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Abstract. We study a semilinear elliptic equation with a strong absorption term given by a
non-Lipschitz function. The motivation is related with study of the linear Schrödinger equation
with an infinite well potential. We start by proving a general existence result for non-negative
solutions. We use also variational methods, more precisely Nehari manifolds, to prove that for
any λ > λ1 (the first eigenvalue of the Laplacian operator) there exists (at least) a non-negative
solution. These solutions bifurcate from infinity at λ1 and we obtain some interesting additional
information. We sketch also an asymptotic bifurcation approach, in particular this shows that there
exists an unbounded continuum of non-negative solutions bifurcating from infinity at λ = λ1. We
prove that for some neighborhood of (λ1,+∞) the positive solutions are unique. Then a Pohozaev
identity is introduced and we study the existence (or not) of free boundary solutions and compact
support solutions. We obtain several properties of the energy functional and associated quantities
for the ground states, together with asymptotic estimates in λ, mostly for λ↗ λ1. We also consider
the existence of solutions with compact support in Ω for λ large enough.

Key words:semilinear elliptic equation, strong absorption term, spectral problem, positive solu-
tions, Nehari manifolds, bifurcation from infinity, Pohozaev identity, solutions with compact sup-
port.

1. Introduction

We study in this paper the existence of different kinds of non-negative solutions to the semilinear
elliptic equation

P (q, α, λ) =

{
−∆u+ q(x)|u|α−1u = λu in Ω,
u = 0 on ∂Ω,

(1)

where Ω is a smooth bounded domain in RN (N ≥ 1), λ is a real parameter, 0 < α < 1 and q(x) ≥ 0
is a real function satisfying suitable assumptions.

The equation P (q, α, λ) is a typical example of the so-called diffusion-reaction equations. If
q ≡ 1 and α > 1 it is the well-known logistic equation in population dynamics. In this case there is
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a unique positive solution uλ for any λ > λ1, where λ1 > 0 is the first eigenvalue of the Laplacian
with Dirichlet boundary conditions and it follows immediately from the Strong Maximum Principle
that if uλ ≥ 0, uλ 6≡ 0, is a solution then uλ > 0 in Ω and ∂uλ

∂ν < 0 on ∂Ω, i.e., all non-negative
solutions to the logistic equation are actually positive.

But this is not the case for P (q, α, λ) for q ≡ 1 and 0 < α < 1 and for some problems of this
kind previously studied. The semilinear problem{

−u′′ + um = λuq in (−1, 1),
u(±1) = 0,

(2)

with 0 < m < q < 1 was studied in [12], where it was proved by using energy methods for ODEs
that there exist two critical values 0 < λ∗ < λ∗∗ such that: i) for 0 < λ < λ∗ there is no solution to
(2); ii) for any for λ > λ∗ there is an upper branch of positive solutions uλ > 0 with ∂uλ

∂ν (±1) < 0;
iii) for λ∗ < λ < λ∗∗ there is a lower branch vλ > 0 ( 0 < vλ < uλ on (−1, 1)) with ∂vλ/∂n(±1) < 0;
iv) for λ = λ∗∗ there is a solution vλ∗∗ > 0 such that ∂vλ∗∗/∂n(±1) = 0; v) from this solution, which
is also a solution of equation (2) on the whole real line, it is possible to build by stretching, gluing
and rescaling continua of infinitely many compact support solutions, whose precise description is
given in [12]. These results were extended in [14] to the singular case −1 < m < q < p−1 and to the
p-Laplacian as well. The corresponding N -dimensional problem to (2) was studied for a star-shaped
bounded domain Ω in [19] by using a combination of Pohozaev’s identity and variational methods
obtaining similar but less precise results.

The motivation for studying later problem P (q, α, λ) with q ≡ 1 and 0 < α < 1 arise from
general observations of the first author ([9], [11]) concerning solutions for the linear Schrödinger
equation {

−u′′ + V (x)u = λu in (−R,R),
u(±R) = 0,

(3)

for a given R > 0 or on the real line, where V (x) is the so-called infinite well potential, introduced
by Gamow. It turns out that there is some ambiguity in the treatment of the case of the real line:
what is mentioned to be solutions in most of the text-books are not classical solutions since Dirac’s
deltas appear, and they are solutions in the sense of distributions but of a different equation where
deltas are included. In this situation solutions of the semilinear equation P (q, α, λ) provide some
kind of, say, ”alternative approach” ([9], [11]).

The one-dimensional case Ω = (−R,R) was studied in detail in [13] by using the same phase
plane methods in ODEs. There it was proved that for 0 < λ < λ1 there is no solution to (2) and
for λ1 < λ < λ∗ , where λ∗ is a critical value given explicitly, there is a unique solution uλ > 0 with
∂uλ/∂n(±R) < 0 bifurcating at infinity for λ = λ1. Moreover uλ is decreasing as a function of λ
and, as in the preceding example, the solution uλ∗ > 0 in (−R,R) is such that u′λ∗(±R) = 0 and
from this free boundary solution it is possible, once again, to build continua of compact support
solutions. We also obtain the asymptotic behaviour (in λ) of the solutions, namely

‖uλ‖L∞(−R,R) ≤
C

λ1−α .

