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Abstract. We extend some previous local energy method to the study the
free boundary generated by the solutions of quenching type parabolic problems

involving a negative power of the unknown in the equation.
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1. Introduction. This paper deals with the study of the free boundary generated
by the solutions of quenching type problems. To fix ideas we can mention in this
set of problems the following one:

ut −∆u+ u−kχ{u>0} = λuq + g(t, x) in (0, T )× Ω,

u = ϕ on (0, T )× ∂Ω,
u(0, .) = u0 on Ω,

(1)

where Ω is an open (not necessarily bounded) domain of RN , χ{u>0} denotes the

characteristic function of the set of points (x, t) where u(x, t) > 0, under the key
assumption

k ∈ (0, 1). (2)

For simplicity we can assume that q ∈ (0, 1] but other choices will be also commented
in this work. In fact, we shall use several spatially local energy methods which allow
the consideration of many other types of boundary conditions and, which is more
important, a larger generality in the formulation of the parabolic equation. To be
more precise, we shall also consider the quasilinear parabolic problem of quenching
type

∂ψ(u)

∂t
− divA(x, t, u,D u) + C(x, t, u) = f(x, t, u), (3)
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under the general structural assumptions

|A(x, t, r,q)| ≤ C|q|p−1, C|q|p ≤ A(x, t, r,q) · q,

C|r|γ+1 ≤ G(r) ≤ C∗|r|γ+1,

where

G(r) = ψ(r) r −
∫ r

0

ψ(τ) dτ,

and
C|r|α ≤ C(x, t, r) r,

f(x, t, r)r ≤ λ|r|q+1 + g(x, t)r, (4)

with p > 1, q ∈ R and the main assumptions

γ ∈ (0, p− 1], (5)

and

α ∈ (0,min(1,
γp

(p− 1)
)). (6)

Notice that if γ = 1 condition (6) reduces to α ∈ (0, 1). The case γ < 1 and p = 2
was considered in [20]. Some references and examples for a quasilinear diffusion
can be found in [19]. The method allows also the consideration of equations with
a first order term B(x, t, u,D u) ([1]) but we shall not do it here. The case leading
to possible blow up solutions, q > p − 1 and λ > 0 will be also considered (see
Theorem 4.2). Here C and C∗ denote some positive constants which depends only
on N and the exponents p, κ, η, γ and α (at most). C and C∗ may be different in
different occurrences.

Quasilinear equations of type (3) were formulated from the modeling of many
different applied problems and successfully solved, under suitable additional condi-
tions, during the last half of the past century after the pioneering work by Professor
Mark Vishik ([27]) opening so many different approaches (see, e.g. [23], [21], [4],
[2] and its references).

We shall not deal here with the question of the existence of weak solutions of
the above mentioned equations (for some recent surveys in this direction we send
the reader, for instance, to the papers [7], [26], [16] and [6]: see also [14], [8], [11],
[12], [13] and the surveys [17] and [10] on the associated elliptic problem). We recall
that what makes specially interesting equations like (1) and (3) is the fact that the
solutions may raise to a free boundary defined as the boundary of the set {(x, t):
u(x, t) 6= 0} (in most of the cases, as for instance in (1), the data are assumed to
be nonnegative). As a matter of fact, sometimes problem (1) is reached trough a
previous formulation

wt −∆w =
χ{w>0}
(1−w)k

in (0, T0)× Ω,

w = 1 on (0, T0)× ∂Ω,
w(0, .) = w0, on Ω,

(7)

for some initial datum with 0 ≤ w0(x) ≤ 1 and thus the terminology of ”quenching
problem” was used in the literature (see, e.g. [18], [25], [22]). Here u := 1 − w.
The formation of the free boundary is the main reason of the lack of regularity of
the solution. The uniqueness of solution fails ([30]) except for the case in which
there is not a free boundary ([7]). This is one of the reasons why it looks difficult
to apply, directly, super and subsolutions methods to study such a free boundary.
Our alternative is the application of local energy methods available for many types
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of evolution equations and systems since the last thirty years of the last century
(see, e.g., the monograph [2] and its many references). More precisely, the main
goal of this paper is to show how such methods can be applied to the case in which
some singular terms of the type u−kχ{u>0} are present in the equation. Indeed, in

the typical applications of the methods the zero order term (the so called ”strong
absorption term”) is assumed to have the form uk with k ∈ (0, 1) ([2]) or at most,
under suitable formulations as multivalued equations [ k = 0 [9]]. The main difficulty
associated to the singular case u−kχ{u>0} with k ∈ (0, 1) comes from the fact that
the local energy associated to this term,∫

P

|u|α dxdt, α = 1− k,

(for some local energy subset P ⊂ [0, T ] × Ω to be suitably defined) is not a norm
but merely a seminorm (in fact it arises the so called reversed Minkowski inequality)
and so the usual ”interpolation-trace inequality” (such as it is being formulated in
the previous literature ([2])) cannot be directly applied. In that paper we shall show
that a systematic use of the Hölder interpolation inequality

‖u‖Ls ≤ ‖u‖
d
Lα ‖u‖

1−d
Lp

1

s
=
d

α
+

1− d
p

, (8)

which is valid for any d ∈ [0, 1], even for 0 < α < 1 (already used in [24]) allows to
arrive to the desired extension of the method to this class of singular equations.

