
December 2014

ON THE FREE BOUNDARY ASSOCIATED WITH THE
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Abstract. This paper deals with several qualitative properties of solutions of

some stationary equations associated to the Monge–Ampère operator on the
set of convex functions which are not necessarily understood in a strict sense.

Mainly, we focus our attention on the occurrence of a free boundary (separating

the region where the solution u is locally a hyperplane, thus, the Hessian D2u
is vanishing from the rest of the domain). In particular, our results apply

to suitable formulations of the Gauss curvature flow and of the worn stones

problems intensively studied in the literature.

1. Introduction. It is well known that Geometry has been an extremely rich
source of interesting problems in partial differential equations since the pioneering
works by Gaspard Monge, Comte de Peluse, (1746-1818) and André–Marie Ampère
(1775-1836), among others (see, e.g. [31] and [5]).

Here we shall concentrate our attention on several second order partial differential
equations involving the Hessian determinant (the Monge-Ampère operator) of the
scalar unknown function u. Several concrete problems can be mentioned as source
of the motivation for this paper. For instance, we can mention the series of works
by L. Nirenberg and coauthors (see e.g. Nirenberg [32]) on some geometric prob-
lems, as isometric embedding, whose most familiar one is the classical Minkowski
problem, in which the Monge–Ampère equation arises in presence of a nonlinear
perturbation term on the unknown u. Nevertheless, today it is well-known that the
Monge–Ampère operator has many applications, not only in Geometry, but also
in applied areas: optimal transportation, optimal design of antenna arrays, vision,
statistical mechanics, front formation in meteorology, financial mathematics (see
e.g. the references [4, 24, 38], mainly for optimal transportation). In fact, we shall
formulate the parabolic and elliptic problems of this paper in connection with a spe-
cial problem which attracted the attention of many authors since 1974: the shape
of worn stones.
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It was shown by Firey ([23]), that the idealized wearing process for a convex
stone, isotropic with respect to wear, can be described by

∂P

∂t
= Kpn

where the points P of the N-dimensional convex hyper-surface ΣN(t) embedded
in RN+1 (in the physical case N = 3) moves under Gauss curvature flow K with
exponent p > 0 in the inward direction n to the surface with velocity equal to
the p–power of its Gaussian curvature (see also the important paper [29]). In the
special case in which we express locally the surface ΣN(t) as a graph xN+1 = u(x, t),
with x ∈ Ω, a convex open set of RN, the function u satisfies the parabolic Monge–
Ampère equation

ut =

(
det D2u

)p(
1 + |Du|2

) (N+2)p−1
2

.

Since the exact form of the above denominator will not be relevant (once we assume
some adequate conditions), our global formulation will be a Cauchy problem{

ut +Au = 0 t > 0,
u(0) = u0,

over the Banach space X = C(Ω) equipped with the supremum norm. A suitable
definition of the operator A, at least formally, is given by

Au = −
(

det D2u
)p

g(|Du|)
,

where u ∈ C2 is a locally convex function on Ω and u = ϕ on the boundary ∂Ω.
Here Ω is a bounded open set of RN, ϕ a continuous function on ∂Ω and u0 a locally
convex function on Ω. A coefficient p > 0 and a continuous function g ∈ C([0,+∞))
are part of the operator A with

g(s) ≥ 1 for any s ≥ 0. (1)

It can be proved (see [20]) that the operator A is accretive and satisfies R(I+εA) ⊃
D(A) for any ε > 0. Then the Cauchy problem is solved thanks to the semigroup
theory for accretive operators A by applying the Crandall–Liggett generation the-
orem (see e.g. [14]) for which the so called mild solution u of the above Cauchy
problem is found by solving the implicit Euler scheme

un − un−1

ε
+Aun = 0, for n ∈ N,

or

det D2un =

(
g
(
|Dun|

)un − un−1

ε

) 1
p

in Ω. (2)

This is why among the many different formulations of elliptic problems to which
we can apply our techniques we pay special attention to the following stationary
problem: with the above assumptions on Ω, ϕ, p and g, find a convex function u
satisfying, in some sense to be defined, the problem{

det D2u = g
(
|Du|

) [(
u− h

) 1
p

]
+

in Ω,

u = ϕ on ∂Ω,
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where h = h(x) is a given continuous function on Ω. Certainly if we want to return

to (2) we must replace g
(
|Du|

)
by
(
g
(
|Du|

)) 1
p . Since the Monge–Ampère operator is

only elliptic on the set of symmetric definite positive matrices, some compatibility
is required on the structure of the equation. In fact, the operator is degenerate
elliptic on the symmetric definite nonnegative matrices (see the comments at the
end of this Introduction). As it will be proved in Theorem 2.5 (see also Remark 3),
the compatibility is based on

h is locally convex on Ω and h ≤ ϕ on ∂Ω. (3)

We also emphasize that if Np ≤ 1 and ϕ(x0) > h(x0) at some x0 ∈ ∂Ω or
det D2h(x0) > 0 at some point x0 ∈ Ω then the problem (20) is elliptic non-
degenerate in path-connected open sets Ω, as it is deduced from our Corollary 2.

The paper is organized as follows. In Section 2, after recalling the notion of
solution, we shall obtain some weak maximum principles for the boundary value
problem. Section 3 deals with the study of flat regions: we give some sufficient
conditions for its occurrence as well as some estimates on its location. The consid-
eration of unflat solutions is carried out in Section 4. The results can be considered,
in some sense, as necessary conditions for the existence of flat solutions in terms of
the zero order term of the equation. Now, with some more details, let us comment
that the main consequence of the Weak Maximum Principle is the comparison result
for which one deduces h ≤ u on Ω, provided (3) holds, i.e., h behaves as a kind of
lower “obstacle” for the solution u (see Remark 3 below). Therefore, under (3) the
problem becomes {

det D2u = g
(
|Du|

)(
u− h

)q
in Ω,

u = ϕ on ∂Ω,
(4)

where the usual restriction on the non negativity of the right hand side is here sup-

plied by (3). To simplify the notation we use q =
1

p
. In particular, the inequalities

u0 ≤ . . . ≤ un−1 ≤ un ≤ . . . ≤ u on Ω (5)

hold for the iterative scheme (2). We emphasize that since the right hand side of
the equation needs not to be strictly positive in some region of Ω, the ellipticity
of the Monge–Ampère operator and the regularity C2 of solutions cannot be “a
priori” guaranteed. The so-called “viscosity solutions” or the “generalized solutions”
are adequate notions in order to weaken the non-degeneracy hypothesis on the
operator. In fact, it is shown in [28] for convex domains Ω that both notions
coincide. By using the Weak Maximum Principle and well known methods we
prove, in Theorem 2.5, the existence of a unique generalized solution of (4) or more

generally of problem (20) where the nonlinear expression
(
u − h

)q
is replaced by

f(u− h) being

f ∈ C(R) an increasing function satisfying f(0) = 0. (6)

By a simple reasoning we obtain estimates on the gradient Du. Bounds for the
second derivatives D2u can be deduced from (22) as we shall prove in [19] (see
Remark 3).