Thus we have obtained that λ∗ > 0 and uλ∗ > 0 are the first eigenvalue and its corresponding
eigenfunction for the linear eigenvalue problem{

−w′′ + |uλ∗ |α−1
w = λw in (−R,R),

w(±R) = 0.
(4)
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and that u′λ∗(±R) = 0. It is in this sense that we have an ”alternative approach” for solutions to
the linear Schrödinger equation.

Problem P (q, α, λ) is studied in [17] for q = 1 and 0 < α < 1 as a particular case of a much more
general class of problems allowing more general nonlinear terms and boundary conditions. The main
result in [17] is the existence of an unbounded continuum of non-negative solutions bifurcating from
infinity at the asymptotic bifurcation point λ1. The method of proof was to apply global asymptotic
bifurcation theorems by Rabinowitz [31] by using as a tool some theorem in [7]. More details are
given below.

Existence of a weak non-negative solution for any λ > λ1 was obtained later by Porretta [26]
this time by using variational methods, namely a variant of the Mountain Pass Theorem. There
were some complementary results concerning, for example, estimates for the norm of the solutions,
but the problem of the existence(or not) of positive solutions was not considered.

In this paper we deal first with general existence results for non-negative solutions to P (q, α, λ).
First, in Section 2, we use variational methods, more precisely Nehari manifolds ([4], [20], [19],
[37]) and prove that for any λ > λ1 there exists (at least) a non-negative solution. These solutions
bifurcate from infinity at λ1 and we obtain some interesting additional information. In a second
part of Section 2 we sketch the asymptotic bifurcation approach above mentioned, in particular this
shows that there exists an unbounded continuum of non-negative solutions bifurcating from infinity
at λ = λ1. In Section 3 we study different kinds of solutions. It is possible to show that solutions
uλ bifurcating from infinity at λ = λ1 are uλ > 0 with ∂uλ/∂n < 0 on ∂Ω for some neighborhood
of (λ1,+∞). Under some additional assumptions it is also possible to show, by using the results
in [18], that positive solutions are unique there. Then a Pohozaev identity is introduced and here
the coefficient q(x) plays an interesting role concerning existence (or not) of a free boundary and
compact support solutions.

In Section 4 we collect several results concerning regularity and differentiability properties of
the energy functional and associated quantities for the ground states, together with asymptotic
estimates in λ, mostly for λ ↗ λ1. The existence of solutions with compact support in Ω is
considered in Section 5. With the usual philosophy of reaction-diffusion equations giving rise to
a free boundary, we will show that, in the case of problem (1), the ”diffusion-absorption balance”
condition on the nonlinearities is obviously satisfied (since α < 1) and that the ”balance condition
between the data and the domain” is here represented by means of the requirement of assuming λ
large enough. The simultaneous fulfillment of both balances is required in order to get solutions
with compact support (see Section 1.2 of [10]).

2. Existence of nonnegative solutions: Nehari manifolds and asymptotic bifurcation
methods

We study in this Section the existence of non-negative solutions of the semilinear equation
P (q, α, λ). Concerning the coefficient q(x) we assume that q(x) ≥ 0, q 6≡ 0, on Ω and either

q ∈ L
2∗

2∗−(1+α) (Ω), (5)

(where 2∗ = 2N/(N − 2)) if N ≥ 3 or

q ∈ Lr(Ω) for some r > 1, (6)
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if N = 1, 2. Moreover in some parts we shall assume also that

q ∈ H1(Ω). (7)

We shall study nonnegative weak solutions of P (q, α, λ) (i.e., functions u ∈ H1
0 (Ω), u ≥ 0 on Ω

and such that ∫
Ω

∇u · ∇v dx+

∫
Ω

(q(x)|u|α−1uv − λuv) dx = 0

for any v ∈ H1
0 (Ω): we note that from the above assumptions on q we have that q(.)|u|α−1uv ∈

L1(Ω)). We are also interested in positive free boundary solutions of P (q, α, λ): i.e., weak solutions
u of P (q, α, λ) such that u > 0 on Ω and

∂u

∂ν
= 0 on ∂Ω, (8)

where ν denotes the unit outward normal to ∂Ω. We shall deal sometimes as well with nonnegative
weak solutions with compact support, i.e., such that

support u ( Ω.

Some of the results concern the so called nonnegative ground state solutions of P (q, α, λ), i.e.,
functions uλ ∈ H1

0 (Ω), uλ ≥ 0 on Ω, uλ 6≡ 0 and such that if we define the associate functional
Eλ : H1

0 (Ω) 7→ R to the problem P (q, α, λ) by

Eλ(u) =
1

2

∫
Ω

(|∇u|2 − λ|u|2) dx+
1

1 + α

∫
Ω

q(x)|u|1+α dx (9)

then we have that
Eλ(uλ) ≤ Eλ(wλ)

for any non-zero weak solution wλ of P (q, α, λ).
As usual, H1

0 (Ω) := W 1,2
0 (Ω) denotes the standard Sobolev space of functions vanishing on the

boundary ∂Ω with the norm

||u|| = (

∫
Ω

|∇u|2dx)1/2.