We start, in Section 2, with the consideration of the simple case of the semilinear
equation (1) with λ = 0. This allows to be more pedagogical in the application
of this quite technical energy method. In addition, due to the simplicity of the
formulation, we can get some sharper estimates on the initial growth of the free
boundary and some other informations about it. The key tool of this local energy
method, the ”interpolation-trace inequality”, is proved separately, under several
formulations, in Section 3.

Finally, in Section 4, we deal with the general formulation (3). It can be applied,
for instance, to some possible doubly degenerate parabolic equations with a singular
term as

wt −∆p(|w|m−1
w) +

χ{w 6=0}

wk̂
= λwq̂ + g(t, x) (9)

for some p > 1,m > 0, q̂ ∈ (0,m) and k̂ ∈ (0,m). Here u := |w|m−1
w and

∆ph denotes the usual p-Laplacian operator ∆ph = div(|∇h|p−2∇h). See also the
formulation considered in [28] and [29] in terms of a non-divergential equation. We
shall show how to extend the results presented in the paper [1] (there established
only for the strong absorption case associated formally to the case k ∈ (−1, 0)). In
addition, we shall also study the behaviour of the free boundary when the sourcing
term f(x, t, u) depends on u, even when dealing with blow-up phenomena (mainly
when λ > 0 and q > max(p, 2) in (4)).

2. Finite speed of propagation and uniform localization for the semilinear
equation and λ ≤ 0. In this section we shall restrict ourselves to the considera-
tion of the semilinear equation (1) under the assumption λ ≤ 0. A more general
framework (including also the case λ > 0) will be analyzed in Section 4.

The results we shall present here will have merely a local character: we send the
reader to the monograph [2] for many explanations about how to get from those
local results many global consequences for the solutions of global formulations as,
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for instance, the Dirichlet problem (1). We shall follow the usual notations in this
type of local methods: Bρ denotes the open ball of radius ρ of RN (we shall not
specify the dependence with respect the center of the ball x0), and for the parabolic
formulation we shall use Qρ,T := (0, T ) × Bρ and Σρ,T := (0, T ) × ∂Bρ. We also
denote Du = ∇u to the spatial gradient function. We introduce the local energies

E(ρ, T ) =

∫
Qρ,T

|Du|2 dxdt,

b(ρ, T ) =
1

2
ess sup

0≤t≤T

∫
Bρ

|u(x, t)|2 dx,

and

c(ρ, T ) =

∫
Qρ,T

|u|α dxdt.

The notion of local solution we need for the application of the following local
energy method does not need to be specified: we shall only require that u is any
nonnegative function such that the above local energies are finite, for almost all
ρ ∈ (0, ρ0), for some ρ0, and the ”local integration by parts inequality” holds b(ρ, T ) + E(ρ, T ) + c(ρ, T ) ≤

∫
Σρ,T

|Du|udxdt, a.e. ρ ∈ (0, ρ0),

assumed g(t, x) = 0 and u0(x) = 0 a.e. respectively on Qρ0,T and Bρ0

(10)

The verification of such inequality (10), starting from a concrete notion of (global
in space) weak solution was presented usually as the first step of the method (this is
the way as it was presented in most of the previous papers in the literature: see, e.g.
[15] and [2]). Nevertheless, the local integration by parts inequality can be obtained,
sometimes, for some type of solutions which a priori are defined outside of the global
energy space as it is the case, for instance, of the ”renormalized solutions” (see [5]).
In our case, (10) is a direct consequence of the regularity u−kχ{u>0} ∈ L1((0, T )×Ω)
obtained in many previous papers under suitable regularity assumptions on the
data (see, e.g. [25], [7], [16] and [6]). Notice that since λ ≤ 0 we have that∫
Qρ,T

uq+1dxdt ≥ 0 for any q ∈ R (remember that we are assuming that u ≥ 0),

so that the results of this section are applicable for any q ∈ R if we replace at
the equation the term λuq by λuqχ{u>0} for the case q < 0, once that a local

nonnegative function satisfying (10) exists.
The following result shows the finite speed of propagation property. As a matter

of fact, we shall get also a stronger property which usually is as called ”stable (or
uniform) localization property” (see [2], Chapter 3). The proof will require the use
some interpolation-trace inequality which is of an independent nature and will be
presented in Section 3.

Theorem 2.1. Let Bρ0 ⊂ Ω be such that u0 = 0 on Bρ0 and g = 0 on Qρ0,T . Let
u a solution satisfying (10). Then u = 0 on Qρ1,T with ρ1 defined by

ρ1+2β
1 = ρ1+2β

0 − CK(ρ0, T )
(1 + 2β)

(1− ξ)
E(ρ0, T )1−ξ (11)

where

β :=
N(2− α) + 2

4
, (12)
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ξ =
N(2− α) + 2

N(2− α) + 4
, (13)

and

K(ρ, T ) = max{ρ2β , b(ρ, T )θ(2−α)/2}. (14)

Proof. From (10) we get that for almost all ρ ∈ (0, ρ0)

b(ρ, T ) + E(ρ, T ) + c(ρ, T ) ≤
∫

Σρ,T

|Du|udxdt ≤ ‖Du‖L2(Σρ,T ) ‖u‖L2(Σρ,T ) . (15)

Taking squares and using Corollary 2 we obtain

(b(ρ, T ) + E(ρ, T ) + c(ρ, T ))2 ≤ Cρ−2βK(ρ, T )(b(ρ, T ) + E(ρ, T )