Since h ≤ u holds on Ω, the junction F between the regions where [u = h] and
[h < u] is a free boundary (it is not known a priori). This free boundary can be
defined also as the boundary of the set of points x ∈ Ω for which det D2u(x) > 0.
Obviously, since the interior of the regions [u = h] and [det D2u = 0] coincide, we
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must have D2h = 0 in these interior region. Motivated by the applications, as
well as by the structure of the equation, the occurrence and localization of a free
boundary is studied in Section 3 whenever h(x) has flat regions

Flat(h) =
⋃
α

{x ∈ Ω : h(x) = 〈pα, x〉+ aα, pα ∈ RN, aα ∈ R} 6= ∅,

where 〈·, ·〉 denotes the Euclidean inner product in RN. As it will be proved, the
free boundary F appears under two different types of conditions on the data: a
suitable behavior of zeroth order term (N > q) and a suitable balance between the
“size” of the regions of Ω where h(x) is flat and the “size” of the data ϕ and h. For
this last reason, we rewrite the equation making rise a positive parameter λ,

det D2u = λg
(
|Du|

)
f
(
u− h

)
in Ω. (7)

We shall show here how the theory on free boundaries (essentially the boundary
of the support of the solution u), developed for a class of quasilinear operators in
divergence form, can be extended to the case of the solution of (7) inside of flat
regions of h, where uh = u− h solves

det D2uh = λg
(
|Du|

)
f(uh).

We refer the reader to the exposition made in the monograph [21] for details and
examples (we mention here the more recent monograph [33] and the paper [16] for
the case of other fully nonlinear operators among many other references on this
topic in the literature).

As it was suggested in [21] for the Monge–Ampère operator and fq(t) = tq, the
appearance of the free boundary is strongly based on the condition

q < N. (8)

Assumption (8) corresponds to the power-like choice of the more general condition∫
0+

(
F(t)

)− 1
N+1 dt <∞, (9)

where F(t) =

∫ t

0

f(s)ds, relative to a continuous and increasing function f satisfying

f(0) = 0 (see [19]). Since the strict convexity must be removed, a critical size of the
data is required, the parameter λ governs these kind of magnitude (see (49) below).
For instance, it is satisfied if λ is large enough.

In Theorems 3.1 and 3.3 below we prove the occurrence of the free boundary F
and give some estimates on its localization. We also prove that if h(x) growths
moderately (in a suitable way) near the region where it ceases to be flat then the
free boundary region associated to the flattens of u (i.e. the region where uh = u−h
vanishes) may coincide with the boundary of the set where h is flat (see Theorem 3.4
for fq(t) = tq, q < N). The estimates on the localization of the free boundary are
optimal, in the class of nonlinearities f(s) satisfying (9), as it will be proved in [19].

In Section 4, by means of a Strong Maximum Principle for uh, we prove that the
condition ∫

0+

dt(
F(t)

) 1
N+1

=∞ (or N ≤ q for fq(t) = tq) (10)

is a necessary condition for the non-existence of such free boundary (see Theorem
4.2, Corollary 2 and Remark 12 below). More precisely, we shall prove that under
this condition the solution cannot have any flat region. This can be regarded as



ON THE FREE BOUNDARY ASSOCIATED 5

an extension of [39] to the non divergence case (see also [16], [21] and [33]). As it
was pointed out, the condition N ≤ q implies non-degenerate ellipticity of prob-
lem (20) under very simple assumptions, such as ϕ(x0) > h(x0) at some x0 ∈ ∂Ω
or det D2h(x0) > 0 at some point x0 ∈ Ω for path-connected open set Ω (see Corol-
lary 2).

After the completion of this work the authors became aware of the paper by
Daskalopoulos and Lee [15] in which they consider a problem (classified as an ei-
genvalue type problem) with several resemblances with our formulation (4), for the
case N = 2, 0 < q < 2 and g ≡ 1. The main goal is the study the regularity of the
solution and so their approach uses different tools.

We end this introduction by pointing out that our methods can be applied to the
borderline cases for (9). This will be studied in the future paper [19] in which the
Monge–Ampère operator is replaced by other nonlinear operators of the Hessian of
the unknown such as the kth elementary symmetric functions

Sk[λ(D2u)] =
∑

1≤i1<i2<···<ik≤N

λi1 · · ·λik , 1 ≤ k ≤ N, (11)

where λ(D2u) =
(
λ1, . . . , λN

)
are the eigenvalues of D2u. Note that the case k = 1

corresponds to the Laplacian operator while it is a fully nonlinear operator for the
other choices of k. The case k = N corresponds to the Monge–Ampère opera-
tor. Some other properties for the kth elementary symmetric function (11) will be
considered in futures studies by the authors in [17, 18, 19].

2. On the notion of solutions and the weak maximum principle. Many
previous expositions on the nature of the solutions can be found in the literature,
see for instance the survey [36]. Certainly in the class of C2 convex functions, the
Monge–Ampère operator det D2u is elliptic because the cofactor matrix of D2u is
positive definite. So that, as it is proved by several methods in [10, 11, 19, 25, 27,
30, 34, 35, 36, 37], there exists a C2 convex solution of the general boundary value
problems as {

det D2u = H(Du, u, x), on Ω,
u = ϕ, on ∂Ω,

(12)

under suitable assumptions on Ω, H > 0 and ϕ. A main question arises now both
in theory and in applications: what happens if H ≥ 0. Certainly, the ellipticity
degeneracy occurs and in general the regularity C2 of solutions cannot be guaran-
teed. As it was pointed out in the Introduction, the so called ”viscosity solutions”
or the ”generalized solutions” are the adequate notions in our study. In fact, it can
be proved that for a convex domain Ω both notions coincide (see [28]). A short
description of all that is as follows. By a change of variable we get

|Du(E)| =
∫

E

det D2u dx =

∫
E

H(Du, u, x)dx, (13)

where

|Du(E)| = meas{p ∈ RN : p = Du(x) for some x ∈ E},
for any Borel set E ⊂ Ω, where the left hand side makes sense merely when u ∈ C1 is
convex. By the structure of the problem, u must be convex on Ω and consequently
u is at least locally Lipschitz. While for locally Lipschitz functions the right hand
side of (13) is well defined, slight but careful modifications are needed to give sense
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to the left hand side. The progress in this direction is achieved thanks to the notion
of subgradients of a convex function u: given p ∈ RN, we say

p ∈ ∂u(x) iff u(y) ≥ u(x) + 〈p, y − x〉 for all y ∈ Ω (14)

Thus, we can define the Radon measure

µu(E)
.
= |∂u(E)| = meas{p ∈ RN : p ∈ ∂u(x) for some x ∈ E}. (15)

Since the pioneering works by Aleksandrov [1] several authors have contributed
to the study of the above measure (see, for instance, [36]). Then we arrive to

Definition 2.1. A convex function u on Ω is a “generalized solution” of (12) if

µu(E) =

∫
E

H(Du, u, x)dx

for any Borel set E ⊂ Ω.