We also use the notation
||u||p = ||u||Lp(Ω)

for p ∈ [1,+∞].
In all what follows λ1 > 0 and ϕ1 > 0 denote the first eigenvalue an eigenfunction of the

problem −∆u = λu in Ω, u = 0 on ∂Ω, i.e., −∆ϕ1 = λ1ϕ1 in Ω, ϕ1 = 0 on ∂Ω. We normalize ϕ1

by ||ϕ1|| = 1. We also recall that ϕ1 ∼ d(x), where d(x) = d(x, ∂Ω), in the sense that there exist
constants c1, c2 > 0 such that c1d(x) ≤ ϕ1 ≤ c2d(x) for any x ∈ Ω. This fact will be used in all
what follows.

4



2.1. Existence of non-negative solutions: Nehari manifolds

We will use the Nehari manifold, fibering maps and related ideas, as it is exposed in the pa-
pers [4], [19, 20, 29, 30] (see also [37]). Following [4] the Nehari manifold corresponding to problem
P (q, α, λ) is defined as

N = {u ∈ H1
0 (Ω)

∣∣ Hλ(u) +A(u) = 0}

and its associated components by

N+ = {u ∈ N| Hλ(u) + αA(u) > 0} = {u| A(u) < 0} = φ,

where φ denotes the empty set,

N− = {u ∈ N| Hλ(u) + αA(u) < 0 } = {u| Hλ(u) < 0},

N 0 = {u ∈ N| Hλ(u) + αA(u) = 0} = {0},

where we use the notations

Hλ(u) :=

∫
Ω

|∇u|2 dx− λ
∫

Ω

|u|2 dx, A(u) =

∫
Ω

q|u|1+α dx

for any u ∈ H1
0 (Ω).

Given u ∈ H1
0 (Ω), the fibrering mappings are defined by

Φu(t) = Eλ(tu) =
t2

2
Hλ(u) +

t1+α

1 + α
A(u),

so that we have
Φ′u(t) = E′λ(tu) = tHλ(u) + tαA(u).

The equation Φ′u(t) = 0 has a positive solution only if both terms in Φ′u(t) have opposite signs: i.e.,
if and only if Hλ(u) < 0. It turns out that the only point t(u) where Φ′u(t) = 0 is given by

tλ(u) =

(
A(u)

−Hλ(u)

)1/(1−α)

. (10)

Replacing this root in Eλ(tu) we obtain

Jλ(u) := Eλ(tλ(u)u) =
(1− α)

2(1 + α)

A(u)
2

1−α

(−Hλ(u))
1+α
1−α

.

Observe that Jλ(u) is a zero-homogeneous functional, i.e. Jλ(tu) = Jλ(u) for t > 0. Furthermore,
evidently tλ(uλ) = 1 for any non-zero solution uλ of (1).

The proof of the following is straightforward (see e.g. [29, 37]):

Lemma 2.1. Let J ′λ(vλ) = 0 on H1
0 (Ω). Then uλ = tλ(vλ)vλ, where tλ(vλ) is given by (10),

is a critical point of Eλ(u) on H1
0 (Ω), i.e. uλ is a weak solution of P (q, α, λ).
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We shall prove:

Theorem 2.1. Assume 0 < α < 1. Then for every λ ∈ (λ1,+∞) problem (1) has a weak
nonnegative solution uλ ∈ C1,κ(Ω) for any κ ∈ (0, 1). Furthermore uλ is a ground state of (1).

For the proof of this theorem we shall need some previous results. Consider the minimization
problem

Ĵλ = min{Jλ(v) : v ∈ H1
0 (Ω) \ 0, Hλ(v) < 0} = min

N−
Jλ. (11)

Lemma 2.2. There exists a minimizer vλ of (11) such that Hλ(vλ) < 0.

Proof. Let (vm) be a minimizing sequence of (11). We may assume that ||vm|| = 1, since Jλ(u) is
a zero-homogeneous functional on H1

0 (Ω). This implies, by the Sobolev embedding and Eberlein-
Ŝmulian theorems, that there is vλ ∈ H1

0 (Ω) such that there exists a subsequence of (vm) (which
we denote again (vm)) such that vm ⇀ vλ weakly in H1

0 (Ω) and vm → vλ strongly in Lp(Ω) for
1 < p < 2∗, as m→∞.
First we show that vλ 6= 0. Suppose, contrary to our claim, that vλ = 0. Then

∫
Ω
|vm|2 dx→ 0 as

m→∞ and consequently

Hλ(vm) ≡
∫

Ω

|∇vm|2 dx− λ
∫

Ω

|vm|2 dx→ 1 as m→∞,

since
∫

Ω
|∇vm|2 dx = ||vm||2 = 1, m = 1, 2, ..., by the assumption. HoweverHλ(vm) < 0, m = 1, 2, ...

Thus we get a contradiction. Observe that

Hλ(vλ) ≤ lim inf
m→∞

Hλ(vm) < 0

by the weak lower semi-continuity of the norm ||.||. Furthermore, we have

A(vm) =

∫
Ω

q(x)|vm|α+1 dx→ A(vλ) =

∫
Ω

q(x)|vλ|α+1 dx. (12)

Indeed, in case N ≥ 3 we have by (5)∫
Ω

q(x)|v|α+1 dx ≤ (

∫
Ω

q(x)kdx)
1
k (

∫
Ω

|v|2
∗

dx)
1+α
2∗ = c1(

∫
Ω

|v|2
∗

dx)
1+α
2∗

for some c1 > 0, where

k =
2∗

2∗ − (1 + α)
.

