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1. Introduction

We study the way the free boundary of solutions to some partial differential equations behaves depending on the trace
of the solutions. The free boundary problems we consider are of two different types:
(i) Elliptic reaction–diffusion type problems, as

−Lu + λuq
= 0 inΩ,

u = h on ∂Ω, (1)

under the fundamental assumption

q ∈ (0, 1), (2)

which guarantees the formation of the free boundary (at least for λ > 0 large enough, ifΩ is bounded, or for any λ > 0, if
Ω is unbounded). Such problem arises, for instance, in Chemical Engineering when a catalytic chemical reactor occupying a
domainΩ has a reactant feed channel (entrance boundary) which is represented by the part Γ+ ⊂ ∂Ω , where the reactant
concentration is h(x) > 0 and the rest of walls of the chemical reactant are isolated in such a way that, if we denote by
Γ0 := ∂Ω \ Γ+, then h(x) = 0 on Γ0. Here we assume that there is no exit boundary (see Fig. 1). The exponent q is called
the order of the reaction.
(ii) The obstacle problem

−Lu ≥ f (x), u ≥ 0 and (−Lu − f (x))u = 0 inΩ,
u(x) = h(x) on ∂Ω. (3)

Here the free boundary is given by the boundary of the coincidence set (the set of points where u = 0); according for instance
to [17] a sufficient condition for the existence of the free boundary is that f (x) ≤ −µ for some µ > 0 on a large enough
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Fig. 1. Chemical reactor scheme.

open subset ofΩ (see, for instance, [28] for a full treatment of the obstacle problem). Among themany frameworks inwhich
the obstacle problem arises we could mention, for instance, the unilateral problem of the stationary shape of a membrane
which is forced downwards by a constant force f , is fixed on the boundary to a height h(x) and constrained to lie over the
hyperplane u = 0. Actually, here we shall consider the special case in which (3) can be formulated in terms of

−Lu + λβ(u) ∋ ε inΩ,
u = h on ∂Ω, (4)

for some constant ε ∈ [0, λ), where β(u) is the maximal monotone graph of R2 given by

β(u) =

0 for u < 0,
[0, 1] for u = 0,
1 for u > 0.

(5)

If u ‘‘solves’’ problem (4) (the rigorous definition of solution will be given later) then u is also a solution of the obstacle
problem (3) with f = −λ+ε: indeed, wewill see that ε ≥ 0 and h ≥ 0 imply that u ≥ 0. Then, if u > 0,−Lu+λ = εwhich
is the same as −Lu − f = 0. Finally, since there is uniqueness of solution for both formulations we get that the solutions
must be the same.

Another interesting application of problem (4) arises also in the context of Chemical Engineering (as problem (1) with
q = 0: see, e.g., [7]).

For some general purposes, such as the existence, uniqueness and regularity of the solutions, the domain Ω will be
assumed to be an open regular set of RN . Nevertheless, when studying the qualitative properties of the solutions we focus
on the bi-dimensional case, and we adopt as domain Ω both a bounded rectangle and the upper half plain in R2, i.e.,
Ω = R × [0,∞). In the unbounded setting we use the following notation: x := (x1, x2) with x1 ∈ R and x2 ∈ [0,∞).
The unbounded boundary of the domain is then ∂Ω = R × {0} and so the boundary function h will depend only on the
variable x1.

In general, L denotes a second order elliptic operator of the form

Lu =

N
i,j=1

∂

∂xi


aij(x)

∂

∂xj
u


= div(A(x)∇u), (6)

with aij ∈ C1,α(Ω) for someα ∈ (0, 1), such that the correspondingmatrixA(x) is symmetric and positive definite. Actually,
in the parts concerning the behaviour of the support and free boundary of the solutions we shall restrict to the case of
constant coefficients. This restriction serves merely to simplify the calculations and does not affect the local behaviour. For
what concerns the boundary datum h, we assume that

h ∈ L∞(∂Ω) and h ≥ 0 on ∂Ω,

even though the existence and uniqueness results on a bounded domain hold for h ∈ L1(∂Ω) (and even for signed boundary
measures).

A general exposition containing many references on both problems can be found in the monograph [17]. One can see
that both problems are special cases of the wider formulation

−Lu + λβ(u) ∋ f inΩ,
u = h on ∂Ω, (7)
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where β(u) is a maximal monotone graph of R2 such that 0 ∈ β(0): β is given by

β(u) = |u|q−1 u (8)

in case of problem (1) and by (5) in case of problem (3). We define, as usual, the domain of β as D(β) = {r ∈ R : β(r) ≠ ∅}

where ∅ stands for the empty set.
We also consider the associated parabolic problemut − Lu + λβ(u) ∋ f (x, t) in Q∞,

u = h(t, x) onΣ∞,
u(x, 0) = u0(x) onΩ,

(9)

where Q∞ = Ω × (0,∞), Σ∞ = ∂Ω × (0,∞) and for some f ∈ L∞(Q∞) ∩ L1loc((0,∞); L1loc(Ω)), h ∈ L∞(Σ∞) ∩

L1loc((0,+∞); L1(∂Ω)), with f , h ≥ 0 respectively on Q∞ and onΣ∞, and u0 ∈ L∞(Ω)with u0 ≥ 0 onΩ .
Asmentioned before, the above problems, both elliptic and parabolic, give rise to a free boundary defined as the boundary

of the support of the solution. If we denote the positivity set of a non-negative function u by S(u) := {x ∈ Ω : u(x) > 0},
then the free boundary is defined as F (u) = ∂S ∩ Ω (we also introduce the null set of u as N (u) := {x ∈ Ω : u(x) = 0}
and the support of u as S(u)). Similar notations can be introduced also for the parabolic problem, applying the definitions
to u(t, ·).

Our main goal in this work is to study the behaviour of the free boundary near the support of the boundary datum h
(respectively h(t, ·)). For this purpose, we shall assume that

S(h) ( ∂Ω,

respectively

S(h(t, ·)) ( ∂Ω, for a.e. t > 0.

The main question we investigate is whether the free boundary F (u) is connected or not with the boundary of the
support of the boundary datum h (and similar question for the parabolic formulation). In some sense, this research can be
considered as a natural continuation of the study of the so called non-diffusion of the support property (see [17,2]) in the case
where h ≡ 0; under a suitable behaviour of f near the boundary of its support S(u) = S(f ). In the case of parabolic free
boundary problems this question is related with the behaviour of the free boundary for small times (the so called waiting
time property) and received a great attention in the last 40 years (see, e.g., themonographs [31,3] and theirmany references).
Another study, not too far from our interest is the paper by Martel and Souplet [26] regarding the behaviour of solutions of
linear parabolic problems with incompatible initial data.

To be more precise, our main goal is to find some sufficient criterion on the behaviour of h near the boundary of its
support ensuring that the free boundary F (u) is in contact with ∂S(h). In this way the support of the datum is not diffused
on the boundary of the domain and we would have

∂S(u) ∩ ∂Ω = S(h). (10)

It is what we can call the non-diffusion on the boundary of the support property. In addition, we want to give some sufficient
conditions ensuring the opposite qualitative behaviour, i.e., to find conditions on h implying that there is a strict expansion
of the support S(h) on the boundary ∂Ω . In other words, we want to know cases in which F (u) has no contact with ∂S(h)
and so

S(h) ( ∂S(u) ∩ ∂Ω.

We call this phenomenon the expansion on the boundary of the support property. The only paper in the previous literature
about such boundary qualitative behaviour we are aware of is [30] in which they proved the expansion on the boundary of
the support property for problem (1) in the special case of Lu = 1u, h given by the Heaviside function andΩ the half plane
R × R+. As we shall see later, this property holds even for suitable continuous boundary data h.

We point out that there is an extensive literature dealing with the regularity of the free boundary when it touches the
fixed boundary for the special case of the obstacle problem (both in the elliptic and parabolic case): see, e.g. [4–6,29]. In
some of those papers the authors also consider more general diffusion operators (arriving to consider even the case of
fully nonlinear second order operators). Nevertheless, the reaction term here involved, β(u), is never similar to the one
considered in those papers except for the case of zero-order reaction. In any case, our main interest is not the regularity
of the free boundary but its qualitative behaviour depending on the data of the problem (specially the behaviour of the
boundary datum near its support). To stretch the value of our results, we underline that the techniques of proof in this
paper are quite different to the ones used in the above mentioned papers on the obstacle problem.