+c(ρ, T ))1+(1−θ)(2−α)/2 ‖Du‖2L2(Σρ,T ) .
(16)

We set

ξ := 1− (1− θ)(2− α)/2. (17)

From (13) we obtain

ξ = 1− 2− α
N(2− α) + 4

. (18)

Thus 0 < ξ < 1. Noting that K(ρ, T ) ≤ K(ρ0, T ) (see (14)) and

‖Du‖2L2(Σρ,T ) =
∂E

∂ρ
(ρ, T ) (19)

we obtain from (16) and (18) the ordinary differential inequality

ρ2βE(ρ, T )ξ ≤ CK(ρ0, T )
∂E

∂ρ
(ρ, T ). (20)

Integrating (20) we get that u = 0 on Qρ1,T with ρ1 defined by estimate (11).

A sharper estimate, for T small, can be also obtained:

Theorem 2.2. Let Bρ0 ⊂ Ω be such that u0 = 0 on Bρ0 and g = 0 on Qρ0,T . Let
u satisfying (10).Then u = 0 on Qρ2,T with ρ2 defined by

ρ1+2β
2 = ρ1+2β

0 − F (T,E(ρ0, T )), (21)

where

F (T, s) := C
(1 + 2β)

(1− ξ)
A(T, ρ0)

√
T log(1 +

K(ρ0, T )

A(T, ρ0)
√
T
s1−ξ), (22)

A(T, ρ0) := ρ2β−1
0 K1(ρ0, T ), (23)

and

K1(ρ, T ) := max{ρ,
√
T}. (24)
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Proof. Taking squares in (15) and applying Corollary 3 we obtain

(b(ρ, T ) + E(ρ, T ) + c(ρ, T ))
2 ≤ Cρ−1

√
TK1(ρ, T )(b(ρ, T )+E(ρ, T )) ‖Du‖2L2(Σρ,T ) .

(25)
From (24) K1(ρ, T ) ≤ K1(ρ0, T ). Recalling (19) we obtain

ρE(ρ, T ) ≤ C
√
TK1(ρ0, T )

∂E

∂ρ
(ρ, T ). (26)

This differential inequality does not imply vanishing properties, but combining (20)
and (26) gives

ρ2β

K(ρ0, T )
E(ρ, T )ξ +

ρ√
TK1(ρ0, T )

E(ρ, T ) ≤ C ∂E
∂ρ

(ρ, T ). (27)

Noting that 2β > 1, we set

ρ =
ρ2β

ρ2β−1
≥ ρ2β

ρ2β−1
0

in order to obtain the following explicitly integrable differential inequality

ρ2β(
E(ρ, T )ξ

a
+
E(ρ, T )

A
√
T

) ≤ C ∂E
∂ρ

(ρ, T ), (28)

with a(T, ρ0) := ρ2β−1
0 K, and A given by (23). If E(ρ, T ) 6= 0, an integration of

(28) yields

ρ1+2β
0 − ρ1+2β ≤ F (T,E(ρ0, T ))− F (T,E(ρ, T )) ≤ F (T,E(ρ0, T )) (29)

with F given by (22). Thus we arrive to estimate (21) provided that the right hand
side of (21) is positive.

Remark 1. Since log(1 + x) ≤ x, (21) implies (11) for some constant C. But (22)
gives more information as T → 0. Indeed, since for x > 0

log(1 + x) < log x+
1

x

(22) behaves as (constant)·
√
T (log T ) as T → 0 (for fixed a, A and s).

In the above arguments the time interval (0, T ) can be replaced by (T1, T2) with
0 < T1 < T2 provided that u(T1, .) = 0 on some ball. But this holds for T1 small
enough by the above results. This leads to:

Corollary 1. Assume u as in Theorem 2.1 and

ρ0 − ρ ≥
(
CK(ρ0, T )

(1 + 2β)

(1− ξ)
E(ρ0, T )1−ξ

)1/(1+2β)

. (30)

Then u = 0 on Qρ,T .In particular, if N = 1, this implies that the free boundary is
Hölder continuous, as function of t, for those values of t where it is a monotone
function.
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Proof. Since β > 0 we have that

ρ1+2β
0 − ρ1+2β ≥ (ρ0 − ρ)1+2β .

Thus (11) implies that u = 0 on Qρ,T assumed (30). Then (21) implies that u = 0
on Qρ,T if

ρ0 − ρ ≥ F (T,E(ρ0, T ))1/(1+2β), (31)

which shows, in particular, if N = 1, that the free boundary is Hölder continuous
where it is monotone.

Concerning the behaviour for small time we can prove a first result showing the
local waiting time or, what we can call perhaps more properly as the non dilatation
of the initial support : the free boundary cannot invade the subset where the initial
datum is nonzero. Some sharper results can be obtained with the techniques of
Section 4 modifying the presentation made in ([1]) for the case of strong absorption
terms, nevertheless we shall not detail it in this paper.

Theorem 2.3. Let Bρ0 ⊂ Ω be such that g = 0 on Qρ0,T and assume u as in
Theorem 2.1. We also assume, in addition, that

b(ρ, 0) ≤ ε [ρ0 − ρ]
ω

a.e. ρ ∈ [0, ρ1) (32)

with

ω =
2N(2− α) + 8

(2− α)
(33)

for some ε small enough and ρ1 > ρ0 large enough. Then there exists a t∗ ≤ T such
that u(x, t) = 0 a.e. x ∈ Bρ0 and for any t ∈ [0, t∗].