This implies that A is a continuous functional on Lp(Ω) for p ∈ (1, 2∗]. Thus since vm → vλ as
m→∞ in Lp(Ω) for p ∈ (1, 2∗) we get (12). The cases N = 1, 2 are considered in the same way.
Hence vλ is an admissible function of the minimizing problem. Furthermore,

Jλ(vλ) ≤ lim inf
m→∞

Jλ(vm) = Ĵλ.

It is easy to see that here this is possible only if Jλ(vλ) = Ĵλ. Thus vλ is the minimizer of (11) and
Hλ(vλ) < 0 .
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Proof of Theorem 2.1. Let λ > λ1. By Lemma 2.2 there exists a minimizer vλ of (11). Since
Jλ(v) is an even functional then |vλ| is also a minimizer of (11). Thus we may assume that vλ
is a nonnegative function. By Lemma 2.1 it follows that uλ = tλ(vλ)vλ is a weak solution of (1)
which is nonnegative since tλ(vλ) > 0. By standard regularity theory (bootstrapping) we derive
that uλ ∈ C1,κ(Ω) for any κ ∈ (0, 1), see App. B in [38]. Finally we see that the solution uλ is a
ground state. Indeed, any non-zero solution wλ of (1) satisfies Hλ(wλ) < 0 since Φ′wλ(t)|t=1 = 0.
Thus wλ is an admissible point of (11) and consequently

Eλ(uλ) = Jλ(uλ) = Ĵλ ≤ Jλ(wλ) = Eλ(wλ).

From now on we provide some more interesting information concerning the behaviour of solutions
and, in particular, bifurcation at infinity at λ = λ1.

Proposition 2.1. If we denote by un the minimizer for the value λn of the parameter, then

lim
λn↘λ1

Eλn(un) = lim
λn↘λ1

inf
N−

Eλn(u) = +∞.

Proof. Assume that this is not the case. Then there exist sequences λn ↘ λ1 and un ∈ N− such
that for any n

0 < Eλn(un) =
(α− 1)

2(1 + α)
Hλn(un) =

(1− α)

2(1 + α)
A(un) ≤ C,

for some C > 0. If we define vn = un
‖un‖ , since ‖vn‖ = 1, there exists a sequence converging weakly

to v0 in H1
0 (Ω), vn ⇀ v0, and vn → v0 strongly in Lp(Ω) for 1 < p < 2∗, as n → ∞. We have

vn → v0 strongly in H1
0 (Ω) as well. If not, using the l.s.c. of the norm we get

Hλ1
(v0) < lim inf Hλn(vn) = lim

1

‖un‖2
Hλn(un) ≤ 0

since un ∈ N− and Hλn(un) is bounded. Hence v0 6≡ 0. But then it follows that

lim
λn↘λ1

Eλn(un) ≥ lim
λn↘λ1

(1− α)

2(1 + α)(λn − λ1)
(1+α)
(1−α)

(
‖vn‖1+α

‖vn‖2

) 2(1+α)
(1−α)

=
(1− α)

2(1 + α)

(
‖v0‖1+α

‖v0‖2

) 2(1+α)
(1−α)

lim
λn↘λ1

1

(λn − λ1)
(1+α)
(1−α)

= +∞.

Proposition 2.2. Under the assumptions of Proposition 2.1 we have
i) limλn↘λ1

‖un‖ = +∞;
ii) limλn↘λ1

un
‖un‖ = ϕ1.

Proof. i) If not, ‖un‖ ≤ C and there exists a sequence un ⇀ u0 weakly in H1
0 (Ω) and un → u0

strongly in Lp(Ω) for 1 < p < 2∗, as n→∞. Hence we obtain

lim
λn↘λ1

Eλn(un) = lim
λn↘λ1

(α− 1)

2(1 + α)
Hλn(vn)

= lim
λn↘λ1

(1− α)

2(1 + α)
A(un) =

(1− α)

2(1 + α)
A(u0) < +∞,
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a contradiction with Proposition 2.1.
ii) If vn = un

‖un‖ there exists a sequence vn ⇀ v0 weakly in H1
0 (Ω) and vn → v0 strongly in Lp(Ω)

for 1 < p < 2∗, as n → ∞. Let us show that vn → v0 strongly in H1
0 (Ω) as well. If not, reasoning

once again as above using the l.s.c. of the norm

Hλ1(v0) < lim inf
λn↘λ1

Hλn(vn) ≤ 0

and this is impossible. Hence we obtain by i)

lim
λn↘λ1

(α− 1)

2(1 + α)
Hλn(vn) = lim

λn↘λ1

(1− α)

2(1 + α)
A(vn) ‖un‖α−1

= 0,

and then Hλ1
(v0) = 0. But v0 = Kϕ1 and since ‖v0‖ = 1, K = 1.