Before stating our main results we need to make precise the notion of solution. The delicate point in our study is that we
want to allow the boundary datum to be discontinuous and so the notion of the trace of the solution must be taken in a very
general framework (something which, in our opinion, is not discussed enough in [30]).

We recall that the notion of boundary trace of a function u in Ω depends on the regularity properties of such function
u. For instance, when u ∈ C(Ω) the boundary trace u|∂Ω is clearly well defined and belongs to C(∂Ω). If u is in some
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Sobolev spaceW 1,p(Ω), for some p > 1, then the boundary trace can be defined and is a function in the space Lp(∂Ω) (more
precisely in the Sobolev space W 1− 1

p ,p(∂Ω): see, e.g., [22,1]). Nevertheless, the identification of the elements of the trace
space W 1− 1

p ,p(∂Ω) is not always easy and leads to some pathological results against intuition. For instance in the book by
Mikhailov [27] one can see that already whenΩ = B, the unit ball of R2, there are continuous functions h ∈ C(∂B) which
are not the trace of any function in H1(Ω) (i.e., C(∂B) ⊈ H

1
2 (∂B)).

A different approachwas proposed by Haïm Brezis, in an unpublished paper (1972) profuselymentioned in the literature
(see [32,25,19]), which holds for semilinear second order boundary value problems with boundary data in L1(∂Ω) (later
extended to measures on ∂Ω). The main idea is to multiply by a ‘‘regular’’ test function (ϕ ∈ W 2,∞(Ω)∩ W 1,∞

0 (Ω)) and to
integrate twice by parts. We introduce the adjoint operator

L∗u =

N
i,j=1

∂

∂xj


aij(x)

∂

∂xi
u


= div(A∗
∇u)

(A∗ the transposed matrix of A) and for x ∈ ∂Ω we define

∂Au := (A∗
∇u) · n,

where n(x) is the outward normal vector to ∂Ω in x. A solution is then a function uwhich satisfies

−


Ω

uL∗ϕ dx + λ


Ω

bϕ dx =


Ω

f ϕ dx −


∂Ω

h∂Aϕ dσ , (11)

for all ϕ ∈ W 2,∞(Ω) ∩ W 1,∞
0 (Ω) and for some b ∈ L1loc(Ω) such that b(x) ∈ β(u(x)) for a.e. x ∈ Ω (in case of problem (1),

it is b = uq). In order to give a meaning to all the above integrals, it is useful to recall that, since ϕ ∈ W 1,∞
0 (Ω), it holds

c1ρ(x) 6 ϕ(x) 6 c2ρ(x) ∀x ∈ Ω , where

ρ(x) := dist (x, ∂Ω)

and c1, c2 are positive constants. Thus we must require at least that

f ∈ L1(Ω; ρ),

where

L1(Ω; ρ) :=


f ∈ L1loc(Ω) :


Ω

|f (x)|ρ(x) dx < +∞


.

1.1. Elliptic case

Definition 1.1. Given f ∈ L1(Ω; ρ) and h ∈ L1(∂Ω), we say that u is a very weak solution of problem (7) if u ∈ L1(Ω) and
there exists b ∈ L1(Ω; ρ) such that b(x) ∈ β(u(x)) for a.e. x ∈ Ω , and for any test function ϕ ∈ W 2,∞(Ω) ∩ W 1,∞

0 (Ω)
identity (11) holds.

It is not too difficult to adapt to our framework some existence and uniqueness results in the literature (see [12,32,25]).

Theorem 1.2. Let Ω be a bounded regular open set of RN , let β be a maximal monotone graph of R2 such that 0 ∈ β(0) and let
f ∈ L1(Ω; ρ) and h ∈ L1(∂Ω). Then there exists a unique very weak solution u of problem (7). Moreover, there exists a constant
C, only dependent of Ω , such that if u is the very weak solution corresponding to the dataf ∈ L1(Ω; ρ) andh ∈ L1(∂Ω), withb(x) ∈ β(u(x)) for a.e. x ∈ Ω as in Definition 1.1, then we have[u −u]+L1(Ω) + λ

b −b
+


L1(Ω;ρ)

≤ C
f −f 

+


L1(Ω;ρ)

+

h −h
+


L1(∂Ω)


(12)

and

∥u −u∥L1(Ω) + λ
b −bL1(Ω;ρ)

≤ C
f −f L1(Ω;ρ)

+
h −hL1(∂Ω) . (13)

In particular, f ≤f and h ≤h imply that u ≤u onΩ .

To study the behaviour of the solution close to the boundary of S(h) we consider two different frames, an unbounded
case and a bounded one.

In the first case we set Ω = R × [0,∞), aij is constant for i, j ∈ {1, 2}, f ≡ 0, and β(u) is given by (8) or (5). For
what concerns the boundary datum, we are interested in the case of h satisfying, h ∈ L∞(∂Ω), h(x1) = 0 on (−∞, 0) and
h(x1) > 0 on (0,+∞).

The reason why we consider boundary data in L∞(∂Ω) instead of in L1(∂Ω) (remember that now ∂Ω is unbounded,
so L∞(∂Ω) ⊈ L1(∂Ω)) is that we know the explicit solution in the unperturbed linear case (λ = 0, L = ∆, f ≡ 0) with
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Fig. 2. Expansion on the boundary of the support.

boundary data given by the Heaviside function (52). Such solution is given by

u(x1, x2) = 1 −
1
π

arctan

x1
x2


(14)

(the result can be found in [30, formula (2.6)]). Having at disposal an explicit solution like (14) is really useful in the study
of the behaviour of general solutions close to the point x = (0, 0). In addition, since our main interest, as already said, is
specifically the behaviour near the boundary of the support ∂S(h) and not in the whole Ω , we shall assume also that h is
non decreasing and that h(x1) = c+ > 0 for x1 ≥ δ > 0. We can resume this set of hypothesis in

Ω = R × [0,∞), aij constant for i, j ∈ {1, 2}, f ≡ 0,
β(u) is given by (8) or (5),
h ∈ L∞(∂Ω), h(x1) = 0 on (−∞, 0),
h(x1) > 0 on (0,∞) and h(x1) = c+ > 0 on (δ,+∞).

(Hhp)

To give a definition of solution for the new setting Hhp, we first introduce the family of rectangles

Rn = {(x1, x2) : |x1| < n, 0 < x2 < x̄},

where x̄ is a constant which will be made explicit later on. We define now the bounded domainΩn, which is a sufficiently
smooth regularization of the rectangular Rn. We call Γ 1

n the horizontal boundary of Ωn, i.e., Γ 1
n := {(x1, x2) ∈ ∂Ωn : x2 =

0 or x2 = x̄}, and Γ 2
n = ∂Ωn \ Γ 1

n . Then we consider the problem
−Lu + β(u) ∋ 0 inΩn,
u(x1, 0) = h(x1), u(x1, x̄) = 0, |x1| ≤ n,
u(x1, x2) = 0 (x1, x2) ∈ Γ 2

n , x1 < 0,
u(x1, x2) = z(x2) (x1, x2) ∈ Γ 2

n , x1 > 0,

(15)

where z is given by (51). We define the class of ‘‘limit very weak solutions’’.

Definition 1.3. In the framework of Hhp, we say that u is a limit very weak solution of problem (7) if u = limn→∞ un, where
un is the solution of the truncated problem (15).

Theorem 1.4. Assume (Hhp). There exists a unique limit very weak solution of problem (7) on the hyperplaneΩ = R × [0,∞).
Moreover that solution satisfies the comparison principle with respect to the boundary data h: if h ≤h then the corresponding
limit very weak solutions satisfy u ≤u onΩ .

Our main result concerns the qualitative behaviour of the solution of (7) under the assumption (Hhp).

Theorem 1.5. Assume (Hhp). Then there exist four positive constants C < C, ε < ε and two boundary points x1,ε, x1,ε > 0, such
that:

(i) If h(x1) ≥ Cx
2

1−q
1 for a.e. x1 ∈ (0, x1,ε) and h(x) ≥ ε for a.e. x1 ∈ (x1,ε,+∞), then the expansion on the boundary of the

support property holds.

(ii) If h(x1) ≤ Cx
2

1−q
1 for a.e. x1 ∈ (0, x1,ε) and h(x1) ≤ ε for a.e. x1 ∈ (x1,ε,+∞), then the non-diffusion on the boundary of

the support property holds.
In both cases, q ∈ (0, 1) when β is given by (8) and q = 0 when β is chosen as (5).