Proof. For almost all ρ ∈ (0, ρ1)

b(ρ, T ) + E(ρ, T ) + c(ρ, T ) ≤ ‖Du‖L2(Σρ,T ) ‖u‖L2(Σρ,T ) + b(ρ, 0). (34)

Then by Corollary 2 we obtain that

b(ρ, T ) + E(ρ, T ) ≤ Cρ−β
√
K(ρ, T )(b(ρ, T )

+E(ρ, T ))1− ξ2 (
∂b

∂ρ
(ρ, T ) +

∂E

∂ρ
(ρ, T ))1/2 + ε [ρ0 − ρ]

ω
,

(35)

where we have used that ∂b
∂ρ (ρ, T ) ≥ 0. Thus, if we introduce

z(ρ, T ) := b(ρ, T ) + E(ρ, T ),

we get that

z ≤ Cρ−β
√
K(ρ, T )(

∂z(3−ξ)

∂ρ
(ρ, T ))1/2 + ε [ρ0 − ρ]

ω
.

In particular, the function w := z(3−ξ) satisfies that

wa ≤ Cρ−2βK(ρ, T )
∂w

∂ρ
(ρ, T ) + ε [ρ0 − ρ]

ω/2

with a = 2
3−ξ and so a ∈ (0, 1) since ξ ∈ (0, 1). On the other hand, by assumption

(33) we have that
ω/2 = a/(1− a)

and then the result reduces to the application of a well known result for ordinary
differential inequalities (see, e.g., [2]: Subsection 1.3.2, Chapter 3).
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Other results will be formulated, in Section 4, in the more general framework of
the quasilinear equation (3).

3. Interpolation-trace inequalities. We start by recalling a well-known interpolation-
trace result:

Lemma 3.1. ([15]). Assume u ∈ H1(Bρ) and 1 ≤ s ≤ 2. Then

‖u‖L2(∂Bρ) ≤ C
(
‖Du‖θL2(Bρ) ‖u‖

1−θ
Ls(Bρ) + ρ−β ‖u‖Ls(Bρ)

)
(36)

where the constant C depends only on N and s, and

β :=
N(2− s) + s

2s
, θ =

N(2− s) + s

N(2− s) + 2s
. (37)

This is Corollary 2.1 of [15] with q + 1 = 2 and σ + 1 = s. Notice that β is
related to the exponent δ of [15] by β = −δθ.

Remark 2. Although we are going to consider terms of the form
∫
|u|α with 0 <

α < 1, Lemma 3.1 was applied in Section 1 with s > 1. We postpone for the
moment a generalization which will be used in Section 4.

The main interpolation-trace result used in this paper is the following one:

Lemma 3.2. Let 0 < α ≤ 2. Assume that Du ∈ L2(Qρ,T ) and u ∈ L∞(0, T :
L2(Bρ)). Then

1

C

∫
Σρ,T

|u|2 ≤ E(ρ, T )θc(ρ, T ))1−θb(ρ, T )(1−θ)(2−α)/2 + ρ−2βc(ρ, T ))b(ρ, T )(2−α)/2

(38)
where the positive constant C depends only on N and α, and

β :=
N(2− α) + 2

4
, θ =

N(2− α) + 2

N(2− α) + 4
. (39)

Proof. Applying Hölder interpolation inequality (8) for 0 < α < 1 and choosing
d = α/2 (in order to obtain C independent of T ) we get

‖u‖2Ls ≤ ‖u‖
α
Lα ‖u‖

2−α
L2 where s = 4/(4− α). (40)

This choice gives 1 < s ≤ 2 (since 0 < α ≤ 2) and (12) follows from (37). From
(40) and (36) we obtain for almost all t ∈ (0, T )

1

C

∫
∂Bρ

|u|2 ≤

(∫
Bρ

|Du|2
)θ (∫

Bρ

|u|α
)1−θ (∫

Bρ

|u|2
)(1−θ)(2−α)/2

+ρ−2β

(∫
Bρ

|u|α
)(∫

Bρ

|u|2
)(2−α)/2

.

(41)

We estimate
∫
Bρ
|u|2 by 2b(ρ, T ). Then (38) follows integrating in t between 0 and

T and applying Hölder inequality.
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Remark 3. The hypotheses of Lemma 3.2 imply easily that u ∈ L2((0, T )× ∂Bρ)
and u ∈ Lα(Qρ,T ). The main feature of the lemma is that the constant C is inde-
pendent of ρ and T , while T does not appear as a separate factor. A similar (but
slightly different) result was given in [15, Lemma 3.2] . This new statement was
inspired on Lemma I.2 of [3].

Corollary 2. Under the hypotheses of Lemma 2

1

C

∫
Σρ,T

|u|2 ≤ ρ−2βK(ρ, T ) (E(ρ, T ) + c(ρ, T )) + b(ρ, T ))
1+(1−θ)(2−α)/2

, (42)

where θ and β are given by (12), the positive constant C depends only on N and α
and K(ρ, T ) is given by (14).