2.2. Existence of non-negative solutions: asymptotic bifurcation

In this Section we sketch an alternative approach to the above problem P (q, α, λ). In order to
simplify matters we take q = 1. Consider the problem{

−∆u+ |u|m−1
u = λu in Ω,

u = 0 on ∂Ω,
(13)

where λ is a real parameter and for the moment m > 0.
First we recall that if m > 1 (in particular for m = 2) (13) is the well-known logistic equation

arising in population dynamics. This equation has been widely studied in the last forty years (see
e.g. [34]) and it is possible to prove that for any λ > λ1 there exists a unique positive solution uλ
to (13). This result can be obtained by using sub and supersolutions, but there are other methods
giving the same result as well. One is to apply some global bifurcation theorem by Rabinowitz
[32], [33] together with a priori estimates providing the existence of a continuum (i.e., a closed
connected set) of positive solutions bifurcating from the line of trivial solutions u = 0 at λ = λ1.
Moreover, continuation arguments, involving also the Implicit Function Theorem allow to obtain a
more precise result: the continuum is actually a smooth curve in some function space defined for all
λ > λ1. Solutions on this curve are asymptotically stable. On the other hand, it follows easily from
the Strong Maximum Principle that if u ≥ 0 is a solution to (13), then u > 0 on Ω and ∂u/∂n < 0
on ∂Ω, this means that these solutions are in the interior of the positive cone in the space C1

0 (Ω).
If N = 1 and Ω = (0, 1) it was proved also by Rabinowitz [32], [33], that all (simple) eigenvalues

of the linearized operator at the origin are (ordinary) bifurcation points and the well-known nodal
properties of the eigenfunctions in Sturm-Liouville theory are preserved all along the bifurcation
branches. The same happens for N > 1 for positive solutions bifurcating from λ1.

The situation is very different, and more interesting from our point of view, for 0 < m < 1.
Now it is still possible to use global bifurcation arguments, this time for bifurcation at infinity (see
[31] , and also [1], [6]) in order to exhibit the existence of an unbounded continuum of non-negative
solutions bifurcating at infinity from λ1.

A more general problem including (13) was studied by the second author in [17], where more
general nonlinearities and (even nonlinear) boundary conditions were allowed, including maximal
monotone graphs.
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The main tool here is an asymptotic Fréchet derivative for the associated solution operator in [7]
(see also [8] and [2]). More precisely we recall from the classical theory for monotone operators that
if u ∈ L2(Ω) then there exists a unique weak solution z = Pu ∈ H2(Ω) ∩H1

0 (Ω) to the nonlinear
equation {

−∆z + |z|m−1
z + z = u in Ω,

z = 0 on ∂Ω,
(14)

and that the solution (or Green’s) operator P : L2(Ω) → L2(Ω) is a compact monotone operator
which is Fréchet differentiable at the infinity in the sense of the following:

Theorem 2.2 ([7]). Under the above assumptions,P has a Fréchet derivative at infinity A =
P ′(∞), where Au is defined for any u ∈ L2(Ω) as the unique solution of the linear problem{

−∆Au+Au = u in Ω,
Au = 0 on ∂Ω,

(15)

and A : L2(Ω)→ L2(Ω) is a compact linear operator, in the sense that

lim
‖u‖L2(Ω)→+∞

‖Pu−Au‖L2(Ω)

‖u‖L2(Ω)

= 0.

By applying the above global asymptotic bifurcation results together with Theorem 2.2 the
following result can be obtained.

Theorem 2.3. ([17]): Under the above assumptions there exists an unbounded continuum of
non negative solutions to (1) bifurcating at infinity from λ1.

The question of investigating if these bifurcating solutions were positive or not was not pursued
in [17]. In [31] Rabinowitz already pointed out the interesting feature that, contrary to the case
of ordinary bifurcation, nodal properties are not necessarily preserved along bifurcating branches,
and a counterexample is given in Remark 2.12 of [31]. However, it is proved in [31] that these nodal
properties are prerserved in some neighborhood of (λ1,+∞), where solutions are in the interior
of the positive cone of C1

0 (Ω). This question will be treated in the following Section. The one-
dimensional case Ω = (0, 1) was studied in detail in [13] using phase plane arguments from ODEs
and then it was possible to give a complete description of the solution set. There is a branch of
positive solutions bifurcating from λ1 and then a ”critical” value of the parameter λ appears for
which there is a positive free boundary solution, i.e. with ∂u/∂n = 0 on ∂Ω.

3. Positive, free boundary and compact support solutions

In the preceding Section we have proved the existence of (at least) a non-negative solution of
our problem for any λ > λ1 by using a variational method, namely the Nehari manifold, together
with some interesting complementary results. Then, by using an alternative approach, asymptotic
bifurcation, we proved the existence of a unbounded continuum of non-negative solutions. Notice
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that this does not imply existence for any λ > λ1, a result which would follow, e.g., from the
existence of a continuous function ψ(λ) such that ‖u‖∞ ≤ ψ(λ) if u ≥ 0 is any solution for the
value λ of the parameter.