The indicative qualitative behaviour of solutions illustrated in Theorem 1.5 is resumed in Figs. 2(i) and 3(ii).
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Fig. 3. Non-diffusion on the boundary of the support.

Corollary 1.6. In the same framework of Theorem 1.5 we have the additional consequences:

(1) Under condition (i), u =
∂
∂nu = 0 on (−∞, 0)× {0}.

(2) Under condition (ii), ∂
∂nu > 0 on (−ζ , 0)×{0} for some ζ > 0. If in particular h is a multiple of the Heaviside function, then

∂
∂nu ∉ C(∂Ω) and u ∉ C(Ω).

In both situations, n = (0, 1) is the normal vector to ∂Ω .

For the bounded case, we setΩ ⊂ R2 to be the rectangle of vertexes

R = {(−Bl, 0), (Br , 0), (Br , Bu), (−Bl, Bu)} with Bl, Br , Bu > 0.

Let us call

∂1R = [(−Bl, 0), (Br , 0)], ∂2R = [(Br , 0), (Br , Bu)],

∂3R = [(Br , Bu), (−Bl, Bu)], ∂4R = [(−Bl, Bu), (−Bl, 0)],

the four sides of R. The internal datum f is set to zero. We have the following result.

Theorem 1.7. Assume that

h =


εH(x1) on ∂1R,
max(0, ψ(x2)) on ∂2R,
0 on ∂3R ∪ ∂4R,

with H(x1) = 0 for x1 < 0, H(x1) = 1 for x1 ≥ 0 and

ψ(x2) = ε


1
2

+
1
π

arctan

(det A)−1


a22

Br

x2
− a12


+
λεq

2
x22 + Cx2 (16)

where C is a negative constant. If

C ≤ min


−
ε

Bu
−
λεq

2
Bu,−

ε(det A)1/2

πa22Bl


,

the solution of (7) with boundary datum h and internal datum f ≡ 0 satisfies the expansion on the boundary of the support
property. In both cases, q ∈ (0, 1) when β is given by (8) and q = 0 when β is chosen as (5).

Proof. First of all we want to point out that since the boundary conditions are all non-negative and bounded by ε, then
0 ≤ u ≤ ε.

We consider the subsolution given by u = u1 + u2, where

u1 = ε


1
2

+
1
π

arctan

(det A)−1/2


a22

x1
x2

− a12


, u2 =

λεq

2
x22 + Cx2. (17)

One can easily check that Lu1 = 0 and Lu2 = λεq and as a consequence

−Lu = −λuq
≥ −λεq = −Lu.

Now let us check the boundary conditions for u. On ∂1R we have that u(x1) = εH(x1). On ∂2R it is exactly ψ(x2). On ∂3R,
thanks to the hypothesis on C , it holds

u(x1, Bu) ≤ ε +
λεq

2
B2
u + CBu ≤ 0.
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On ∂4R, u(−Bl, 0) = 0. We compute the x2-derivative

∂u
∂x2

(x1, x2) = λεqx2 + C −
ϵ

π

a22(det A)1/2 x1
det Ax22 + (a22x1 − a12x2)2

.

With a direct computation and thanks to the condition on C , ∂u/∂x2(−Bl, 0) < 0 and ∂u/∂x2(−Bl, x1) is an increasing
function. Hence, since u(−Bl, Bu) ≤ 0, u

|∂4R ≤ 0. We have proved that u ≤ u.
Now let us check that the expansion on the boundary of the support holds for u and as a consequence for u. We know

that u(x1, 0) = 0 for x1 < 0. The derivative

∂u
∂x2

(x1, 0) = C −
ϵ

π

det A
a22x1

< 0

for x1 > ϵ det A
πa22C

= −η. It follows that u > 0 in a neighbourhood in R2 of (−η, 0)× {0}. �

Corollary 1.8. The same result holds under the same conditions of the previous theorem but with u|∂2R ≥ ψ .

1.2. Parabolic case

As far as the parabolic problem is concerned, our main interest consists in analysing the stabilization of the solution to
the solution of stationary problem in order to well understand the expansion on the boundary of the support property. When
Ω is a general open bounded set the notion of very weak solution is quite similar to the elliptic case (see Fig. 4).

Definition 1.9. Take T > 0, f ∈ L1(0, T ; L1(Ω; ρ)), h ∈ L1(0, T ; L1(∂Ω)) and u0 ∈ L1(Ω; ρ) with u0(x) ∈ D(β). We say
that u is a veryweak solution of problem (9) if u ∈ L1(0, T ; L1(Ω)) and there exists b ∈ L1(0, T ; L1(Ω; ρ)) such that b(t, x) ∈

β(u(t, x)) for a.e. (t, x) ∈ (0, T )×Ω , and for every test functionϕ ∈ W 1,∞([0, T ]; L∞(Ω))∩L∞(0, T ;W 2,∞(Ω)∩W 1,∞
0 (Ω))

with ϕ(T , ·) = 0 the following identity holds

−

 T

0


Ω

u
∂ϕ

∂t
dxdt +

 T

0


Ω

uL∗ϕ dx + λ

 T

0


Ω

bϕ dxdt

=


Ω

u0(x)ϕ(0, x) dx +

 T

0


Ω

f ϕ dxdt −

 T

0


∂Ω

h ∂Aϕ dσdt. (18)

Once again, it is not too difficult to adapt to our framework some existence and uniqueness results in the literature
(see [23]).

Theorem 1.10. (i) For data f , h and u0 as in Definition 1.9 there exists a unique very weak solution of (9). Moreover there holds
a smoothing effect (same as [23]).

(ii) If in addition h ∈ W 1,1(0, T ; L1(∂Ω)), then the very weak solution satisfies u ∈ C([0, T ]; L1(Ω; ρ)).

Our result on the asymptotic behaviour, for t → +∞, seems to be new in the context of very weak solutions (check
[18,21] for similar results on more regular solutions).

Remark 1.11. Whenever we are dealing at the same time with the parabolic and the elliptic problem, as we are going to do,
we use the symbols u∞, h∞, f∞ to denote the solution and the data of the elliptic boundary value problem.

For the next result we will add the following hypothesis:

∃ q ∈ [0, 1) such that |b| ≤ C |r|q for any b ∈ β(r) and for any r ∈ R. (19)

In the above condition the case q = 0 means that R(β) (the range of β , i.e., r ∈ R such that there exists x ∈ R for which
r ∈ β(x)) is bounded.

Theorem 1.12. Consider the case of β satisfying condition (19). Assume h ∈ W 1,1(0, T ; L1(∂Ω)) for any T > 0 and that there
exists a sequence tn → +∞, as n → +∞, such that tn+1

tn−1


Ω

|f (s, x)− f∞(x)| ρ(x) dxds → 0 as n → +∞ (20)

and  tn+1

tn−1


∂Ω

|h(s, x)− h∞(x)| dσds → 0 as n → +∞. (21)
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Fig. 4. Convergence of S(u(t, ·)) to S(u∞).

Assume in addition that

u ∈ L∞(0,∞; L1(Ω; ρ)). (22)

Then u(tn, ·) → u∞ in L1(Ω; ρ) with u∞ the very weak solution of (7) with data f∞ and h∞.

For the qualitative behaviour of the solutions, we consider now the half plane case under the assumptions
Ω = R × [0,∞), aij are constants, f ≡ 0, u0 ≥ 0,
β(u) is given by (8) or (5),
h ∈ W 1,1

loc (0,+∞; L1(∂Ω)) ∩ L∞((0,+∞)× ∂Ω),
h(t, ·) = 0 on (−∞, 0) and h(t, ·) > 0 on (0,+∞),
h(t, x1) = c+ ∀ x1 ∈ [δ,∞), t > 0.

(Hhp)

In this settingwe adapt the definition of limit veryweak solution from the elliptic case using truncated-in-space solutions.
Existence and uniqueness can be obtained in similar way.

Corollary 1.13. Assume (Hhp). Then there exist four positive constants C < C, ε ≤ ε and two boundary points x1,ε, x1,ε > 0
such that

(i) if u0 = 0, h(t, x1) ≤ Cx
2

1−q
1 for a.e. x1 ∈ (0, x1,ε) and h(t, x1) ≤ ε for a.e. x1 ∈ (x1,ε,+∞), for any t ≥ 0, then the

non-diffusion on the boundary of the support property holds for any t ≥ 0, i.e., ∂S(u(t, ·)) ∩ ∂Ω = S(h(t, ·)) for any t ≥ 0
(infinite waiting time property).