Proof. We start from (38) and apply Young’s inequality in the forms

Aα1
1 Aα2

2 Aα3
3 ≤ C(A1 +A2 +A3)α1+α2+α3 or Aα1

1 Aα2
2 ≤ C(A1 +A2)α1+α2 .

So we obtain

Eθc1−θb(1−θ)(2−α)/2 ≤ C(E + c+ b)1+(1−θ)(2−α)/2. (43)

cb(2−α)/2 = bθ(2−α)/2cb(1−θ)(2−α)/2 ≤ bθ(2−α)/2(c+ b)1+(1−θ)(2−α)/2. (44)

The corollary follows from (38),(43) and (44).

In order to sharpen the estimates of the support, we shall need the following
lemma and its corollary.

Lemma 3.3. Assume that Du ∈ L2(Qρ,T ) and u ∈ L∞(0, T : L2(Bρ)). Then

1

C

∫
Σρ,T

|u|2 ≤
√
TE(ρ, T )1/2b(ρ, T )1/2 + ρ−1Tb(ρ, T ). (45)

where the positive constant C depends only on N .

Proof. We apply Lemma 3.1 with s = 2 and take squares. Then we bound
∫
Bρ
|u|2

by 2b(ρ, T ), integrate in t between 0 and T and applying Hölder inequality.

Corollary 3. Under the hypotheses of Lemma 3

1

C

∫
Σρ,T

|u|2 ≤ ρ−1
√
TK1(ρ, T ) (E(ρ, T ) + b(ρ, T )) , (46)

where the positive constant C depends only on N and K1(ρ, T ) is given by (24).

Proof. It follows from Lemma 3.3 and the inequality E1/2 +b1/2 ≤ C (E + b)
1/2

.
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4. Non cylindrical local energy subsets technique. In contrast to the finite
speed of propagation and the uniform localization properties obtained in the previ-
ous section we shall pay attention now to other type of free boundary properties, in
particular on its formation even in the case of strictly positive initial data (some-
times called as the instantaneous shrinking of the support property: see [2] and its
references). To do that we shall use some energy functions defined on local domains
of a special form. As in [2] we shall use the following notation: given x0 ∈ Ω and
the nonnegative parameters ϑ and υ, we define the energy set

P (t) ≡ P (t;ϑ, υ) = {(x, s) ∈ Bρ(s)(x0)× (t, T ) : |x− x0| < ρ(s) := ϑ(s− t)υ}.

Notice that the shape of P (t), the local energy set, is determined by the choice of
the parameters ϑ and υ. Here we shall take ϑ > 0, 0 < υ < 1 and so P (t) becomes
a paraboloid. The adaptation of the results of [2] to the case in which k ∈ (0, 1) and
P (t, ρ) is the cylinder Bρ(x0) × (t, T ); or when P (0, ρ) becomes a truncated cone
with base Bρ(x0) := { x ∈ Ω : |x− x0| < ρ} on the plane t = 0 follows easily but
they will not be detailed here. We adapt the definition of the local energies in the
following way:

E(P (t)) :=

∫
P (t)

|Du(x, τ)|p dxdτ, C(P (t)) :=

∫
P (t)

|u(x, τ)|α dxdτ ,

and

b(P (t)) := ess sup
s∈(t,T )

∫
|x−x0|<ϑ(s−t)υ

|u(x, s)|γ+1 dx.

Although our results have a local nature ( as already said they are independent of
the boundary conditions) our statements become easier under the additional global
information on the boundedness of the global energy function

D(u, t∗, T ) := ess sup
s∈(t∗,T )

∫
Ω

|u(x, s)|γ+1 dx+

∫
Ω×(t∗,T )

(|Du|p + |u|α) dxdt. (47)

Our study will follow quite closely the technique introduced in [1]. The key
new ingredient, with respect to [1], is the following interpolation-trace result which
extends Corollary 2.1 of [15] in the sense that some exponent, s, is now assumed
such that 0 < s < 1 and that the interpolation inequality involves the seminorm
‖u‖Lr(Bρ) with an arbitrary r ∈ [s, p] (and not necessarily r = s). It also generalizes

Lemma 3.4 of [2] where it was assumed s ≥ 1.

Lemma 4.1. Assume u ∈W 1,p(Bρ), p ≥ 1 and 0 < s ≤ p. Then for any r ∈ [s, p]

‖u‖Lp(∂Bρ) ≤ C(‖Du‖Lp(Bρ) + ρ−β ‖u‖Ls(Bρ))
θ ‖u‖1−θLr(Bρ) (48)

where the constant C depends only on N and s,

θ =
N(p− r) + r

N(p− r) + pr
and β := (

N(p− s) + ps

ps
). (49)

Proof. We shall follow the same structure of four steps than in the proof of Lemma
2.2 of [15]. We shall only detail the differences with respect to the proof when s ≥ 1.
We denote, for the moment, G = Bρ. As usual, we restrict ourselves to u ∈ C1(G)

(since C1(G) is dense in W 1,p(Bρ)).
First step. If p > 1 and 0 < s ≤ p we have
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‖u‖W 1,p(G) ≤ C(‖Du‖Lp(Bρ) + ‖u‖Ls(Bρ)) (50)

where the constant C depends only on s and |G|. Indeed, from a result of [21]
(page. 45), for any ε > 0 there exists Cε such that for any u ∈ C1(G)

‖u‖Lp(G) ≤ ε ‖Du‖Lp(G) + Cε ‖u‖L1(G) .

Then, by the Hölder interpolation inequality (8) with d = (p− 1)/(p− s)

‖u‖L1 ≤ ‖u‖dLs ‖u‖
1−d
Lp 1 =

d

s
+

1− d
p

.