Next we go further to study positive solutions and also free boundary and compact support
solutions in the sense illustrated in the Introduction. In particular we are oriented by the results
in the onedimensional case [13] and also by the results for the related problem{

−∆u+ um = λuβ in Ω,
u = 0 on ∂Ω,

(16)

where λ is a real parameter and
0 < m < β < 1, (17)

considered also in the Introduction, studied in one-dimension in [12] [14] and for Ω star-shaped
in [19] (see also [21]). Hence we should expect a branch of positive solutions u > 0 in Ω (with
∂u
∂ν < 0 on ∂Ω) for λ close to λ1, bifurcating at λ1 at infinity giving rise to continua of infinitely
many compact non-negative solutions arising from a free boundary solution uλ∗ > 0 for a critical
value λ∗ of λ such that {

−∆uλ∗ + q(x) |uλ∗ |α−1
uλ∗ = λ∗uλ∗ in Ω,

uλ∗ = ∂uλ∗
∂ν = 0 on ∂Ω.

(18)

Here a first result is that some solutions bifurcating from infinity at λ = λ1 are actually in the
interior of the positive cone of C1

0 (Ω), i.e., such that u > 0 in Ω, ∂u∂ν < 0 on ∂Ω. This follows from
Proposition 2.2.

Proposition 3.1. Under the assumptions of Proposition 2.1 there is a neighborhood of (λ1,+∞)
in R× C1

0 (Ω) such that u > 0 and ∂u
∂ν < 0 on ∂Ω for (λ, u) in this neighborhood.

Proof. It follows from Proposition 2.2 taking into account that ϕ1 is in the interior of the positive
cone in C1

0 (Ω). Alternatively, we can also use the arguments in [31], where it is noticed that the
result holds for nonlinearities satisfying the condition only in some neighborhood of infinity.

Moreover, these solutions are unstable, in the sense of linearized stability. Even if the linearized
problem is singular since there is a coefficient blowing up close to the boundary, this can be made
rigorous by using the results of [18] (or [3]).

Theorem 3.1. Assume additionally

q ∈ C1(Ω) ∩ C0(Ω) (19)

and that uλ ∈ C1
0 (Ω) is a solution of P (q, α, λ) such that uλ > 0 and ∂uλ

∂ν < 0 on ∂Ω. Then uλ is

unstable in the sense that λ1(−∆ + αq(x)uα−1
λ − λ) < 0.

Proof. We have {
−∆uλ + q(x)uαλ = λuλ in Ω,
uλ = 0 on ∂Ω,

(20)
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and the corresponding linearized problem at uλ is{
−∆w + αq(x)uα−1

λ w − λw = µw in Ω,
w = 0 on ∂Ω.

(21)

From the results of [18] there is a first eigenvalue µ1 to (21) with a positive eigenfunction ψ1 > 0
such that ψ1 ∈ C2(Ω) ∩ C1

0 (Ω).
Multiplying (20) by ψ1 and (21) with w = ψ1 by uλ and integrating on Ω, by using Green’s formula,
we obtain∫

Ω

∇uλ · ∇ψ1 + quα−1
λ ψ1 − λuλψ1)dx = 0

=

∫
Ω

(∇uλ · ∇w + αquα−1
λ ψ1 − λuλψ1 − µ1uλψ1)dx

and it follows that

µ1 =
(α− 1)

∫
Ω
quα−1
λ ψ1dx∫

Ω
uλψ1dx

< 0,

which implies the unstability. (By the way, this shows that µ1(λ) is a continuous function of λ if
the application λ→ uλ(λ) is well-defined and continuous).

Remark 3.1. From the results of [18] it follows that uλ is unstable in the sense of Lyapunov for
the associated parabolic problem. Related linearized stability results were obtained in [3] working
in Sobolev spaces in the framework of degenerate parabolic equations of porous media type.

We have seen that µ1 < 0. If we can prove that 0 is not an eigenvalue (which follows obviously
from µ2 > 0) it would be possible to apply the Implicit Function Theorem at the interior of the
positive cone in [18]. This could be used not only to prove the regularity of a branch of such solutions
but also uniqueness in the neighborhood of (λ1,+∞) given by Proposition 3.1. Indeed, in this case
if we have two such solutions uλ > 0, vλ > 0 (with ∂uλ

∂ν < 0, ∂vλ
∂ν < 0 on ∂Ω) in this neighborhood

both can be continued to the left remaining at the interior of the positive cone bifurcating at infinity
at the simple eigenvalue λ1, a contradiction with the existence of two bifurcating branches at λ1.

It is possible to show that for the linearized problem (21) there exist an infinite sequence µn
going to +∞ of eigenvalues. Indeed, assume only

q ∈ LN (Ω) (22)

then, for any h ∈ L2(Ω) the linear problem{
−∆z + αq(x)z

u1−α
λ

= h in Ω,

z = 0 on ∂Ω,
(23)

has a unique (weak) solution z ∈ H1
0 (Ω). This follows from applying the Lax-Milgram Lemma to

the associated bilinear form in H1
0 (Ω)

a(u, v) =

∫
Ω

∇u · ∇vdx+

∫
Ω

αq(x)uv

u1−α
λ

dx

11



which is well-defined, continuous and coercive. Indeed, taking into account that uλ ∼ d(x), Hardy’s
inequality, and using (22) and the Sobolev inequality we obtain∣∣∣∣∫

Ω

αuv

u1−α
λ

dx

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

αquv

cd(x)1−α dx

∣∣∣∣ ≤ k ∣∣∣∣∫
Ω

(
u

d(x)