(ii) Assume that u0(x1, x2) ≥ u1(x1, x2)+u2(x1, x2), with u1 and u2 solutions of the problems (57) and (58), and that h(t, x1) ≥

Cx
2

1−q
1 for a.e. x1 ∈ (0, x1,ε) and h(t, x1) ≥ ε for a.e. x1 ∈ (x1,ε,+∞), for any t ∈ (0, T ).

Then the expansion on the boundary of the support property holds for any t ∈ (0, T ], i.e., S(h(t, ·)) ( ∂S(u(t, ·)) ∩ ∂Ω :=

[−δ0,∞] × {0}, for some δ0 > 0.
Remember that q ∈ (0, 1) when β(u) is given by (8) and q = 0 when β is given by (5).

Corollary 1.14. The conclusions of Corollary 1.6 remain valid for u(t, ·) under the corresponding assumptions.

Remark 1.15. For the special case of q = 0 it is illustrative to compare the conclusions of Theorem 1.5 (respectively
Corollary 1.13) with the complementary information given in Theorem B of [29] (respectively Theorem I of [4]).

The organization of the rest of the paper is the following. Section 2 is devoted to the proof of the general existence
and uniqueness results, Theorems 1.2 and 1.10. The stabilization of very weak solutions, when t → +∞, is considered in
Section 3 and, in particular Theorem 1.12 is proved there. Finally the special case of the half plane is considered in Section 4.
After proving Theorem 1.4 we present the proof of Theorem 1.5 in Sections 4.2 and 4.3. The special case of discontinuous
boundary data plays an important role in such proof and so it is previously discussed there.

2. On the existence and uniqueness of very weak solutions

In this part we omit to write the parameter λ as it can be thought as already included in β .
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2.1. Proof of Theorem 1.2

We need to introduce first a result on the corresponding linear problem
−Lu = f in Ω,
u = h on ∂Ω. (23)

Definition 2.1. Assume f ∈ L1(Ω; ρ) and h ∈ L1(∂Ω). A function u ∈ L1(Ω) is a weak solution of (23) if it satisfies
Ω

uL∗φ dx =


∂Ω

h ∂Aφ dσ −


Ω

f φ dx

for every function φ ∈ C2
0 (Ω̄).

The following lemma is a known result and we cite it for further needs.

Lemma 2.2. Assume that u solves (23) with h = 0 and f ∈ L2(Ω). Then u ∈ H1
0 (Ω) and

Ω

−Lu · u dx ≥ C∥u∥2
L2(Ω).

Next proposition is a consequence of a generalization of the estimates of Brezis [12] applied to the operator L. The proof
when L is the Laplacian can be found in [25]. The case of an even more general second order linear operator of the form

Lu = −div(A∇u)+ b · ∇u − div(cu)+ du,
under appropriate structural and regularity assumptions on the coefficients A ∈ Mn×n(R), b, c ∈ Rn, d ∈ R (essentially the
maximum principle should hold), is contained in [32].

Proposition 2.3. Let f ∈ L1(Ω; ρ) and h ∈ L1(∂Ω). Then there exists a unique solution u ∈ L1(Ω) of problem (23) in the sense
of Definition 2.1. Moreover there exists C = C(Ω, L) > 0 such that

∥u∥L1(Ω) ≤ C(∥f ∥L1(Ω;ρ) + ∥h∥L1(∂Ω)) (24)

and u satisfies

−


Ω

u+L∗φ dx ≤


Ω

f (sgn +u)φ dx −


∂Ω

∂Aφ h+ dσ (25)

and

−


Ω

|u|L∗φ dx ≤


Ω

f (sgn u)φ dx −


∂Ω

∂Aφ |h| dσ , (26)

for every non negative φ ∈ C2
0 (Ω̄). We have used the notation

sgn r =

1 if r > 0,
0 if r = 0,
−1 if r < 0,

sgn +r =


1 if r ≥ 0,
0 if r < 0.

Proof of Theorem 1.2. Uniqueness,monotonicity and estimate (12) follow fromProposition 2.3. Indeed, assume that u1 and
u2 are solutions of (7) with data f1, h1 and f2, h2 respectively. It means that there exist b1(x) ∈ β(u1(x)) and b2(x) ∈ β(u2(x))
such that (11) holds. This implies thatw = u1 − u2 is a solution of

−Lw = f ∗
= f1 − f2 − b1 + b2 in Ω,

w = h∗
= h1 − h2 on ∂Ω. (27)

Then, estimate (12) follows from (25) when applied tow with test function φ0 solution of
−L∗φ0 = 1 inΩ,
φ0 = 0 on ∂Ω. (28)

Also monotonicity follows from estimate (25) when applied tow with test function φ0. Uniqueness can be derived with the
same procedure from (26).
Existence. We consider the Yosida approximation βµ of β , maximal monotone graph of R2, whichwe know to be a Lipschitz
increasing function (see [13]). We look for a solution of the problem

−Lu + βµ(u) = f inΩ,
u = h on ∂Ω. (29)

The solution of such a problem is a straightforward generalization of Proposition 2.1.2 in [25].
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Let us call uµ the solution of (29), and let consider f ∈ L∞(Ω) and h ∈ L∞(∂Ω). Then, by the monotonicity of solutions,
one have the upper bound uµ ≤ M = max(supΩ f , sup∂Ω h) for all µ > 0. Also {βµ(uµ)} is uniformly bounded in L∞(Ω)
(see [14]).

We now show that {uµ} and {βµ} are Cauchy sequences in L2(Ω). Given λ,µ > 0, we subtract the equations for uλ and
uµ, multiply the result for uλ − uµ and integrate to obtain, with the use of Lemma 2.2,

0 =


Ω

−L(uλ − uµ)(uλ − uµ)+


Ω

(βλ(uλ)− βµ(uµ))((uλ − uµ))

≥ C∥uλ − uµ∥2
L2(Ω) + (βλ(uλ)− βµ(uµ), (uλ − uµ))L2(Ω),

which, following [14], gives

C∥uλ − uµ∥2
L2(Ω) + (βλ(uλ)− βµ(uµ), λβλ(uλ)− µβµ(uµ))L2(Ω) ≤ 0.

Sending λ,µ → 0 and remembering that {βµ(uµ)} is uniformly bounded in L∞(Ω), we get that ∥uλ − uµ∥L2(Ω) → 0. We
set u := limµ→0 uµ. By Lemma 2.4 of [16] also βµ(uµ) is a Cauchy sequence in L2(Ω) and its limit b ∈ L∞(Ω) satisfies that
b(x) ∈ β(u(x)) since β is maximal. Passing to the limit in the definition of solution we have

0 = −


Ω

uµL∗ϕ dx + λ


Ω

βµ(uµ) ϕ dx −


Ω

f ϕ dx +


∂Ω

h∂Aϕ dσ

→ −


Ω

uL∗ϕ dx + λ


Ω

bϕ dx −


Ω

f ϕ dx +


∂Ω

h∂Aϕ dσ (30)

for any ϕ ∈ C2
0 (Ω̄). Hence u is a solution of (7).

If (f , h) ∈ L1(Ω; ρ)×L1(∂Ω)we consider {(fn, hn)} ⊂ L∞(Ω)×L∞(∂Ω)which converges to (f , h) in L1(Ω; ρ)×L1(∂Ω).
Call un the solution of (7) with data fn and hn. Thanks to (13), un and bn are Cauchy sequences in L1(Ω) and hence converges
to functions u, b respectively. Since β is maximal b(x) ∈ β(u(x)) and passing to the limit in the definition of solution we
find that u solves (7). �

2.2. Proof of Theorem 1.10

We start this part by giving a result on the corresponding linear problemut − Lu = f (t, x) in QT ,
u = h(t, x) onΣT ,
u(0, x) = u0(x) onΩ.

(31)

Proposition 2.4. Assume f ∈ L1(QT ; ρ) = L1(0, T ; L1(Ω; ρ)), h ∈ L1(ΣT ) and u0 ∈ L1(Ω; ρ). Problem (31) possesses a unique
very weak solution u ∈ L1(QT ), in the sense that

QT

−(ζt + Lζ )u − f ζ dxdt = −


ΣT

h ∂Aζ dσdt +


Ω

ζ (x, 0)u0 dx

for every ζ ∈ C2,1(Q T ). Additionally, there hold
QT

−(ζt + Lζ )u+ − f ζ sgn +(u) dx dt ≤ −


ΣT

h+ ∂Aζ dσ dt +


Ω

ζ (x, 0)(u0)+ dx (32)

and 
QT

−(ζt + Lζ )|u| − f ζ sgn (u) dx dt ≤ −


ΣT

|h| ∂Aζ dσ dt +


Ω

ζ (x, 0)|u0| dx, (33)

for every non-negative ζ ∈ C2,1
0 (QT ).

