

The same argument holds for the second inequality. �

Here are some applications of those Hardy inequalities.

Theorem 3.24. Let u ∈ C(Ω) ∩H2
loc(Ω) solution of

0 6 Lu 6 caδ(x)−a with 1 < a < 2, u = 0 on δΩ,

the coefficients of L are Lipschitz in Ω, that is γ = 1. Then,

u ∈W 1
0L

1
a−1 ,∞(Ω).

Moreover, there exist a constant Ca > 0 independent of u such that

|u|
W 1

0L
1
a−1 ,∞(Ω)

6 Ca

Remark 3.25. The above inequality was considered in [16] the novelty here is the
regularity of the gradient and its estimate.

The main tool for deriving such result is the following lemma.

Lemma 3.26. Assume that Ω is an open bounded Lipschitz set. One has δ1−a ∈
L

1
a−1 ,∞(Ω) whenever a > 1.
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Proof. We set v = δ1−a. Then it is sufficient to show that there exists c0 < +∞
such that

t 6 c0|v > t|1−a, ∀t > 0.
But this is equivalent to prove the existence of c0 such that

meas
{
x : δ(x) < t−

1
a−1
}
6 c

1
a−1
0 t−

1
a−1 if a > 1.

Setting λ = t−1/(a−1), we have to prove that

meas{x : δ(x) < λ} 6 c
1
a−1
0 λ ∀0 < λ < |δ|∞, for some c0.

Since Ω is smooth (say C0,1) we then have

meas{x : δ(x) < λ} = O(λ) as λ→ 0.

Which implies the result. �

Proof of Theorem 3.24. Thanks to the above Lemma and Theorem 3.23 on Hardy
inequality, we have δ−a ∈W−1L

1
a−1 ,∞(Ω), thus

Lu ∈W−1L
1
a−1 ,∞(Ω).

Indeed, for ψ ∈W 1
0L

na,1(Ω), na = a−1
2−a , we have∣∣ ∫

Ω

Luψdx
∣∣ 6 c∫

Ω

δ−a|ψ|dx 6 c
∫

Ω

|∇ψ|δ1−a 6 c|∇ψ|Lna,1 |δ1−a|
L

1
a−1 ,∞

.

Applying well known regularity (see Theorem 3.8) we have |∇u| ∈ L
1
a−1 ,∞(Ω). �

For the case a = 1, we have the following regularity.

Theorem 3.27. Let u ∈ W 1,1
0 (Ω) ∩H2

loc(Ω) be a solution of 0 6 Lu 6 cδ−1 in Ω
for some constant c > 0. Then,

u ∈ ∩p<+∞W
1,p
0 (Ω) ⊂> C0,ν(Ω), quad∀ν ∈ [0, 1[.

Moreover, if L = −∆ (for simplicity) then

|∇u(x)| 6 cpδ−N/p(x) ∀p > N, ∀x ∈ Ω.

Remark 3.28. Compared to recent results [15, 16, 17, 20], our result here make
precise the behavior of the gradient.

We recall now the well known Hardy inequality in W 1,p
0 (Ω), 1 < p 6 +∞ (see

[19]).

Theorem 3.29. Let Ω be an open bounded Lipschitz domain, 1 < p 6 +∞, there
exists a constant cΩ > 0 such that(∫

Ω

∣∣∣∣ϕ(x)
δ(x)

∣∣∣∣p dx)1/p

6 cΩ
p

p− 1

(∫
Ω

|∇ϕ|pdx
)1/p

, ∀ϕ ∈W 1,p
0 (Ω).

Proof of Theorem 3.27. Since δ−1 ∈W−1,p(Ω), ∀p, 1 < p < +∞, we deduce that

Lu ∈W−1,p(Ω), u ∈W 1,1
0 (Ω).

Thus from Theorem 3.8, ∇u ∈ Lp(Ω)N for all p < +∞. While for the second
statement, we have

−∆
(u2

2
)

+ |∇u|2 ∈ Lp(Ω), ∀p < +∞.
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Then
u2

2
∈W 2,p(Ω), ∀p < +∞.

In particular, u2

2 ∈ C
1,1−Np (Ω). Since u(x) > cδ(x), one deduces that

|∇u(x)| 6 cpδ(x)−N/p ∀p < +∞, p > N.

�

Here is an example of an application: the following problem (L) was considered
by various authors [6, 7, 15, 20] and it was shown that for α > 1, and p ∈ L∞+ (Ω),
there exists c1 > 0 such that

u(x) > c1δ
2

1+α

and

−∆u =
p(x)
uα(x)

in Ω,

u = 0 on ∂Ω.
(3.18)

But none of the previous article studied the behaviour of the gradient when α > 1.
Our main result is as follows.

Theorem 3.30. Any solution u of (3.18) satisfies

|∇u| ∈ L
α+1
α−1 ,∞(Ω).

Proof. With the growth of u one has 0 6 −∆u 6 cδ−2α/(1+α). We apply Theorem
3.24 with a = 2α

1+α . �

Theorem 3.27 can be applied also to the following equation considered by Gui-
Lin[17] when 0 6 p 6 cδ(x)β ,

−∆u =
p(x)
uα(x)

in Ω,

u = 0 on ∂Ω.

They showed that u ∈ C0,ν(Ω) for all 0 < ν < 1 if α − β = 1. In fact, the growth
of the solution u implies

0 6 −∆u 6 cδ(x)β−α = cδ1(x).

So our Theorem 3.27 implies, in particular, their results thanks to Sobolev imbed-
ding. The result seems to be optimal since in this case Gui-Lin [17] showed that

u /∈ C0,1(Ω).