)
q(x)vd(x)αdx

∣∣∣∣
≤ C

∥∥∥u
d

∥∥∥
2
‖v‖2∗ ≤ C ‖u‖ ‖v‖ ,

where c, k, C and C are different positive constants independent of u and v.
Since

a(u, u) ≥ C ‖u‖2

for some C > 0, a is obviously coercive.
Thus, for any h ∈ L2(Ω), there exists a unique Th ∈ H1

0 (Ω) solution of the above equation and
it is easy to see that the composition with the (compact) embedding H1

0 (Ω) ⊂ L2(Ω) is a selfadjoint

compact linear operator T̃ = i◦T : L2(Ω)→ L2(Ω) for which we obtain in the usual way a sequence
of eigenvalues νn → +∞. Writing µn = νn− λ we get the sequence of eigenvalues corresponding to
our problem, again with µn → +∞.

Moreover, and this is our main interest here, we have the following variational characterization
for the second eigenvalue

µ2 = inf
w∈[ϕ1]⊥

∫
Ω

(
|∇w|2 + αqw2

u1−α
λ

− λw2
)

dx∫
Ω
w2dx

.

Thus we get inmediately the estimate

µ2 > λ2 − λ+ inf
w∈[ϕ1]⊥

∫
Ω
αqw2

u1−α
λ

dx∫
Ω
w2dx

.

But now we know that that uλ ∼ d(x) and in particular uλ ≤ c1d(x), c1 > 0. Thus we have∫
Ω

qw2

u1−α
λ

dx ≥
∫

Ω

qw2

c1−α1 d(x)1−α
dx ≥ 1

D1−αc1−α1

∫
Ω

qw2dx

where d(x) ≤ D for any x ∈ Ω. Finally, if

q(x) ≥ q0 > 0 (24)

we obtain
µ2 > λ2 − λ+

q0

D1−αc1−α1

.

It is clear that the condition µ2 > 0 is satisfied if λ > λ1 but close to λ1. A more interesting
question is how to obtain sharper estimates for this interval. But in any case we have proved the
following

Theorem 3.2. Under the above assumptions (19) and (24) there exists λ∗ > λ1 such that for
any λ ∈ (λ1, λ∗) there is a unique solution uλ to (1) such that uλ > 0 in Ω and ∂uλ

∂ν < 0 on ∂Ω.

Moreover, the curve λ→ uλ is smooth as a map from (λ1, λ∗) into C1
0 (Ω).

12



Otherwise stated, the curve uλ remains at the interior of the positive cone for some interval
of λ’ s. We will investigate in the following if this curve remains there for any value of λ or not.
We know that if it leaves the interior of this positive cone, there should be for the corresponding
solution u (at least) a point a ∈ Ω such that u(a) = 0 and/or a point b ∈ ∂Ω such that ∂u

∂ν (b) = 0.
This would mean that the Strong Maximum Principle does not hold any more for this u. The rest
of this Section is devoted to obtain some (partial) results in this direction.

3.1. A maximal range of the non-existence of compact support solutions.

From now on we assume that the boundary ∂Ω is a C2-manifold. ν ≡ ν(x0) ∈ RN denotes the
exterior unit normal to ∂Ω at x0 ∈ ∂Ω. As usual, we denote by dσ the surface measure on ∂Ω. We
will use as a main tool a Pohozaev’s identity for a weak solution of P (q, α, λ) :

Lemma 3.1. Assume that ∂Ω is C2-manifold and assumption (7) holds. Let u ∈ C1(Ω) be a
weak solution of (1). Then we have the Pohozaev identity

(N − 2)

2

∫
Ω

|∇u|2 dx− λN
2

∫
Ω

|u|2 dx+
N

α+ 1

∫
Ω

q(x)|u|α+1 dx+ (25)

1

α+ 1

∫
Ω

(x · ∇q(x))|u|α+1 dx = −1

2

∫
∂Ω

∣∣∣∣∂u∂ν
∣∣∣∣2 (x · ν(x))dσ(x).

The proof will follow from the general result on Pohozaev’s identity for a weak solution obtained
in [28].

Theorem 3.2. (Pohozaev’s identity) Assume that f ∈ L1(Ω) possesses distributional deriva-
tives ∂f/∂xi ∈ L1

loc(Ω); i = 1, 2, . . . , N . Let u ∈ C1(Ω) satisfying

−∆u = f(x) in Ω (26)

in the sense of distributions in Ω and u|∂Ω = 0. Then the following Pohozaev identity holds

N − 2

2

∫
Ω

|∇u|2 dx+

∫
Ω

f(x) (x · ∇u) dx =

1

2

∫
∂Ω

|∇u|2 (x · ν(x)) dσ(x)−
∫
∂Ω

(x · ∇u)(ν(x) · ∇u) dσ(x) .