The continuity on Ω is compatible with the usual realization of the Dirichlet
boundary condition. Obviously, the condition H ≥ 0 cannot be removed. Certainly,
the definition, as well as (15), can be extended to locally convex functions u on Ω,
for which u can be constant on some subset of Ω.

This notion of generalized solution is specific of the equations governed by the
Monge–Ampère operator, but other notion of solutions are available for other type
of fully nonlinear equations with non divergence form. The most usual is the so
called “viscosity solution” introduced by M.G. Crandall and P.L. Lions (see the
user’s guide [13])

Definition 2.2. A convex function u on Ω is a viscosity solution of the inequality

det D2u ≥ H(Du, u, x) in Ω (subsolution)

if for every C2 convex function Φ on Ω for which

(u− Φ)(x0) ≥ (u− Φ)(x) locally at x0 ∈ Ω

one has
det D2Φ(x0) ≥ H

(
DΦ(x0), u(x0), x0

)
.

Analogously, one defines the viscosity solution of the reverse inequality

det D2u ≤ H(Du, u, x) in Ω (supersolution)

as a convex function u on Ω such that for every C2 convex function Φ on Ω for which

(u− Φ)(x0) ≤ (u− Φ)(x) locally at x0 ∈ Ω

one has
det D2Φ(x0) ≤ H

(
DΦ(x0), u(x0), (x0)

)
.

Finally, when both properties hold we arrive to the notion of viscosity solution of

det D2u = H(Du, u, x) in Ω.

Note that the convexity condition on u and Φ are extra assumptions with respect
to the usual notion of viscosity solution (see [13]). This is needed here because the
Monge–Ampère operator is only degenerate elliptic on this class of functions. In
fact, the convexity on the test function Φ is only required for the correct definition
of super solutions in the viscosity sense, because if u− Φ attains a local maximum
at x0 ∈ Ω for a convex function u on Ω and Φ ∈ C2(Ω) one deduces

D2Φ(x0) ≥ 0
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(see [28]). One proves the equivalence

u is a generalized solution of (12) if and only if u is a viscosity solution of (12),

provided that Ω is a convex domain and H ∈ C(RN × R× Ω) (see [28]).
With this intrinsic way of solving (12) one may study some complementary reg-

ularity results. In particular, we may get back to the notion of classical solution by
means of the following consistence result

Theorem 2.3 ([10]). Let u be a strictly convex generalized solution of (12) in
a convex domain Ω ⊂ RN, where H ∈ C0,α(RN × R × Ω) is positive. Then u ∈
C2,α′(Ω)∩ C1,1(Ω), for some α′ ∈]0, 1[, and u solves (12) in the classical sense.

We continue this section with the study of some comparison and existence results
for the equation (7). All results of this section apply to the case of general increasing
functions f ∈ C(R) satisfying f(0) = 0

det D2u = g
(
|Du|

)
f(u− h) in Ω.

We begin by showing that the nature of the viscosity solution is intrinsic to the
Maximum Principle.

Proposition 1 (Weak Maximum Principle I). Let h1, h2 ∈ C(Ω). Let u2 ∈ C2(Ω)∩
C(Ω) be a classical solution of

− det D2u2 + g
(
|Du2|

)
f(u2 − h2) ≥ 0 in Ω,

and let u1 ∈ C(Ω) be a convex viscosity solution of

− det D2u1 + g
(
|Du1|

)
f(u1 − h1) ≤ 0 in Ω.

Then one has

(u1 − u2)(x) ≤ sup
∂Ω

[
u1 − u2

]
+

+ sup
Ω

[
h1 − h2

]
+
, x ∈ Ω.

Proof. By continuity there exists x0 ∈ Ω where [u1 − u2]+ achieves the maximum
value on Ω. We only consider the case x0 ∈ Ω and [u1 − u2]+(x0) > 0, because
otherwise the result follows. Then from the application of the definition of viscosity
solution for u1 we can take Φ = u2 and so we deduce

0 ≥ −det D2u2(x0) + g
(
|Du2(x0)|

)
f(u1(x0)− h1(x0))

≥ g
(
|Du2(x0)|

)
f
(
u1(x0)− h1(x0)

)
− g
(
|Du2(x0)|

)
f
(
u2(x0)− h2(x0)

)
.

Then, since f is increasing

(u1 − u2)(x0) ≤
(
h1 − h2

)
(x0) ≤ sup

∂Ω

[
u1 − u2

]
+

+ sup
Ω

[h1 − h2]+.

Remark 1. We note that the monotonicity on the zeroth order terms is the only
assumption required on the structure of the equation and that our argument is
strongly based on the notion of viscosity solution. An analogous estimate holds
by changing the roles of u1 and u2 (but then we do not require the C2 function
u1 to be convex). Note also that we did not assume any convexity condition on
the domain Ω. When Ω is convex these results can be extended to the class of the
generalized solutions through the mentioned equivalence between such solutions
and the viscosity solutions. In [19] we extend Proposition 1 to non decreasing
functions f.
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A very simple (and important fact) was used in our precedent arguments: if
u1 ∈ C2 and u2 − u1 ∈ C2 are convex functions on a ball B then

det D2u2 ≥ det D2u1 in B.

This simple inequality can be extended to the case u1 and u2−u1 convex functions
on a ball B, with u1 = u2 on ∂B, by the “monotonicity formula”

µu2
(B) ≥ µu1

(B) (16)

(see [36]). In this way, the Weak Maximum Principle can be extended to the class
of generalized solutions

Theorem 2.4 (Weak Maximum Principle II). Let h1, h2 ∈ C(Ω). Let u1, u2 ∈ C(Ω)
where u1 is locally convex in Ω. Suppose

− det D2u1 + g
(
|Du1|

)
f
(
u1 − h1

)
≤ −det D2u2 + g

(
|Du2|

)
f
(
u2 − h2

)
in Ω (17)

in the generalized solutions sense. Then

(u1 − u2)(x) ≤ sup
∂Ω

[u1 − u2]+ + sup
Ω

[h1 − h2]+, x ∈ Ω. (18)

In particular,

|u1 − u2|(x) ≤ sup
∂Ω
|u1 − u2|+ sup

Ω
|h1 − h2|, x ∈ Ω, (19)

whenever the equality holds in (17).