Proof. The proof is exactly the same of [24] with∆ replaced by L. �

Lemma 2.5. Let f ∈ L1(QT ; ρ), h ∈ L1(ΣT ) and u0 ∈ L1(Ω; ρ). Then problem (9) has atmost one solution. If u1, u2 are solutions
with data f1, h1, u01 and f2, h2, u02 respectively, then

∥u1 − u2∥L1(QT )
+ ∥b1 − b2∥L1(QT ;ρ) ≤ C


∥f1 − f2∥L1(QT ;ρ) + ∥h1 − h2∥L1(ΣT )

+ ∥u01 − u02∥L1(Ω;ρ)


, (34)

with C > 0 and b1 ∈ β(u1), b2 ∈ β(u2). Furthermore, if f1 ≤ f2, h1 ≤ h2 and u01 ≤ u02 then u1 ≤ u2.
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Proof. As for the elliptic case, we setw = u1 − u2, which is solution of
wt − Lw = f1 − f2 − b1 + b2 in QT ,
w = h1 − h2 on ΣT ,
w(0, x) = u01 − u02 in Ω.

Take ψT solution of
−ψt − Lψ = 1 in QT ,
ψ = 0 on ΣT ,
ψ(T , x) = 0 in Ω.

Estimate (34) and monotonicity follow from (32) with ψT as test function and uniqueness follows from (33) with the same
method. �

Proof of Theorem 1.10. The proof of existence for the case ofβ a continuous function is again an easy adaptation of previous
results in the literature concerning the special case of L = ∆ (see, e.g., [23, Lemma 2.7] and [24, Lemmas 1.3 and 1.7]: notice
that the assumption of β Lipschitz assumed at the beginning of the paper is not needed in both lemmas). The adaptation to
the case of L given by (6) and β multivalued is completely similar to the one presented in the stationary case.

The continuity in t of the very weak solution will be used in our study of the asymptotic behaviour of solutions and
can be obtained by reformulating the parabolic semilinear problem as an abstract Cauchy problem on the Banach space
X = L1(Ω; ρ),

(AP)

du
dt
(t)+ A(t)u(t) ∋ f (t) in X,

u(0) = u0,

where A(t) : D(A(t)) → P (X) is the operator defined by (w, z) ∈ A(t) ⊂ X × X iffw ∈ L1(Ω) is the very weak solution of
−Lw + β(w) ∋ z inΩ,
w(x) = h(t, x) on ∂Ω.

Here, in the definition of the operator A(t), t ∈ (0, T ) is a parameter (remember that h ∈ W 1,1(0, T ; L1(∂Ω)), hence h(t, ·)
makes sense). For a.e. t ∈ (0, T ), this operator is T − ω-accretive on X (see, e.g., [8] or [10]) for some ω ≥ 0 large enough.
Indeed, we must show that, for some µ > 0, (I + µ(A(t)+ ωI))−1 is a contraction on X and this is equivalent to show that
ifwi, with i = 1, 2, are the very weak solutions of

−µLwi
+ µβ(wi)+ µωwi

∋ z i(x) inΩ,
wi(x) = h(t, x) on ∂Ω,

(35)

for some z i ∈ L1(Ω; ρ), thenw1
− w2

+


L1(Ω;ρ)

≤

z1 − z2

+


L1(Ω;ρ)

.

But this is a trivial consequence of the estimates proven in Theorem 1.2 once that ω is taken large enough (in particular
ω > C , the constant appearing in estimate (12) which was only dependent on Ω). In addition, for a.e. t ∈ (0, T ) this
operator is m-accretive (see [8]) in the sense that R(I + µA(t)) = X . Indeed, we must prove that problem (35) (i.e., (7)) for
a given right hand side in z i ∈ L1(Ω; ρ) has a unique solution, which, again, is a consequence of Theorem 1.2. Finally, since
h ∈ W 1,1(0, T ; L1(∂Ω)) we get that the t-dependence of the solution has the same regularity: w ∈ W 1,1(0, T ; L1(Ω))
and so the Crandall–Evans theorem [15,20] can be applied ensuring the existence and uniqueness of a mild solution
u ∈ C([0, T ]; L1(Ω; ρ)) of the abstract problem (AP). Finally, since we have uniqueness of the very weak solution of the
parabolic problem, it is easy to see (as, for instance, in [11]) that both solutions must coincide and thus we get the desired
time regularity result. �

3. On the stabilization when t → +∞

Remember that the solutions of the parabolic problem (9) and the elliptic problem (7) will be indicated with u and u∞

respectively.

Proof of Theorem 1.12. We follow some of the ideas contained in [18] (see also references therein). We define

Un(s, x) = u(tn + s, x), Fn(s, x) = f (tn + s, x), Hn(s, x) = h(tn + s, x),
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where tn → ∞ when n → ∞. By Theorem 1.10 we know that there exists b ∈ L1(0, T ; L1(Ω; ρ)) such that b(t, x) ∈

β(u(t, x)) a.e. in QT . Thus we also define Bn(s, x) = b(tn + s, x). Then it is clear that
∂Un

∂s
− LUn + λBn(s, x) = Fn(s, x) in (−1, 1)×Ω,

Un = Hn(s, x) on (−1, 1)× ∂Ω

(36)

for all n > 1. Then from the estimate of Theorem 1.10 (which coincides with (1.26) of [24] easily adapted to the case in
which L is given by (6)),

∥Un∥L1((−1,1)×Ω) + λ ∥Bn∥L1((−1,1);L1(Ω;ρ)) ≤ C

∥Fn∥L1((−1,1);L1(Ω;ρ)) + ∥Hn∥L1((−1,1);L1(∂Ω)) + ∥Un(−1, ·)∥L1(Ω;ρ)


.

Assumptions (20) and (21) imply that Fn → F∞, and Hn → H∞ strongly in L1((−1, 1); L1(Ω; ρ)) and L1((−1, 1);
L1(∂Ω)) respectively, where F∞ andH∞ are defined as F∞(s, x) = f∞(x) andH∞(s, x) = H∞(x). Moreover, from assumption
(22), ∥Un(−1, ·)∥L1(Ω;ρ) is bounded independently of n. Consequently, due to assumption (19), {ρBn} is a bounded sequence
in Lp((−1, 1); Lp(Ω))with p = 1/q if q ∈ (0, 1) and for every p > 1 if q = 0. Thus,

ρBn ⇀ ρB∞

weakly in Lp((−1, 1); Lp(Ω)) (after passing to a subsequence), for some B∞ in Lp((−1, 1); Lp(Ω)). Then, by [24] (Lemma
1.6(ii) easily adapted to the case in which L ≠ ∆), we get that Un → U∞ (strongly) in C([−1 + ε, 1]; L1(Ω; ρ)) for some
U∞ ∈ C([−1 + ε, 1]; L1(Ω; ρ)) for any ε ∈ (0, 2). Indeed, since problem (36) is linear we can use the decomposition

Un = P(Fn − λBn, 0, 0)+ P(0,Hn, 0)+ P(0, 0,Un(−1)),

where P is the solution mapping (see [24, Lemma 1.6]). The operator P(Fn − λBn, 0, 0) is compact from Lp((−1 + ε, 1) ×

Ω)× {0} × {0} → C([−1 + ε, 1] ×Ω), since in generalw = P(q, 0, 0) is given by

w(s, x) =

 1

−1


Ω

GL(x, y, s, τ ) q(y, τ ) dy dτ

(remember that the Green function GL(x, ·, s, ·) ∈ C0([−1 + ε, 1] × Ω)). The compactness of the other terms P(0,Hn, 0)
and P(0, 0,Un(−1)) was shown in Lemma 1.6(ii) of the mentioned reference. In our case, we know the continuity in time
of the functions (Theorem 1.10). In particular, since Un → U∞ in C([−1 + ε, 1]; L1(Ω)), we find that {Un(−1 + ε, ·)} is a
Cauchy sequence in L1(Ω; ρ).
Then, by applying an estimate similar to (13) but for the parabolic problem (see estimate (1.26) of [24] easily adapted to the
case in which L is given by (6)), we get