Applying Young inequality expressed in terms of

AB ≤ µAm + CµB
m′ ,

1

m
+

1

m′
= 1,

we get that

‖u‖L1 ≤ µ ‖u‖Lp + Cµ ‖u‖Ls
and thus

‖u‖Lp(G) ≤
ε

(1− µ)
‖Du‖Lp(G) +

CεCµ
(1− µ)

‖u‖Ls(G) ,

which leads to (50).
Second step. If p > 1 we have

‖u‖Lp(∂G) ≤ C ‖u‖
1/p
W 1,p(G) ‖u‖

(p−1)/p
Lp(G) . (51)

This is exactly inequality (4.4) of ([15]).
Third step. If p > 1 and 0 < r ≤ p we have

‖u‖Lp(G) ≤ C ‖u‖
(pθ−1)/(p−1)
W 1,p(G) ‖u‖p(1−θ)/(p−1)

Lr(G) , (52)

with θ ∈ (0, 1] given by (49).
This inequality coincides with inequality (4.5) of ([15]) when r ∈ [1, p], neverthe-

less its proof for the remaining cases r ∈ (0, 1) is exactly the same since in the proof
given in ([15]) we only used the Sobolev inequality and the Hölder interpolation
inequality (8), which, as said before, it is true even if r ∈ (0, 1).
Fourth step. Using (51) and (52) we get

‖u‖Lp(∂G) ≤ C ‖u‖
1/p
W 1,p(G) ‖u‖

(pθ−1)/(p−1)
W 1,p(G) ‖u‖(1−θ)Lr(G) = C ‖u‖θW 1,p(G) ‖u‖

(1−θ)
Lr(G) .

Thus, using (50) inequality (48) is proved by taking G = Bρ, by making the change
of variable x = ρy (we assume that the ball is centered at x0 = 0) and by computing
the norms for v(y) = u(x) (see details in the proof of Corollary 2.1 of [15]).

As said in Section 2, the notion of local solution we need for the application
of the following local energy method does not need to be specified: we shall only
require that u is any function such that the local energies are finite, for almost all
ρ ∈ (0, ρ0), for some ρ0, and satisfies the ”local integration by parts inequality” on
the paraboloid P = P (t;ϑ, υ)
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∫
P∩{t=T}

G(u(x, t))dx+

∫
P

A ·Dudxdθ +

∫
P

Cudxdθ

≤
∫
∂lP

nx ·Au dΓdθ +

∫
∂lP

nτG(u(x, t))dΓdθ + λ

∫
P

|u|q+1dxdθ

assumed g(t, x) = 0 a.e. on P,

(53)

were ∂lP denotes the lateral boundary of P i.e. ∂lP = {(x, s) : |x − x0| = ϑ(s −
t)υ, s ∈ (t, T )}, dΓ is the differential form on the hypersurface ∂lP ∩ {t = const},
nx and nτ are the components of the unit normal vector to ∂lP . Let us mention
that n = (nx,nτ ) = 1

(ϑ2υ2+(θ−t)2(1−υ))1/2 ((θ− t)1−υex−υeτ ) with ex, eτ orthogonal

unit vectors to the hyperplane t = 0 and the axis t, respectively, where we used the
notation nτ = nτeτ . Notice that P does not touch the initial plane {t = 0} and
that P ⊂ Bρ(T )(x0)× [0, T ], and that we assume Bρ(T )(x0) ⊂ Ω.

This local inequality can be easily checked starting from a natural definition of
local weak solution and by taking as test function the cut-off function

ζ(x, θ) := ψε (|x− x0|, θ) ξk(θ)
1

h

∫ θ+h

θ

Tm (u(x, s)) ds, h > 0,

where Tm is the truncation at the level m,

ξk(θ) :=


1 if θ ∈

[
t, T − 1

k

]
,

k(T − θ) for θ ∈
[
T − 1

k , T
]
,

0 otherwise, k ∈ N,

and

ψε (|x− x0|, θ) :=

 1 if d > ε,
1
εd if d < ε,
0 otherwise,

with d = dist((x, θ), ∂lP (t)) and ε > 0. So that, suppζ(x, θ) ≡ P (t), ζ, ∂ζ∂t ∈
L∞ ((0, T )× Ω) and ∂ζ

∂xi
∈ Lp ((0, T )× Ω) (it is easy to adapt the arguments of

the proof of Lemma 3.1 of [15] and Subsection 2.1 of [1] to our framework).

Theorem 4.2. Assume (5) and (6). Let u satisfying (53) on any paraboloid of
the form P = P (t;ϑ, υ) and assume λ ≤ 0 and q ∈ R (we replace at the equation
the term λuq by λuqχ{u>0} for the case q < 0). Then there exists some positive

constants M, t∗, and µ ∈ (0, 1) such that if t∗ ≤ T and

D(u, t∗, T ) ≤M (54)

we have

u(x, t) = 0 in the paraboloid {(x, t) : |x− x0| < (t− t∗)µ, t ∈ (t∗, T )},

independently either u0 vanishes or not. Moreover, if λ > 0 the above conclusion
remains true (with the same t∗ ≤ T ) under one of the following conditions: either

q ≥ γ and ‖u‖q−γL∞(P (t∗)) <∞ (55)

or
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q + 1 ≥ α and λ ‖u‖q+1−α
L∞(P (t∗)) < 1. (56)

Proof. It is useful to identify each one of the terms involved in the interpolation
trace inequality (53). So, we rewrite it in the form

i1 + i2 + i3 ≤ j1 + j2 + j3. (57)

Case 1. Let us assume for the moment that

j3 = λ

∫
P

|u|q+1dxdθ ≤ 0.