Proof. As above, we only consider the case where the maximum of [u1− u2]+ on Ω
is achieved at some x0 ∈ Ω with [u1−u2]+(x0) > 0. Therefore, (u1−u2

)
(x) > 0 and

convex in a ball BR(x0), R small. Let Ω+ = {u1 > u2} ⊇ BR(x0). We construct
û1(x) = u1(x) + γ

(
|x − x0|2 −M2

)
− δ, where M > 0 is large and γ, δ > 0 such

that û1 < u1 on ∂Ω+ and the set Ω+
γ,δ = {û1 > u2} is compactly contained in Ω

and contains Bε(x0) for some ε small. By choosing γ, δ properly, we can assume
that the diameter of Ω+

γ,δ is small so that u1, and therefore u2 = (u2−u1) +u1, are

convex in it. Then (16) implies

0 < (γε)N|B1(0)| ≤ µu2

(
Bε(x0)

)
− µu1

(
Bε(x0)

)
≤
∫
Bε(x0)

[
g
(
|Du2|

)
f
(
u2 − h2

)
− g
(
|Du1|

)
f
(
u1 − h1

)]
dx.

Since g
(
|Du1(x0)|

)
= g
(
|Du2(x0)|

)
> 0 (see Remark 2 below), by letting ε→ 0, the

Lebesgue differentiation theorem implies

0 ≤ g
(
|Du2(x0)|

)
f
(
u2(x0)− h2(x0)

)
− g
(
|Du1(x0)|

)
f
(
u1(x0)− h1(x0)

)
,

whence (
u1 − u2

)
(x0) <

(
h1 − h2

)
(x0) ≤ sup

∂Ω

[
u1 − u2

]
+

+ sup
Ω

[
h1 − h2

]
+

concludes the estimates.

Remark 2. The above proof requires a simple fact, any convex function ψ in a
convex open set O ⊂ RN achieving a local interior maximum at some z0 ∈ O verifies
Dψ(z0) = 0. Indeed, for any p ∈ ∂ψ(z0) one has

ψ(x) ≥ ψ(z0) + 〈p, x− z0〉 ≥ ψ(x) + 〈p, x− z0〉 with x near z0,

thus
0 ≥ 〈p, x− z0〉.
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Then if τ > 0 is small enough we may choose x− z0 = τp ∈ O and deduce

0 ≤ τ |p|2 ≤ 0.

A first consequence of the general theory for (12) and the Weak Maximum Prin-
ciple is the following existence result

Theorem 2.5. Let ϕ ∈ C(∂Ω) and assume the compatibility condition (3). Then
there exists a unique locally convex function verifying{

det D2u = g
(
|Du|

)
f(u− h) in Ω,

u = ϕ on ∂Ω,
(20)

in the generalized sense. In fact, one verifies

h(x) ≤ u(x) ≤ Uϕ(x), x ∈ Ω, (21)

where Uϕ is the harmonic function in Ω with Uϕ = ϕ on ∂Ω.

Proof. First we consider the generalized solution of the problem{
−det D2u+ g

(
|Du|

)[
f(u− h)

]
+

= 0 in Ω.

u = ϕ on ∂Ω.

Since H
(
Du, u, x

)
= g
(
|Du|

)[
f(u−h)

]
+
≥ 0 we can apply well known results in the

literature. In particular, from [37], it follows the existence and uniqueness of the
solution u. The second point is to note that, by construction, the locally convex
function h verifies

−det D2h+ g
(
|Du|

)[
f(h− h)

]
+
≤ 0 in Ω.

Therefore, by the Weak Maximum Principle and the assumption h ≤ ϕ on ∂Ω we
get that

h ≤ u in Ω,

whence [
f(u− h)

]
+

= f(u− h)

concludes that u solves (20). The uniqueness also follows from the Weak Maxi-
mum Principle. Finally, since u is locally convex, the arithmetic–geometric mean
inequality lead to

0 ≤ det D2u ≤ 1

N
(∆u)

N
in Ω,

whence the estimate
h(x) ≤ u(x) ≤ Uϕ(x), x ∈ Ω

is completed by the weak maximum principe for harmonic functions.

Remark 3. i) As it was pointed out in the Introduction, no sign assumption on h is
required in Theorem 2.5. The simple structural assumption (3) implies that h ≤ u
on Ω and therefore the ellipticity, eventually degenerate, of the equation holds.
Thus, the ellipticity holds once h behaves as a lower “obstacle” for the solution u.
We note that these compatibility conditions are not required a priori in the Weak
Maximum Principles because there we are working with functions whose existence
is a priori assumed.
ii) Since u is locally convex on Ω, we can prove

sup
Ω
|Du| = sup

∂Ω
|Du|,
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(see [19]), then inequality (21) gives a priori bounds on |Du| on Ω, provided h = ϕ
on ∂Ω and Dh is defined on ∂Ω. The second derivative estimate is based on the
inequality

sup
Ω
|D2u| ≤ C

(
1 + sup

∂Ω
|D2u|

)
(22)

for some constant C independent on u, as it will be proved in [19].

In the next section we prove a kind of Strong Maximum Principle which under
suitable assumptions will avoid the appearance of the mentioned free boundary.

3. Flat regions. In this section we focus the attention to a lower “obstacle” func-
tion h locally convex on Ω having some region giving rise to the set

Flat(h) =
⋃
α

Flatα(h)

where

Flatα(h) = {x ∈ Ω : h(x) = 〈pα, x〉+ aα for some pα ∈ RN and aα ∈ R}. (23)

Since

u(y)− 〈pα, y〉 ≥ u(x)− 〈pα, x〉+ 〈p− pα, y − x〉,
thus

p ∈ ∂u(x) ⇔ p− pα ∈ ∂
(
u(x)−

(
〈pα, x〉+ aα

))
,

the equation (7) becomes

det D2uα = λg
(
|Du|

)
f
(
uα
)
, x ∈ Flatα(h), (24)

for uα = u−
(
〈pα, x〉+aα

)
. Remember that uα ≥ 0 in an open set O ⊆ Ω, if uh ≥ 0

on ∂O. Assumption g(|p|) ≥ 1 leads us to study the auxiliar problem{
det D2U = λf(U) in BR(0),
U ≡ M > 0 on ∂BR(0),

(25)

for any M > 0. From the uniqueness of solutions, it follows that U is radially
symmetric, because by rotating it we would find another solution. Moreover, by
the comparison results U is nonnegative. Therefore, the solution U is governed by

a nonnegative radial profile function U(x) = Û(|x|) for which some straightforward
computations leads to

det D2U(x) = Û′′(r)

(
Û′(r)

r

)N−1

=
r1−N

N

[(
Û′(r)

)N]′
, r = |x|. (26)

Remark 4. For N = 1, the problem (25) becomes the semi linear ODE

Û′′(r) = λf
(
Û
)

whose annulation set was carefully studied in [21]. Notice that for N > 1 the
radial Monge-Ampère operator is not exactly the radial p-Laplacian operator with
p = N + 1, although there is a great resemblance among them.