∥Un − Um∥L1((−1+ε,1)×Ω) + λ ∥Bn − Bm∥L1((−1+ε,1);L1(Ω;ρ))

≤ C

∥Fn − Fm∥L1((−1+ε,1);L1(Ω;ρ)) + ∥Hn − Hm∥L1((−1+ε,1);L1(∂Ω)) + ∥Un(−1 + ε)− Um(−1 + ε)∥L1(Ω;ρ)


,

which proves that {ρBn} is a Cauchy sequence in L1((−1 + ε, 1); L1(Ω)) and so ρBn → ρB∞ strongly in L1((−1 + ε, 1);
L1(Ω)). Then, since β is maximal monotone, we conclude (see [9]) that B∞(s, x) ∈ β(U∞(s, x)) for a.e. (s, x) ∈ (−1 + ε, 1)
×Ω .
It only remains to prove that U∞(s, x) = u∞(x), with u∞ the (unique) very weak solution of (7) with data f∞, h∞. Since

ess sup
tn+s∈(0,+∞)

∥u(tn + s, .)∥L1(Ω;ρ) ≤ C,

then there exists a (stationary) Radon measure µ∞ ∈ M(Ω; ρ) such that u(tn + s, ·) ⇀ µ∞ weakly inM(Ω; ρ). Moreover,
u(tn + s, ·) → U∞(s, x) (strongly) in C([−1 + ε, 1]; L1(Ω; ρ)) ⊂ C([−1 + ε, 1];M(Ω; ρ)). Then, by the uniqueness
of the limit, we deduce that U∞(s, ·) = µ∞(·) for any s ∈ [−1 + ε, 1], so that the singular part of the measure µ∞(·)
vanishes (i.e., µ∞ ∈ L1(Ω; ρ)). Let us denote now u∞(x) ≡ µ∞(x). Then U∞(s, x) = u∞(x) for any s ∈ [−1 + ε, 1].
By the same reasons (thanks to the assumption on β) we get that B∞(s, x) = b∞(x) for a.e. s ∈ [−1 + ε, 1], for some
b∞ ∈ L1(Ω; ρ) such that b∞(x) ∈ β(u∞(x)) for a.e. x ∈ Ω . Finally, we take as test function in the definition of very weak
solution of the parabolic problem ϕ(s, x) = ψ(s)ζ (x), with ζ ∈ W 2,∞(Ω) ∩ W 1,∞

0 (Ω) and ψ ∈ C1([−1, 1]) such that
ψ|[−1,−1+ε] = ψ(1) = 0 and such that


+1
−1+ε ψ(s)ds = 1. Obviously such special ϕ(s, x) is a correct test function since

ϕ ∈ W 1,∞(−1, 1; L∞(Ω)) ∩ L∞(−1, 1;W 2,∞(Ω) ∩ W 1,∞
0 (Ω)) and ϕ(1, ·) = 0. Then, from the definition of very weak

solution, we get that

−

 1

−1+ε


Ω

Un(s, x)ψ ′(s)ζ (x) dxds +

 1

−1+ε


Ω

ψ(s)Un(s, x)L∗ζ (x) dxds + λ

 1

−1+ε


Ω

Bn(s, x)ψ(s)ζ (x) dxds

=


Ω

Un(−1, x)ψ(−1)ζ (x) dx +

 1

−1+ε


Ω

Fn(s, x)ψ(s)ζ (x) dxds −

 1

−1+ε


∂Ω

ψ(s)Hn(s, σ )
∂ζ (σ )

∂n
dσds.
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Passing to the limit, as n → +∞, and using that ψ(−1 + ε) = 0, we arrive to

−

 1

−1+ε
ψ ′(s) ds


Ω

u∞(x)ζ (x) dx


+

 1

−1+ε
ψ(s) ds


Ω

u∞(x)L∗ζ (x) dx + λ

 1

−1+ε


Ω

B∞(s, x)ψ(s)ζ (x) dx

=

 1

−1+ε
ψ(s) ds


Ω

f∞(x)ζ (x) dx −

 1

−1+ε
ψ(s) ds


∂Ω

h∞(σ )
∂ζ (σ )

∂n
dσ .

But  1

−1+ε
ψ ′(s)ds = 0,

and since


+1
−1+ε ψ(s)ds = 1 we get that

Ω

u∞(x)L∗ζ (x)dx + λ


Ω

b∞(x)ζ (x) dxds =


Ω

f∞(x)ψ(s)ζ (x) dx −


∂Ω

h∞(σ )
∂ζ (σ )

∂n
dσ ,

which shows that u∞ coincides with the (unique) very weak solution of the stationary problem. �

Remark 3.1. Notice that the boundedness of the trajectories assumption is considerably weaker than the usual for weak
solutions (see, e.g., [18]) which is of the type u ∈ L∞(0,+∞;H1(Ω)). Notice also that this condition is necessary once we
assume that the conclusion of Theorem 1.12 holds.

A sufficient condition leading to the boundedness of the trajectories (assumption (22)) can be obtained by the method
of super and subsolutions as in Proposition 3 of [18].

Proposition 3.2. Assume that the stationary problem (7) admits a bounded weak solution u∞. Let f , f∞ and h, h∞ satisfy
(20) and (21) respectively. Suppose the existence of fu, fd ∈ L1((0, T ) × Ω) for any T > 0 and hu, hd ∈ L1((0, T ) × ∂Ω)
with fu, hu (fd, hd) non-increasing (decreasing) in t such that

−f (x) ≤ fd(t, x) ≤ f (t, x) ≤ fu(t, x) ≤ f (x),
−h(x) ≤ hd(t, x) ≤ h(t, x) ≤ hu(t, x) ≤ h(x),

for 0 ≤ f̄ = div c with c ∈ Lp(Ω)N , 0 ≤ h̄ ∈ L1(∂Ω) and

lim
t→∞

fu(t, x) = lim
t→∞

fd(t, x) = f∞(x) in L1(Ω; ρ),

lim
t→∞

hu(t, x) = lim
t→∞

hd(t, x) = h∞(x) in L1(∂Ω).
(37)

Let u, uu, ud be bounded weak solutions of (9) associated to the data (f , h, u0), (fu, hu, ū0) and (fd, hd, u0) with ū0, u0 solutions
of (7) with data f̄ , h̄ and −f̄ ,−h̄ respectively. If uu, ud ∈ L∞((t0,∞); L1(Ω)) for some t0 > 0 then the conclusion of Theo-
rem 1.12 holds.

4. On the half plane problems

Before starting with proving existence and uniqueness we shall show some results concerning the boundedness of the
support of solutions. For this purpose we assume that

β(u) = uq, λ = 1, sup h = 1. (38)

This hypothesis on λ and h is not a restriction as, taking it off, all calculations can be performed in the same way. Moreover
the proof of Theorems 1.4 and 1.5 for the multivalued case (which formally corresponds to make q = 0 in all the above
expressions) follows, word by word, the same proof of the case in which q ∈ (0, 1) and replacing the identity symbol = by
the one of containing ∋. The details about local super and subsolutions can be seen also in the book [17, Theorem 2.16,
Chapter 2].

In this first part we study some comparison functions which are essential, first of all, to give sense to the formulation of
problem (15), especially to its boundary conditions, fundamental in the definition of ‘‘limit very weak solution’’. Secondly,
they are important also in the study of the behaviour of solutions near the origin.

Assuming (38), we repeat the same procedure of [30], looking for local supersolutions, which are solutions of
−Lu + uq

= 0 in BR(x0),
u = 1 on ∂BR(x0),

(39)

where BR(x0) is the ball with radius R and centred in x0. The problem is that, differently from [30], we do not know exact
radial solution for (39). So we introduce a family of radial supersolution for (39).



14 J.I. Díaz, T. Mingazzini / Nonlinear Analysis ( ) –

Assume that y(x) = η(|x − x0|) is a radially symmetric function defined in BR(x0). Then, if we denote with r = |x − x0|,
we have

Ly(x) = η′′

ij

aij
xixj
r2

+
η′

r


i

aii −

ij

aij
xixj
r2


. (40)

Considering that
i

aii − ν ≤


i

aii −

ij

aij
xixj
r2

≤


i

aii − µ, (41)

we can define the quantity

BA = sup
x∈Ω


i

aii −

ij

aij
xixj
r2


.