3.2. A new existence result for a singular semilinear equation with a
general right hand side. We may apply Theorem 3.24 to solve the following
equation for a ∈]1, 2[,

−∆u =
â(x)

ua(1 + log+ u)m +K(x, u)
= f(x) in Ω,

u = 0 on ∂Ω,
(3.19)

when we assume that â(x) ∈ L∞(Ω), inf â = ess inf â > 0, K is a Caratheodory
function from Ω × R to R, nondecreasing with respect to the second variable for
almost all x on R+; i.e. if 0 6 σ 6 t, then K(x, σ) 6 K(x, t) and K(x, 0) = 0 for
a.e. x.
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Theorem 3.31. Let u be a non negative solution of (3.19). Then

(1) If u > cδ for some c > 0 then u ∈W 1
0L

1
a−1 ,∞(Ω).

(2) If m > 0, then u ∈ L∞(Ω).

Proof. (1) If u > cδ for some c > 0, since K(x, u(x)) > 0, we then have

0 6 f(x) 6 c0
1

ua(1 + log+ u)m
6

1
caδa

.

Therefore, 0 6 −∆u 6 c−aδ−a, thus u ∈ W 1
0L

1
a−1 ,∞(Ω) according to Theorem

3.24.
(2) For the second statement, we use standard method for the boundedness of

the solution (see [9, 25]).
Since u > 0, for s ∈ [0, |u > 1

2 |], we have u∗(s) > 1
2 and we choose (u− u∗(s))+

as a test function for the variational equation, where s is fixed. Then∫
u>u∗(s)

|∇u|2dx =
∫

Ω

â(x)
uβ(1 + |Ln+u|)m +K(x, u)

(u− u∗(s))+

=
∫

Ω

f̃(x)(u− u∗(s))+(x)dx,
(3.20)

with f̃(x) = 0 on {u 6 1/2}. We note that

|f̃(x)| 6M0 = 2a|â|∞ < +∞ on
{
x : (u > u∗(s))+(x)

}
⊂
{
u >

1
2
}
.

Differentiating (3.20) with respect to s one has using the notion of relative re-
arrangement, [22, 26],

(|∇u|2∗u)(s) =
(∫

u>u∗(s)

f̃dx
)

(−u′∗(s)) 6 cNs
1
N−1|∇u|∗u(s)

∫ s

0

f̃∗dt. (3.21)

By the properties of the relative rearrangement one has

−u′∗(s) 6 cNs
1
N−1|∇u|∗u(s), (3.22)

(|∇u|2∗u) > (|∇u|∗u)2. (3.23)

From the equation (3.21) to (3.23) with the estimate of f̃ , we have

|∇u|∗u(s) 6 cNs
1
N−1M0s = cNM0s

1/N .

Therefore relation (3.22) implies

−u′∗(s) 6M0c̃Ns
2
N−1

An integration of this inequality leads to

u∗(0) 6
1
2

+ c̃NM0

∫ |u>1/2|

0

t
2
N−1dt =

1
2

+ c̃NM0|u >
1
2
|2/N ;

that is,

|u|∞ 6
1
2

+ c̃N2a‖â‖∞ |Ω|2/N .

�
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Remark 3.32. We may replace 1/2 by any k0 to obtain

|u|∞ 6 k0 + c̃NM0|u > k0|1/N k0 > 0.

The L∞ estimate will imply the existence of a constance c > 0 such that u > cδ.
The operator −∆ by L in all of this section provided that the coefficients are
Lipschitz that is γ = 1.

The existence result for (3.19) follows from the following theorem.

Theorem 3.33. Assume that K is a Caratheodory function, with K(x, 0) = 0, for
any constant k, K(., k) is a bounded function in Ω. Then (3.19) admits a solution
u ∈W 1

0L
1
a−1 ,∞(Ω) whenever a ∈]1, 2[.

Proof. Let 0 < ε < 1, then there exists a function uε ∈W 2LN,1(Ω) ∩H1
0 (Ω)

−∆uε =
â(x)

D(uε + ε)
, uε > 0

where we have set D(σ) = σa(1 + log+ σ)m +K(x, σ). Since

D(uε + ε) > D(uε) > uaε(1 + log+ uε)
m,

we have

0 6 −∆uε 6
â(x)

uaε(1 + log+ uε)m
.

Arguing as in the second statement, of theorem 3.31 we deduce that

‖uε‖∞ 6
1
2

+ c̃N2a‖â‖∞|Ω|2/N =̇M0.

Let η > 0 such that
−λ1ηϕ1D(M0 + 1) 6 inf â,

where λ1 is the first eigenvalue associated to the Dirichlet problem and ϕ1 the first
eigenfunction. Then

−λ1ηϕ1 6
inf â

D(uε + ε)
;

therefore,
−∆(ηϕ1) 6 −∆uε.

By the maximum principle we deduce uε > ηϕ1. Thus

0 6 −∆uε 6 cϕ−a1 .

Applying Theorem 3.24 and knowing that ϕ1 is equivalent to the distance function
δ we deduce that uε belongs to a bounded set of W 1

0L
1
a−1 ,∞(Ω). By usual argument

we can pass to the limit as ε→ 0,

−∆u =
â(x)
D(u)

in D′(Ω).

�

Remark 3.34. In Merker-Rakotoson [21], we extend some of those results to Neu-
mann problems. A more general version of Theorem 3.4 is also presented.
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aux limites, (2008), Springer Verlag, Berlin.
[27] G. Stampacchia; Some limit case of Lp-estimates for solutions of second order elliptic equa-

tions, Comm. Pure Appli. Math. 16 (1963) 505-510.

[28] A. Torchinsky; Real-Variable Methods in Harmonic Analysis, Academic Press, Orlando, 1986.
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