We start by considering the initial value problem
r1−N

N

[(
U′(r)

)N]′
= λf

(
U(r)

)
, λ > 0,

U(0) = U′(0) = 0.
(27)
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Obviously, U(r) ≡ 0 is always a solution, but we are interested in the existence of
nontrivial and non–negative solutions. Assume for the moment that there exists a
pair (U, λU) formed by an increasing function U : [0,RU[→ R+ and λU > 0 satisfying
that 

r1−N

N

[(
U′(r)

)N]′
= λUf

(
U(r)

)
, 0 < r < RU,

U(0) = U′(0) = 0,
(28)

for some 0 < RU ≤ ∞. We shall return to this assumption later.
By rescaling by C > 0, (28) becomes −

r1−N

N

[(
U′(Cr)

)N]′
+ λf

(
U(Cr)

)
=
[
λ− λUC2N

]
f
(
U(Cr)

)
, 0 < r <

RU

C
U(0) = U′(0) = 0,

(29)

whence for Cλ,λU =

(
λ

λU

) 1
2N

it follows

1. if C < Cλ,λU the function U(Cr) is a supersolution of the equation (27),
2. if C = Cλ,λU the function U(Cr) is the solution of the equation (27),
3. if C > Cλ,λU the function U(Cr) is a subsolution of the equation (27).

Moreover, the function

vτ (x)
.
= U

(
Cλ,λU

(
[|x| − τ ]+

))
, x ∈ Bτ+RU,λ(0), RU,λ =

RU

Cλ,λU

(30)

solves

−det D2vτ (x) + λf
(
vτ (x)

)
= 0, x ∈ Bτ+RU,λ(0).

Furthermore, it verifies

vτ (x) = M, |x| = R < τ + RU,λ

once we take

τ = R−
(
λU
λ

) 1
2N

U−1(M) =
[
λ
− 1

2N
∗ − λ− 1

2N

]
U−1(M)λ

1
2N

U

with

λ ≥ λ∗
.
= λU

(
1

R
U−1(M)

)2N

. (31)

Now for the solution of (7) we may localize a core of the flat region Flat(u) inside
the flat subregion Flatα(h) of the “obstacle”.

Theorem 3.1. Let h be locally convex on Ω. Let us assume that there exists
BR(x0) ⊂ Flatα(h) with

0 ≤ u(x)−
(
〈pα, x〉+ aα

)
≤ M ≤ max

Ω
(u− h), x ∈ ∂BR(x0), (32)

where u is a generalized solution of (7), for some M > 0. Then, if (28) holds and

λ ≥ λ∗
.
= λU

(
1

R
U−1(M)

)2N

,

one verifies

0 ≤ u(x)−
(
〈pα, x〉+ aα

)
≤ U

(
Cλ,λU

(
[|x| − τ ]+

))
, x ∈ BR(x0), (33)
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where

Cλ,λU =

(
λ

λU

) 1
2N

and τ =
[
λ
− 1

2N
∗ − λ− 1

2N

]
U−1(M)λ

1
2N

U , (34)

once we assume that R < τ + RU,λ and(
λU
λ

) 1
2N

U−1(M) < R ≤ dist(x0, ∂Ω). (35)

In particular, the function u is flat on Bτ (x0). More precisely,

u(x) = 〈pα, x〉+ aα for any x ∈ Bτ (x0).

Proof. The result is a direct consequence of previous arguments. Indeed, for sim-
plicity we can assume x0 = 0. Since g(|p|) ≥ 1, by the comparison results we get
that

0 ≤ uα(x) ≤ vτ (x), x ∈ BR(0)

(see (24) and (30)) and so the conclusions hold.

Remark 5. We have proved that under the above assumptions the flat region of u
is a non–empty set. Obviously, Flat(h) ⊂ Flat(u) whenever (32) fails, even if (28)
holds. We shall examine the optimality of (33) in [19] following different strategies
carry out in [21] for other free boundary problems.

Remark 6. We point out that the above result applies to the case in which ϕ ≡ 1
and h ≡ 0 (the so called “dead core” problem) as well as to cases in which u is flat
only near ∂Ω (take for instance, h(x) = 〈pα, x〉+ aα in Ω and ϕ ≡ h on ∂Ω).

The equation in (28) is equivalent to((
U′(r)

)N+1
)′

= NrN−1λU
(
F
(
U(r)

))′
, 0 < r < RU F′ = f,

and(
U′(r)

)N+1
= NλU

(
rN−1F

(
U(r)

)
− 1

N− 1

∫ r

0

sN−2F
(
U(s)

)
ds

)
, 0 < r < RU.

So, we deduce that (28) requires∫ U(r)

0

ds(
F(s)

) 1
N+1

=

∫ r

0

U′(s)ds(
F
(
U(s)

)) 1
N+1

≤ (NλU)
1

N+1
N + 1

2N
r

2N
N+1 , 0 < r < RU.

Therefore (9) is a necessary condition in order to (28) holds.
The reasoning in proving that (9) is a sufficient condition for the assumption (28)

is very technical. Here we only construct a function verifying a similar property
useful to our interest

Theorem 3.2. Assume (9). Then the function φ(r) given implicity by∫ φ(r)

0

(
F(s)

)− 1
N+1 ds = r

2N−1
N , 0 ≤ r (36)

satisfies, for each R̂ > 0 the property
r1−N

N

[(
φ′(r)

)N]′ ≤ λφ,R̂f(φ(r)
)
, 0 < r < R̂,

φ(0) = φ′(0) = 0,
(37)
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where 
R̂ <

∫ ∞
0

(
F(s)

)− 1
N+1 ds ≤ +∞,

λφ,R̂ =

(
2N− 1

N

)N+1
N

N + 1
R̂

N−1
N .