The key idea is to get a differential inequality for some energy function. We observe
that if we denote by (ρ, ω), ρ ≥ 0 and ω ∈ ∂B1 the spherical coordinate system in
RN and if Φ(ρ, ω, θ) is the spherical representation of a general function F (x, t),
then an energy function I(t) defined trough F (x, t) can be also written as

I(t) :=

∫
P

F (x, θ)dxdθ ≡
∫ T

t

dθ

∫ ρ(θ,t)

0

ρN−1dρ

∫
∂B1

Φ(ρ, ω, θ)|J |dω,

where J is the Jacobi matrix and ρ(θ, t) = ϑ(θ − t)υ. So we get

dI(t)

dt
= −

∫ ρ(θ,t)

0

ρN−1dρ

∫
∂B1

Φ(ρ, ω, θ)|J |dω

∣∣∣∣∣
θ=t

+

∫ T

t

ρtρ
N−1dθ

∫
∂B1

Φ(ρ, ω, t)|J |dω =

∫
∂lP

ρtF (x, θ)dΓdθ,

(58)

and thus, as we shall show, we can get from (53) a differential inequality for some
suitable energy function which in our case will be given by

I(t) = E(P (t)) + C(P (t)).

In order to estimate j1, we use Hölder’s inequality to get

∣∣∣∣∫
∂lP

nx ·Au dΓdθ

∣∣∣∣ ≤M2

∫
∂lP

|nx||Du|p−1|u|dΓdθ

≤M2

(∫
∂lP

|ρt||Du|pdΓdθ

)(p−1)/p(∫
∂lP

|nx|p

|ρt|p−1
|u|pdΓdθ

)1/p

= M2

(
−dE
dt

)(p−1)/p
(∫ T

t

|nx|p

|ρt|p−1

(∫
∂Bρ(θ,t)

|u|pdΓ

)
dθ

)1/p

.

(59)

To estimate the right-hand side of (57) we use the interpolation inequality given in
Lemma 4 with s = α. Let h = γ

γ−r+1 , then
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∫
∂Bρ

|u|pdΓ ≤ C

∫
Bρ

|Du|p + ρ−βp

(∫
Bρ

|u|
α
)p/2θ̃

×

(∫
Bρ

|u|r
)p(1−θ̃)/r

≤ Cρ−βθ̃p
(∫

Bρ

|Du|p +

∫
Bρ

|u|
α
)θ̃
×

(∫
Bρ

|u|
α
)p(1−θ̃)/hr (∫

Bρ

|u|γ+1

)p(h−1)(1−θ̃)/hr

≤ Cρ−βθ̃p (E∗ + C∗)
θ̃
C

(1−θ̃)p/qr
∗ b(h−1)(1−θ̃)p/hr

≤ Cρ−βθ̃p (E∗ + C∗)
θ̃+(1−θ̃)p/hr

b(h−1)(1−θ̃)p/hr,
(60)

where E∗(t, ρ) :=
∫
Bρ
|Du|pdx, C∗(t, ρ) :=

∫
Bρ
|u|αdx and C is a suitable positive

constant.
Returning to the estimate of j1, applying once again Hölder’s inequality we have

from (60) that if µ = θ̃ + p (1−θ̃)
hr and r ∈

[
p(γ+1)
p+γ , γ + 1

]
(so that µ < 1)

|j1| ≤ C
(
−dE
dt

)(p−1)/p

×

(∫ T

t

|nx|p

|ρt|p−1
Kρβθ̃p (E∗ + C∗)

µ
b(h−1)(1−θ̃)p/hrdτ

)1/p

≤ C
(
−dE
dt

)(p−1)/p

b(h−1)(1−θ̃)/hr×

×

(∫ T

t

(E∗ + C∗) dτ

)µ
p
(∫ T

t

(
|nx|p

|ρt|p−1
ρ−βθ̃p(τ)

) 1
1−µ

dτ

) 1−µ
p

≤ Cσ(t)

(
−d (E + C)

dt

)(p−1)/p

b(h−1)(1−θ̃)/hr (E + C)
θ̃
p+ 1−θ̃

hr ,

(61)
for a suitable positive constant C and with

σ(t) :=

(∫ T

t

(
1

|ρt|p−1
ρδθ̃p(τ)

) 1
1−µ

dτ

) 1−µ
p

.

Obviously, to be able to continue with our arguments we must have σ(t) < ∞.
But this is fulfilled if we choose suitably our paraboloid with some ν = µ ∈ (0, 1)
sufficiently small since the condition of convergence of the integral σ(t) has the form

(1− µ)(p− 1)− µβθ̃p > −(1− θ̃)
(

1− p

hr

)
.

So, we have obtained an estimate of the following type

|j1| ≤ L1σ(t)D(u)(h−1)(1−θ̃)/hr (E + C)
1−ω

(
−d(E + C)

dt

)(p−1)/p

, (62)

where L1 is a universal positive constant, D(u) is the total energy, and ω := 1 −
θ̃
p −

1−θ̃
hr ∈

(
1− 1

p , 1
)
.