In particular, if we assume η′, η′′
≥ 0,

−Ly ≥ −νη′′
−

BA

r
η′. (42)

We introduce the operator

Lν(η) = νη′′
+

BA

r
η′, (43)

which operates on functions of a real scalar variable and we study the properties of the solutions to the problem
−Lνη + ηq = 0 r ∈ (0, R),
η(0) = 0, η(R) = 1, (44)

whenever R ∈ R+. We set the constants

C0 =


(1 − q)2

2ν(q + 1)+ 2BA(1 − q)

1/(1−q)

, R0 =
1

C (1−q)/2
0

(45)

and introduce the function

η0(r) = C0r
2

1−q , r ∈ [0, R0].

It is a direct computation to see that η0 is the solution of (44). For R > R0 we do not know the analytic form of the solution
ηR of (44) but we know that the function

ηR(r) =


0 r ∈ [0, R − R0],
η0(r − (R − R0)) r ∈ [R − R0, R],

(46)

is a supersolution. The next lemma gives the proof of this fact.

Lemma 4.1. The function ηR, for R > R0, defined by (46) is a supersolution of (44).

Proof. For r ∈ (0, R − R0), − LνηR + η
q
R = 0. For r ∈ (R − R0, R), calling s = r − (R − R0),

−LνηR + η
q
R = −νη′′

0(s)−
BA

s + R − R0
η′

0(s)+ η
q
0(s)

≥ −νη′′

0(s)−
BA

s
η′

0(s)+ η
q
0(s)

= −Lνη0 + η
q
0 = 0,

where the inequality is due to the fact that η′

0 ≥ 0 and R − R0 ≥ 0. This inequality combined with the values of ηR at the
boundary, i.e., ηR(0) = 0 and ηR(R) = 1, makes of ηR a supersolution for problem (44). �

The following lemma is the conclusion of this line of reasoning.

Lemma 4.2. Suppose that uR is solution of (39). Then the function yR(x) = ηR(|x − x0|) satisfies yR ≥ uR in BR(x0).
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Proof. The proof uses the comparison principle. Just notice, recalling (42) and Lemma 4.1, that

−LyR + yqR ≥ −LνηR + η
q
R ≥ 0 = −LuR + uq

R.

Checking the boundary conditions we obtain the statement. �

Using the results on local supersolutions just given, we can find a function ρ : (R0,∞) → R+ such that if R > R0 and if
ηR is the solution of (44) in (0, R) then

ηR = 0 in [0, ρ(R)] and ηR > 0 in (ρ(R), R].

We define the function

d(R) = R − ρ(R), R > R0, (47)

and the following properties hold:

Lemma 4.3. It holds

(i) R0 < R1 < R2 ⇒ d(R1) ≥ d(R2),

(ii) lim
R→∞

d(R) = cνq,

with

cνq =
(2ν(1 + q))1/2

1 − q
. (48)

Proof. Point (i) is exactly the same as in [30]. The second statement follows the same line too but we sketch it to show the
details. We already know that on [0, ρ(R)] the solution is zero since ηR is zero. We focus on the problem

−Lνη + ηq = 0 r ∈ (ρ(R), R),
η(ρ(R)) = 0, η(R) = 1.

We setw(r) = η(R − r) and we transform the problem into
−νw′′

+
Bs

R − r
w′

+ wq
= 0 in (0, d(R0)),

w ≥ 0,
w(0) = 1, w(d(R0)) = 0.

(49)

We note that the second extreme of the domain in (49) should be d(R) = R − ρ(R), which, according to point (i), is smaller
than d(R0). This does not affect the result sincew = 0 in (d(R), d(R0)). We multiply (49) byw′ and integrate over (r, d(R0))

0 = −
ν

2

 d(R0)

r

d
ds
(w′)2 ds +

 d(R0)

r

Bs

R − r
(w′)2 ds +

1
q + 1

 d(R0)

r

d
ds
wq+1 ds

≥
ν

2
(w′)2(r)−

1
q + 1

wq+1(r).

The inequality in the second line is due to the non-negativity of the second term of the right-hand side in the first line. Since
0 ≤ w ≤ 1 we conclude that

|w′(r)| ≤


2

ν(q + 1)

1/2

, 0 ≤ r ≤ d(R0).

We have found that the family of solutions {w(r, R) : R > R0} is equicontinuous in [0, d(R0)] and from compactness
argument we can extract a subsequence {w(·, Rn)} with Rn → ∞ and a function w̄ ∈ C([0,∞)) such that w(·, Rn) → w̄
uniformly on compact sets. Actually what really matters is the convergence on [0, d(R0)] as w(r, R) = 0 for r > d(R0) and
R > R0. In the limit, the equation for w̄ becomes

−νw′′
+ wq

= 0,
w ≥ 0,
w(0) = 1, w(∞) = 0,

(50)

whose unique solution is

z(t) =


1 −

t
cνq


+

2/(1−q)

. (51)

The convergence ofw(·, R) to the solution of (50) implies that d(R) → cνq as R → ∞. �
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Lemma 4.4. Let uR be the solution of (39). Then uR(x) ≤ yR(x) = ηR(|x − x0|).

Remark 4.5. If in (39) we set the value at the boundary to be ε instead of one, all results just shown change just in the value
of the constants. To be more specific, the constant C0 appearing in (45) remains the same while R0 should be changed into
Rε = ε(1−q)/2C0 and cνq in cνqε = ε(1−q)/2cνq.

We remind that the Heaviside function Hv is given by

Hv(x1) =


0 x1 ∈ (−∞, 0),
1 x1 ∈ (0,∞).

(52)

Lemma 4.6. Let u be a solution of (7) in the setting of Hhp with h the Heaviside function. Then

S(u) ⊂ {(x, y) ∈ Ω : x ≥ 0, y < cνq} ∪ {(x, y) ∈ Ω : x ≤ 0, r < cνq}.

Proof. The proof is the same as the one proposed in [30] and uses the technique of local supersolutions. We start by giving
a bound in the x2 direction. For R > R0 we consider the function yR as in Lemma 4.4 and we set

ū(x1, x2; ξ) = yR (x1 − ξ, x2 − R)

defined in BR(ξ , R). Since ū = 1 in ∂BR(ξ , R), by the comparison principle we obtain that ū ≥ u in BR(ξ , R). As we have
chosen ξ ∈ R arbitrarily we deduce that

u(x1, x2) = 0 for all x1 ∈ R, d(R) ≤ x2 ≤ 2R − d(R).

Letting R → ∞ and thanks to Lemma 4.3 we have that

u(x1, x2) = 0 for all x1 ∈ R, x2 ≥ cνq.

The boundedness for x1 < 0 works similarly. Again we set

ū(x1, x2; θ) = yR (x1 − R cos θ, x2 − R sin θ) for π/2 ≤ θ ≤ π,

this time defined onΣθ = BR(R cos θ, R sin θ)∩Ω . The boundary ofΣθ consists of the subset of ∂BR(R cos θ, R sin θ)which
is inΩ and where ū = 1 and u ≤ 1 and a part of ∂Ω with x1 < 0 where ū ≥ 0 and u = 0. Once again, because we can move
θ ∈ [π/2, π], by the comparison principle we obtain that

u(x1, x2) = 0 in {(x1, x2) : x1 ≤ 0, d(R) < r < 2R − d(R)},

with r = (x21 + x22)
1/2. Letting R → ∞,

u(x1, x2) = 0 in {(x1, x2) : x1 ≤ 0, r ≥ cνq}. �

Remark 4.7. As in Remark 4.5, if in Lemma 4.6 we substitute Hv with εHv , the result is the same but with cνq replaced by
cνqε .

4.1. Proof of Theorem 1.5

For the proof of Theorem 1.5 we start by showing (ii) for h = εHv . We will use this result later to prove (ii) for a general
boundary datum. In a second moment we will show (i) and give a numerical representation of the behaviour of C(q) and
C(q)when ε = 1.

4.2. Heaviside function

Problem (7) under assumption Hhp and with h = εHv is
−Lu + uq

= 0 inΩ,
u(x1, 0) = εHv(x1) x1 ∈ R. (53)

We remind that the symmetric matrix A

A =


a11 a12
a21 a22


satisfies

µ|ξ |2 ≤ ξ TAξ ≤ ν|ξ |2, for all ξ ∈ R2, (54)

for some µ, ν > 0.
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Remark 4.8. The existence of µ > 0 such that condition (54) holds is equivalent to the fact that

a212 < a22a11. (55)

Indeed, if we set ξ = (ξ1, ξ2), we have

ξ TAξ = a11ξ 21 + 2a12ξ1ξ2 + a22ξ 22
= µ(ξ 21 + ξ 22 )+


(a11 − µ)ξ 21 + 2a12ξ1ξ2 + (a22 − µ)ξ 22


.