(38)

Proof. Since the function

ψ(t) =

∫ t

0

(
F(s)

)− 1
N+1 ds, t ≥ 0,

is increasing from R+ to [0, ψ(∞)[ and ψ(0) = 0, we may consider the function
given by ∫ φ(r)

0

(
F(s)

)− 1
N+1 ds = ra, 0 ≤ r < ψ(∞) ≤ +∞,

where a is a positive constant to be chosen. Then

φ′(r) = a
(
F
(
φ(r)

)) 1
N+1 ra−1,

and

r1−N

N

[(
φ′(r)

)N]′
= aNr(a−1)N+1−N

(
a− 1

r

(
F
(
φ(r)

)) N
N+1 +

a

N + 1
ra−1f

(
φ(r)

))
.

holds. Next, we choose

(a− 1)N + 1−N = 0 ⇔ a =
2N− 1

N
,

and Φ(r) =
(
F
(
φ(r)

)) N
N+1 . Since Φ(0) = 0 and

Φ′(r) =
aN

N + 1
f
(
φ(r)

)
r

N−1
N

is increasing, the convexity inequality

Φ(r) ≤ Φ′(r)r

gives

r1−N

N

[(
φ′(r)

)N]′ ≤ (2N− 1

N

)N+1
N

N + 1
r

N−1
N f

(
φ(r)

)
.

Finally, since a ≥ 1 one has φ(0) = φ′(0) = 0.

Remark 7. The above result leads to a stronger statement (as in the paper by
Brezis–Nirenberg [9] for a different quasilinear equation): given R > 0 and λ > 0
there exists a boundary value M∗ = M∗(R) such that the solution U of (25) verifies
U(0) = 0 and U(r) > 0 in BR \ {0}. The proof is a simple adaptation of the proof
of [9, Lemma 5] by means of an application of Theorem 3.2.

So that, fixed R̂ < ψ(∞) we have −
r1−N

N

[(
φ(Cr)

)N]′
+ λf

(
φ(Cr)

)
≥
[
λ− λφ,R̂C2N

]
f
(
φ(Cr)

)
, 0 < r < R̂

φ(0) = φ′(0) = 0,
(39)
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(see (29) becomes), whence for

Cλ,λφ,R̂ =

(
λ

λφ,R̂

) 1
2N

,

the function

vτ (x)
.
= φ

(
Cλ,λφ,R̂(

(
[|x| − τ ]+

))
, x ∈ Bτ+Rφ,λ(0), Rφ,λ,R̂ =

R̂

Cλ,λφ,R
(40)

solves

−det D2vτ (x) + λf
(
vτ (x)

)
≥ 0, x ∈ Bτ+Rφ,λ,R̂

(0).

The reasonings of Theorem 3.1 apply and enable us to localize again a core of the
flat region Flat(u) by

Corollary 1. Let h be locally convex on Ω. Let us assume that there exists BR(x0) ⊂
Flatα(h) with

0 ≤ u(x)−
(
〈pα, x〉+ aα

)
≤ M ≤ max

Ω
(u− h), x ∈ ∂BR(x0), (41)

where u is a generalized solution of (7), for some M > 0. Then, if (9) holds and

λ ≥ λ̂∗
.
= λφ,R̂

(
1

R
φ−1(M)

)2N

,

one verifies

0 ≤ u(x)−
(
〈pα, x〉+ aα

)
≤ φ

(
Cλ,λφ,R̂

(
[|x| − τ ]+

))
, x ∈ BR(x0), (42)

where

Cλ,λφ,R̂ =

(
λ

λφ,R̂

) 1
2N

and τ =
[
λ̂
− 1

2N
∗ − λ− 1

2N

]
φ−1(M)λ

1
2N

φ,R̂
, (43)

once we assume that R < τ + Rφ,λ,R̂ and(
λφ,R̂
λ

) 1
2N

φ−1(M) < R ≤ dist(x0, ∂Ω). (44)

In particular, the function u is flat on Bτ (x0). More precisely,

u(x) = 〈pα, x〉+ aα for any x ∈ Bτ (x0).

Remark 8. Corollary 1 is the relative version of Theorem 3.1. Consequently, the
comments of Remarks 5 and 6 apply.

In the particular case fq(t) = tq, the condition (9) holds if and only if N > q.
Moreover, the assumption (28) is verified for

Uq(r) = r
2N

N−q , λq =
(2N)N(N + q)

(N− q)N+1
, RλUq

= +∞, (45)

consequently all above results apply. If we scale by C
N−q
2N for the function

U(r) = CUq(r), r ≥ 0,
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the property (29) becomes

− r1−N

N

[(
U′(r)

)N]′
+ λfq(U(r)) = λ

[
1− λq

λ
CN−q

]
fq(U(r)). (46)

Now,

1. if C <

(
λ

λq

) 1
N−q

the function U(r) is a supersolution of equation (46),

2. if C =

(
λ

λq

) 1
N−q

the function U(r) is the solution of equation (46),

3. if C >

(
λ

λq

) 1
N−q

the function U(r) is a subsolution of equation (46).

So that, the particular choice

U(r) =

(
λ

λq

) 1
N−q

Uq(r), r ≥ 0, (47)

enables us to construct the function

vτ (x)
.
= U

(
[|x| − τ ]+

)
, x ∈ RN, (48)

vanishing in a ball Bτ (0) and solving

−det D2vτ (x) + λfq

(
vτ (x)

)
= 0, x ∈ RN.

Moreover, given M > 0, it verifies

vτ (x) = M, |x| = R

once we take

τ = R−U−1(M) = λ
1

2N
q M

N−q
2N

[
λ̃
− 1

2N
∗ − λ− 1

2N

]
with

λ ≥ λ̃∗
.
=
λqMN−q

R2N
. (49)

The localization of a core of the flat region Flat(u) inside the flat subregion Flatα(h)
of the “obstacle” is estimated by

Theorem 3.3. Let fq(t) = tq, q < N. Let h be locally convex on Ω. Let us assume
that there exists BR(x0) ⊂ Flatα(h) with

0 ≤ u(x)−
(
〈pα, x〉+ aα

)
≤ M ≤ max

Ω
(u− h), x ∈ ∂BR(x0), (50)

where u is a generalized solution of (7), for some M > 0. Then, if Np > 1 and

λ ≥ λ̃∗ one verifies

0 ≤ u(x)−
(
〈pα, x〉+ aα

)
≤ λ

1
N−q Cq,N

([
|x− x0| − τ

]
+

) 2N
N−q , x ∈ BR(x0), (51)

where

τ = λ
1

2N
q M

N−q
2N

[
λ̃
− 1

2N
∗ − λ− 1

2N

]
, (52)

once we assume that (
λq

λ

) 1
2N

M
N−q
2N λ−

1
2N < R ≤ dist(x0, ∂Ω). (53)

In particular, the function u is flat on Bτ (x0). More precisely,
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u(x) = 〈pα, x〉+ aα for any x ∈ Bτ (x0).

Remark 9. Theorem 3.3 is a new version of Theorem 3.1. Therefore, once more the
comments of Remarks 5 and 6 apply also to this power like case fq(t) = tq, N > q.