Let us estimate j2. Using the expression for nτ , we have |j2| ≤ C5

∫
∂lP
|u|1+γdΓdθ.

We apply then a variant of the the interpolation inequality (48), thanks to the
assumption (5)

‖v‖γ+1,∂Bρ ≤ C
(
‖Dv‖p,Bρ + ρ−β‖v‖α,Bρ

)s · ‖v‖1−sr,Bρ
∀ v ∈W 1,p(Bρ) (63)
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with a universal positive constant C > 0 and exponents s = (γ+1)N−r(N−1)
(N+r)p−Nr

p
γ+1 ,

r ∈ [α, 1 + γ]. Again

∫
∂Bρ

|u|γ+1dx ≤ L1+γCs(γ+1)/θ̃p

(∫
Bρ

|Du|pdx+

∫
Bρ

|u|αdx

)s(γ+1)/p

×

(∫
Bρ

|u|αdx

)1/hr (∫
Bρ

|u|γ+1dx

)(h−1)/hr
(1−s)(γ+1)

.

(64)

Let η = s(γ+1)
p + (1−s)(γ+1)

hr < 1, π = (q−1)(1−s)(γ+1)
hr . Then η + π ≥ 1 and we have

|j2| ≤ C

∣∣∣∣∣
∫ T

t

dτ

∫
∂Bρ(τ)

|u|γ+1dΓ

∣∣∣∣∣
≤ Cbπ

(∫ T

t

(E∗ + C∗)
η|nτ |dτ

)

≤ L (E + C + b) bκ

(∫ T

t

(
Cs(γ+1)/θ̃p

)ε
dτ

)1/ε

,

(65)

for some constants L and C and exponents κ := η+ π− 1 and ε = 1/(1− η). Then
we have

K

(∫
P∩{t=T}

|u|1+γdx+ E + C

)
≤ i1 + i2 + i3 (66)

for different positive constants K. Now, assuming T − t and D(u) so small that

Lbκ

(∫ T

t

(
Ks(γ+1)/θ̃p

)ε
dτ

)1/ε

<
K

2
,

we arrive to the inequality

E + C + b ≤ L1σ(t)D(u)(q−1)(1−θ̃)/qr−λ

× (E + C + b)
1−ω+λ

(
−d(E + C)

dt

)(p−1)/p

,
(67)

whence the desired differential inequality for the energy function Y (t) := E + C

Y (ω−λ)p/(p−1)(t) ≤ c(t) (−Y (t))
′
, (68)

where

c(t) =
(
L1 (D(u))

(q−1)(1−θ̃)/qr−λ
σ(t)

)p/(p−1)

, L1 = const > 0.

Notice that c(t)→ 0 as t→ T . Moreover, the exponent (ω − λ) p
p−1 belongs to the

interval (0, 1) which leads to the result (see the study of this ordinary differential
inequality in [2]).
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Case 2. Assume λ > 0 and (55) then

j3 = λ

∫
P

|u|q+1dxdθ ≤ λ(T − t) ‖u‖q−γL∞(P (t)) b(P (t))

and it suffices to take t∗ such that, in addition, λ(T − t∗) ‖u‖q−γL∞(P (t∗)) < 1 (notice

that ‖u‖q−γL∞(P (t∗)) ↘ 0 when t∗ ↗ T ) and then to balance j4 with the left hand side

terms of inequality (67). The case of (56) is similar since

j3 = λ

∫
P

|u|q+1dxdθ ≤ λ ‖u‖q+1−α
L∞(P ) C(P (t))

and we can balance j3 with the left hand side terms of inequality (67).

Remark 4. The assumption (54) is, in some sense, optimal. Indeed, it is clear that
any solution u∞ of the stationary problem associated to a global formulation, as
for instance (1) with g = ϕ = 0, is a solution of the parabolic problem for u0 = u∞.
In the special case of N = 1 it is possible to obtain the exact multiplicity diagram
(see [11]) showing that the part of the branch of (stable solutions) corresponding
to the maximal solution u∞ is strictly positive (for any λ > λ0 for some λ0 > 0).
Nevertheless, for λ large enough the part of the branch corresponding to the minimal
solution u∞ satisfies that λ ‖u∞‖

q+1−α
L∞(Ω) is small and u∞ vanishes locally near the

boundary of Ω. See also, in this context, the nonuniqueness results mentioned in
the paper [30].

Remark 5. Notice that assumptions (55) and (56) are perfectly compatible with
the existence of a global blow-up time T∞ (satisfying, obviously that T∞ ≥ t∗).
This is the case of equation (9) when q̂ > max(p, 2) (see [16]).

Remark 6. Assumptions (54), (55) and (56) are also perfectly compatible with
possible initial datum outside the natural energy space when some L1 − L∞ regu-
larizing effects holds (see [5] and [6]).

Remark 7. Theorem 4.2 can be extended, under suitable modifications, to the
case in which g(x, t) 6= 0. This is the case, for instance of the associated obstacle
problem (see [9] for the application of this local energy method to a similar class of
obstacle problems).
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E-mail address: diaz.racefyn@insde.es


	1. Introduction
	2. Finite speed of propagation and uniform localization for the semilinear equation and 0=x"01150
	3. Interpolation-trace inequalities
	4. Non cylindrical local energy subsets technique
	Acknowledgments
	REFERENCES