In order for the second term to be greater or equal to zero for all ξ1, ξ2 ∈ R, it must hold

a212 < (a11 − µ)(a22 − µ) < a11a22.

This fact is used later on to obtain a subsolution.
In order to study the positivity set for the solution of (53) we look for a proper subsolution. What we are really interested

in is the behaviour of the solution in a neighbourhood of the origin, i.e., the point (0, 0). We will show that, although the
boundary datum εHv is zero for x1 < 0, the solution is positive for x1 > −ζµε and x2 sufficiently small, for some ζµε > 0.

The procedure to obtain a proper lower bound u for u is the same as the one in [30]. We look for a u solution of
−Lu = −εq in R × (0, cνq),
u(x1, 0) = εH(x1) x1 ∈ R,
u(x1, cνqε) ≤ 0 x1 ∈ R.

(56)

If such u exists, and remembering the bounds 0 ≤ u ≤ ε where u is solution of (53), we get

−L(u − u) = −εq + uq
≤ 0.

This property, by the comparison principle, assures that u ≥ u.
To find out an explicit formula for u, we split u = u1 + u2 with

−Lu1 = −εq x1 ∈ R, 0 < x2 < cνqε,
u1(x1, 0) = 0, u1(x1, cνqε) = −ε x1 ∈ R, (57)

and 
−Lu2 = 0 x1 ∈ R, 0 < x2 < cνqε,
u2(x1, 0) = εH(x1), u2(x1, cνqε) ≤ ε x1 ∈ R. (58)

We try, as in [30], to find a u2 which depends only on the ratiom = x1/x2. Calling f such a function, we have
2

i,j=1

aij
∂2

∂xi∂xj
f (x1/x2) =

1
x22


(a22m2

− 2a12m + a11)f ′′
+ 2(a22m − a12)f ′


.

Since x2 > 0, we look for a solution of the differential equation

(a22m2
− 2a12m + a11)f ′′

+ 2(a22m − a12)f ′
= 0,

which we see to be equivalent to gf ′′
+ g ′f ′

= (gf ′)′ = 0, where g(m) = a22m2
− 2a12m + a11. We deduce that f ′

= Cg−1,
where C is a constant. Hence f is given by the indefinite integral

f = C


1
a22m2 − 2a12m + a11

.

From (55) we know that a212 < a11a22, which implies that

f (m) = C̄ + C
1

(a11a12 − a212)1/2
arctan


a22m − a12
a11a12 − a212


.

We set

u2(x1, x2) = fε(x1/x2),

where fε is f with the constant C̄ = C̄ε and C = Cε chosen for the specific problem. Let us check the boundary conditions:
we fix x1 ≠ 0 and send x2 → 0. If x1 < 0, then x1/x2 → −∞ and fε(x1/x2) → C̄ε − Cε π2 (a11a12 − a212)

−1/2. Setting
Cε = επ−1(a11a12 − a212)

1/2 and C̄ε = ε/2 we have that fε(x1/x2) → 0. For x1 > 0, we see that fε(x1/x2) → ε. Since, with
these values for the constants, 0 ≤ fε ≤ ε, also the other boundary condition is satisfied.

For u1 we choose

u1(x1, x2) = −


ε

cνqε
+
εqcνqε

2


x2 +

εq

2
x22. (59)
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It is immediate to verify that u1 given by (59) is solution of (57).
Now we check that u is positive in a neighbourhood of the origin. We know that, for x2 = 0 and x1 < 0, u is zero. We

want to understand if it is positive for some x2 > 0. We compute
∂u
∂x2

= −


ε

cνqε
+

cνqε
2


+ x2 −

Cεx1
a22x21 − a12x1x2 + a11x22

,

and evaluate it in x2 = 0,
∂u
∂x2

(x1, 0) = −


ε

cνqε
+

cνqε
2


−

Cε
a22x1

.

One can see that it is strictly positive for x1 < 0 sufficiently close to zero, precisely in a neighbourhood of (−ζνε, 0) × {0},
where

ζνε =
2Cεcνqε

a22(2ε + c2νqε)
.

4.3. General data

In this part we show that the behaviour displayed by the solution of (53) can be found also in the solutions of (1) where
h is continuous, depending on the decay rate of h near zero. If h is sufficiently big when x1 ∼ 0, then the free boundary is
not connected with S(h).

We select the family of functions {hδ} ⊂ C(R) of the form

hδ(x1) =


0 x1 ≤ 0,

Cx
2

1−q 0 < x1 ≤ xδ,
1 x > xδ.

(60)

Proof of Theorem 1.5. For what concerns (i), consider the solution u of (53) with ε = 1 and boundary data given by H(x1 −

xδ). It is immediate to check that H(x1 − xδ) ≤ hδ(x1) for all x1 ∈ R. This implies that u ≤ uδ where uδ is the solution of (53)
with boundary data hδ . So if

xδ =


1
C

 1−q
2

is such that xδ < ζν then there exists V , neighbourhood of (0, 0) in R2, such that u > 0 in V ∩ {x1 < 0, x2 > 0}. But this is
true whenever

C >


1
ζν

 2
1−q

.

It is enough to set C = ζ
−2/(1−q)
ν , ε = 1 and x1,ε = (1/C)(1−q)/2. The statement follows since u ≤ uδ .

One can also try to repeat the same proof with εH(x1 − xδ) and compare the results to find the best lower bound for
which the expansion on the boundary of the support property holds.

For the proof of (ii) it is enough to consider the special case of hε(x1) = Cx
2

1−q
1 for a.e. x1 ∈ (0, x1,ε) and hε(x1) = ε for

a.e. x1 ∈ (x1,ε,+∞). Indeed, if h ≤ hε then we know that the correspondent limit very weak solutions u and uε satisfy that
0 ≤ u ≤ uε . So, if the non-diffusion of the boundary of the support property holds for uε then it also holds for u.

Consider the function u = w(x1 + vx2)where

w(s) = Cs
2

1−q
+ ,

with C > 0. We compute

−Lu + uq
= −(a11 + 2a12v + a22v2)w′′

+ wq

= x2/(1−q)
+


−(a11 + 2a12v + a22v2)

2(1 + q)
(1 − q)2

C + Cq

. (61)

If we take

C ≤
(1 − q)2

2(1 + q)(a11 + 2a12v + a22v2)
, (62)

we have that −Lu + uq
≥ 0, hence u is a supersolution. We notice that

u(θ, r) = 0 for θ ∈ Θ = (−π/2, arctan(−v)),
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Fig. 5. Graphs of C(q) and C(q).

where θ = arctan(x1/x2). Again, taking C smaller than (62) and choosing x1,ε and ε such that hε ≤ ū, we have that
u ≤ uε ≤ u; so we obtain that u is zero in the sectorΘ . �

Let us restrict our attention on the family of boundary data hδ . Each function is defined completely by the value of C ,
since xδ can be deduced by C and the continuity property. Of course for consistency we expect C ≤ C . But can we affirm
that equality holds? Actually, with our method we cannot say. In fact, let us consider for example the case of L = ∆, which
means A = Id. We computed the values

C =


π(q2 − q + 2)

(1 − q)
√
2(q + 1)

 2
1−q

and C =
(1 − q)2

2(1 + q)
.

We see from the graphs in Fig. 5 that C < C for q ∈ (0, 0.2), and the difference is quite big. For q ∈ (0.2, 1) the difference
becomes even bigger as C is decreasing while C is increasing. The question of what happen when C < C < C is still open
and a different approach or a finer analysis is needed.

Proof of Corollary 1.6. The additional properties are a by-product of the proof of Theorem 1.5. Indeed, for (1), since the
supersolutionw already satisfies this property, so does the solution because it is non-negative. Point (2) is true because we
have shown that u ≥ u1 + u2 with u1 and u2 solutions of the problems (57) and (58) respectively and u = u1 + u2 satisfies
the required properties. �

4.4. Proof of Corollary 1.13

In the case of (i) we can use the same supersolution (which we denote now by u(x)) as for the stationary case. Since our
initial condition is u0 = 0, then, applying the comparison result, we get that 0 ≤ u(t, x) ≤ u(x) for any t > 0 and a.e.
(x1, x2) ∈ R × [0,∞).

The proof of part (ii) comes from the fact that u1(x1, x2) + u2(x1, x2) is a subsolution for the parabolic problem for
t ∈ (0, T ].
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