Theorem 3.3 gives some estimates on the localization of the points inside Flat(h)
where u becomes flat too. The following result shows that if h decays in a suitable
way at the boundary points of Flat(h) then the solution u becomes also flat in
those points of the boundary of Flat(h). In this result the parameter λ is irrelevant,
therefore with no loss of generality we shall assume that λ = 1.

Theorem 3.4. Let us assume N > q. Let x0 ∈ ∂Flatα(h) such that

h(x)−
(
〈pα, x〉+ aα

)
≤ K|x− x0|

2N
N−q , x ∈ BR(x0) ∩

(
RN \ Flat(h)

)
, (54)

and
0 ≤ max

|x−x0|=R

{
u(x)−

(
〈pα, x〉+ aα

)}
≤ CR

2N
N−q (55)

for some suitable positive constants K and C (see (57) below) and u is a generalized
solution of (7). Then

u(x0) = 〈pα, x0〉+ aα. (56)

Proof. Define the function

V(x) = u(x)−
(
〈pα, x〉+ aα

)
,

which by construction is nonnegative in ∂BR(x0) (see (55)). In fact, the Weak
Maximum Principle implies that V is non negative on BR(x0). Then

−
(

det D2V(x)
) 1

N +
(
fq

(
V(x)

)) 1
N

= −
(

det D2u(x)
) 1

N +
(
fq

(
u(x)−

(
〈pα, x〉+ aα

))) 1
N

= −
(
fq

(
u(x)− h(x)

)) 1
N +

(
fq

(
u(x)−

(
〈pα, x〉+ aα

))) 1
N

≤
(
h(x)−

(
〈pα, x〉+ aα

)) q
N

≤ K
q
N |x− x0|

2q
N−q , x ∈ BR(x0),

where we have used a kind of Minkovski inequality

(a+ b)
1
p ≤ a

1
p + b

1
p , a, b ≥ 0, where p > 1,

for p = N
q > 1, as well as (54). On the other hand, from (45) we have(

r1−N

N

[(
U′q(r)

)N]′) 1
N

= λ
1
N

Uq

(
fq

(
Uq(r)

)) 1
N , 0 < r < RλUq

,

for

Uq(r) = r
2N

N−q , λq =
(2N)N(N + q)

(N− q)N+1
RλUq

= +∞.

Then U(r) = CUq(r) verifies

−
(
r1−N

N

[(
U′(r)

)N]′) 1
N

+
(
fq

(
U(r)

))
)

1
N =

[
1− λqCN−q

] (
fq

(
U(r)

)) 1
N .
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Hence, if we take C < λ
− 1

N−q
q and then K such that

K
q
N ≤ C

q
N

[
1− λqCN−q

]
(57)

we obtain

−
(

det D2V(x)
) 1

N +
(
fq

(
V(x)

)) 1
N ≤ −

(
det D2U(|x|)

) 1
N +
(
fq

(
U(|x|)

)) 1
N , x ∈ BR(x0).

Finally, by choosing R satisfying (55) one has

V(x) ≤ U(|x|), x ∈ ∂BR(x0),

whence the comparison principle concludes

0 ≤ V(x) ≤ C|x− x0|
2N

N−q , x ∈ BR(x0),

and so u(x0) =
(
〈pα, x0〉+ aα

)
.

Remark 10. The assumption (55) is satisfied if we know that the ball BR(x0)
where (54) holds is assumed large enough. The above result is motivated by [21,
Theorem 2.5]. By adapting the reasoning used in previous results of the literature
(see [2, 3, 22]) it can be shown that the decay of h(x) −

(
〈pα, x〉 + aα

)
near the

boundary point x0 is optimal in the sense that if

h(x)−
(
〈pα, x〉+ aα

)
> C|x− x0|

2N
N−q on a neighbourhood of x0

then it can be shown that

u(x0)−
(
〈pα, x0〉+ aα)

)
> C|x− x0|

2N
N−q for x near x0.

This type of results gives very rich information on the non–degeneracy behavior
of the solution near the free boundary. This is very useful to the study of the
continuous dependence of the free boundary with respect to the data h and ϕ
(see [22]).

4. Unflat solutions. Now we examine the case in which the solution cannot be
flat (i.e. the free boundary cannot appear) independent on “size” of Ω, obviously it
requires the condition

q ≥ N

or the more general assumption (10). This will be proved by us by proving a version
of the Strong Maximum Principle. We shall follow the classical reasoning by E. Hopf
(see e.g. [25]). Again, since the parameter λ is again irrelevant in this section, with
no loss of generality, we assume λ = 1. So, we begin with

Lemma 4.1 (Hopf boundary point lemma). Assume (10). Let u be a nonnegative
viscosity solution of

− det D2u+ f(u) ≥ 0 in Ω.

Let x0 ∈ ∂Ω be such that u(x0)
.
= lim inf

x→x0
x∈Ω

u(x) and{
i) u achieves a strict minimum on Ω ∪ {x0},
ii) ∃ BR(x0 − Rn(x0)) ⊂ Ω (∂Ω satisfies an interior sphere condition at x0).

Then there exists a positive constant C such that

lim inf
τ→0

u(x0 − τn)

τ
≥ C, (58)

where n stands for the outer normal unit vector of ∂Ω at x0.
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Proof. Let y = x0 − Rn(x0) and BR
.
= BR(y). As it was pointed out before,

equation (7) leads to the study of the differential equation

r1−N

N

[(
Φ′(r)

)N]′
= f

(
Φ(r)

)
, r > 0,

for radially symmetric solutions. We consider now the classical solution of the two
point boundary problem

r1−N

N

[(
Φ′(r)

)N]′
= f

(
Φ(r)

)
, 0 < r <

R

2
,

Φ(0) = 0, Φ

(
R

2

)
= Φ1 > 0.

(59)

The existence of solution follows from standard arguments and the uniqueness of
solution can be proved as in Theorem 2.4, whence

Φ′(0) ≥ 0 ⇒ Φ′(r) > 0 ⇒ Φ′′(r) > 0.

Then

0 ≤ Φ(r) ≤ Φ1, 0 < r <
R

2
.

We note that the singularity at r = 0 must be removed by the condition

lim
r→0

r1−N

N

[(
Φ′(r)

)N]′
= 0. (60)

Let r0 be the largest r for which Φ(r) = 0. We want to prove that r0 = 0 by
proving that r0 > 0 leads to a contradiction. In order to do that we multiply (59)
by rN−1Φ′(r) and get[(

Φ′(r)
)N+1

]′
= (N + 1)f

(
Φ(r)

)
Φ′(r)rN−1, 0 < r <

R

2
.

Next, since Φ′(r0) = 0 = Φ(r0), an integration between r0 and r leads to(
Φ′(r)

)N+1
= (N + 1)F

(
Φ(r)

)
rN−1 − (N + 1)(N− 1)

∫ r

r0

F
(
Φ(s)

)
rN−2ds

≤ (N + 1)F
(
Φ(r)

)
rN−1, r0 < r <

R

2
.

Because we assume (10), a new integration between r0 and
R

2
yields the conjectured

contradiction because

∞ =

∫ Φ1

0

ds(
F(s)

) 1
N+1

=

∫ R
2

r0

Φ′(r)(
F
(
Φ(r)

)) 1
N+1

dr ≤ (N + 1)
1

N+1

∫ R
2

r0

r
N−1
N+1 dr <∞.

So that, we have proved Φ′(0) > 0 and also

0 < Φ(r) < Φ1, Φ′(r) > 0, 0 < r <
R

2
,

as well as Φ′′(0) = 0 (see (60)). Hence, straightforward computations on the C2

convex function w(x) = Φ(R− |x− y|), defined in the annulus O .
= BR \BR

2
, prove

det D2w(x) = f(w(x)
)
, x ∈ O,

w(x) = Φ1, x ∈ ∂BR
2
,

w(x) = 0, x ∈ ∂BR.
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Moreover, by construction

u(x) > 0, x ∈ ∂BR
2
⇒ u(x) ≥ w(x), x ∈ ∂BR,

for Φ1 small enough. Then the Weak Maximum Principle of Proposition 1 implies

(u− w)(x) ≥ 0, x ∈ O
that leads to

u(x0 − τn)

τ
≥ Φ(R− R(1− τ))

τ
, τ � 1

whence

lim inf
τ→0

u(x0 − τn)

τ
≥ Φ′(0) > 0.

Remark 11. In fact, the above result implies

lim inf
x→x0
x∈Ω

u(x)

|x− x0|
≥ Φ′(0) > 0.

Our main result proving the absence of the free boundary is the following

Theorem 4.2 (Hopf’s Strong Maximum Principle). Assume (10). Let u be a
nonnegative viscosity solution of

− det D2u+ f(u) ≥ 0 in Ω.

Then u cannot vanish at some x0 ∈ Ω unless u is constant in a neighborhood of x0.

Proof. Assume that u is non–constant and achieves the minimum value u(x0) = 0
on some ball B ⊂ Ω. Then we consider the semi-concave approximation of u, i.e.

uε(x)
.
= inf
y∈Ω

{
u(y) +

|x− y|2

2ε2

}
, x ∈ Bε (ε > 0), (61)

where Bε
.
= {x ∈ B : dist(x, ∂B) > ε

√
1 + 4 supB |u|}. For ε small enough we

can assume x0 ∈ Bε. Then uε achieves the minimum value in Bε, with u(x0) =
uε(x0) = 0. Moreover, uε satisfies

− det D2uε + f
(
uε
)
≥ 0 on Bε (62)

(see, for instance [37, Proposition 2.3] or [6, 13] for general fully nonlinear equa-
tions). By classic arguments, if we denote

B+
ε
.
= {x ∈ Bε : uε(x) > 0},

there exists the largest ball BR(y) ⊂ B+
ε (see [25]). Certainly there exists some

z0 ∈ ∂BR(y) ∩ Bε for which uε(z0) = 0 is a local minimum. Then, Lemma 4.1
implies

Duε(z0) 6= 0

contrary to
Duε(z0) = 0, (63)

as we shall prove in Lemma 4.3 below. Therefore, uε is constant on B ⊂ Ω, i.e.

uε(y) = uε(x0) = u(x0), y ∈ B.

Finally, for every y ∈ B we denote by ŷ the point of Ω such that

uε(y) = u(ŷ) +
1

2ε2
|y − ŷ|2
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whence

u(x0) = uε(x0) = uε(y) = u(y)+
1

2ε2
|y− ŷ|2 ≥ u(x0)+

1

2ε2
|y− ŷ|2 ≥ u(x0)⇒ ŷ = y.

So that, one concludes

u(y) = uε(y) = uε(x0) = u(x0), y ∈ B.

Corollary 2. Assume (10). Let u be a generalized solution u of (7). Then if
u(x0) > h(x0) or det D2h(x0) > 0 at some point x0 of a ball B ⊆ Ω then u > h
on B, consequently equation (7) is elliptic in B. In particular, if ϕ(x0) > h(x0) at
some x0 ∈ ∂Ω or det D2h(x0) > 0 at some point x0 ∈ Ω problem (20) is elliptic
non degenerate in path-connected open sets Ω, provided the compatibility condition
(3) holds.

Proof. From Theorem 4.2, both cases imply u > h on B. Finally, a continuity
argument concludes the proof.

Remark 12. Straightforward computations enable us to extend Lemma 4.1, The-
orem 4.2 and Corollary 2 to the general case g(|p|) ≥ 1, since we know that
u ∈W1,∞(Ω) (see the comments of Remark 3).

We end this section by proving property (63) used in the proof of Theorem 4.2

Lemma 4.3. Let ψ be a function achieving a local minimum at some z0 ∈ O.

Assume that there exists a function ψ̂ defined in O such that ψ̂(z0) = 0, Ψ = ψ+ ψ̂
is concave on O and

ψ̂(x) ≥ −K|x− z0|2, x ∈ O with |x− z0| small,

for some constant K > 0. Then the function ψ is differentiable at z0 and Dψ(z0) =
0.

Proof. By simplicity we can take z0 = 0 ∈ O. By applying the convex separation
theorem there exists p ∈ RN such that

Ψ(x) ≤ Ψ(0) + 〈p, x〉 = ψ(0) + 〈p, x〉, x ∈ O, with |x| small.

Then we have

ψ(x) = Ψ(x)− ψ̂(x) ≤ ψ(0) + 〈p, x〉+ K|x|2
≤ ψ(x) + 〈p, x〉+ K|x|2, x ∈ O with |x| small

(64)

whence

−〈p, x〉 ≤ K|x|2, x ∈ O with |x| small.

For τ > 0 small enough we can choose x = −τp ∈ O and τK < 1, for which

τ |p|2 ≤ Kτ2|p|2.
Therefore p = 0. Finally, (64) leads to

0 ≤ ψ(x)− ψ(0) ≤ K|x|2, x ∈ O with |x| small,

and the result follows.

Remark 13. The result is immediate if ψ is concave (in this case we can choose

ψ̂ ≡ 0). The convex version follows by changing ψ and ψ̂ by −ψ and −ψ̂, respec-
tively (see Remark 2 above).
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Note that since the function uε defined in (61) is semi concave, the property (63)
holds.
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