(27)

Proof of Lemma 3.1. Let us apply Theorem 3.2 to P (q, α, λ). Observe that f(x) := λu −
q(x)|u|α−1u ∈ L1(Ω) and possesses distributional derivatives ∂f/∂xi ∈ L1

loc(Ω); i = 1, 2, . . . , N ,
since the solution u ∈ C1(Ω) and q ∈ L2(Ω) by the assumption (7). Therefore by Theorem 3.2 we
have

N − 2

2

∫
Ω

|∇u|2 dx+

∫
Ω

(λu− q(x)|u|α−1u) (x · ∇u) dx =

− 1

2

∫
∂Ω

∣∣∣∣∂u∂ν
∣∣∣∣2 (x · ν) dσ(x),

(28)

where we take into account that ∇u(x) = |∂u(x)
∂ν |ν(x) for x ∈ ∂Ω, since u ≡ 0 on ∂Ω.
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Observe that q(x)|u|1+α ∈ H1
0 (Ω), since u ∈ C1(Ω) and q ∈ H1(Ω) (by (7)). Thus by the divergence

theorem (see Theorem 1.2 in [36, p.9]) applied to the vector field x 7→ x · (q(x)|u|α+1) we obtain∫
Ω

(x·∇(q(x)|u|α+1)) dx = −N
∫

Ω

q(x)|u|α+1 dx+

∫
∂Ω

q(x)|u|α+1 (x·ν(x)) dσ(x) = −N
∫

Ω

q(x)|u|α+1 dx,

where we take into account that u = 0 on ∂Ω. From here, since∫
Ω

(q(x)|u|α−1u) (x · ∇u) dx =

1

α+ 1

∫
Ω

(x · ∇(q(x)|u|α+1)) dx− 1

α+ 1

∫
Ω

(x · ∇q(x))|u|α+1 dx.

one gets ∫
Ω

(q(x)|u|α−1u) (x · ∇u) dx =

− N

α+ 1

∫
Ω

q(x)|u|α+1 dx− 1

α+ 1

∫
Ω

(x · ∇q(x))|u|α+1 dx.

(29)

In the same way we get that ∫
Ω

u (x · ∇u) dx = −N
∫

Ω

|u|2 dx.

Replacing this and (29) into (28) gives (25).

The Pohozaev’s functional, Pλ : H1
0 (Ω)→ R, is defined by

Pλ(u) :=
(N − 2)

2

∫
Ω

|∇u|2 dx− λN
2

∫
Ω

|u|2 dx+
N

α+ 1

∫
Ω

q(x)|u|α+1 dx+

1

α+ 1

∫
Ω

(x · ∇q(x))|u|α+1 dx

or equivalently by

Pλ(u) :=
(N − 2)

2
T (u)− λN

2
G(u) +

N

α+ 1
A(u) +

1

(α+ 1)
A∇(u)

with the notations

T (u) :=

∫
Ω

|∇u|2 dx, G(u) :=

∫
Ω

|u|2 dx, A∇(u) =

∫
Ω

(x,∇q(x))|u|α+1 dx.

Thus Lemma 3.1 implies the

Corollary 3.1 If u ∈ C1(Ω) is a free boundary weak solution of (1) then Pλ(u) = 0. Under
the additional assumption that Ω is strictly star-shaped the converse is also true: if Pλ(u) = 0 and
if u ∈ C1(Ω) is a weak solution of (1), then it is a free boundary solution.
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Recall that weak solutions u of P (q, α, λ) should satisfy the constraint Φ′u(t) = 0. Thus the free
boundary solution u ∈ C1(Ω) of P (q, α, λ) should satisfy the system

t2T (u)− t2λG(u) + t1+αA(u) = 0

t2(N−2)
2N T (u)− λ t

2

2 G(u) + t1+α( 1
α+1A(u) + 1

N(α+1)A∇(u)) = 0.
(30)

Multiplying the first equation by 1/2 and subtracting it from it the second equality we derive

T (u) = tα−1N(1− α)A(u) + 2A∇(u)

2(1 + α)
. (31)

Hence

t1−α =
N(1− α)A(u) + 2A∇(u)

2(1 + α)T (u)
.

Note that t > 0 if and only if N(1− α)A(u) + 2A∇(u) > 0 or equivalently∫
Ω

[N(1− α)q(x) + 2(x,∇q(x))]|u|α+1 dx > 0, (32)

and under this assumption we may substitute t1−α in (30). Then we obtain

λ = Λ(u) :=
T (u)

G(u)
+

2(1 + α)T (u)A(u)

G(u)[N(1− α)A(u) + 2A∇(u)]
. (33)

Thus by Corollary 3.1 we have

Corollary 3.2. Let λ > λ1 and u ∈ C1(Ω) be a free boundary solution of P (q, α, λ). Then
i)
∫

Ω
[N(1− α)q(x) + 2(x,∇q(x))]|u|α+1 dx > 0,

and
ii) λ = Λ(u).

Remark 3.2. Notice that by (25) any weak solution u ∈ C1(Ω) of P (q, α, λ) satisfies Pλ(u) ≤ 0.
Thus if we consider this inequality in (30) instead of Pλ(u) = 0, then we obtain that

λ ≥ Λ(u) (34)

for any solution u ∈ C1(Ω) of P (q, α, λ) that satisfies (8).

We introduce

Cq := {u ∈ H1
0 (Ω) \ 0 :

∫
Ω

[N(1− α)q(x) + 2(x,∇q(x))]|u|α+1 dx > 0}.

To find a maximal interval for non-existence of a free boundary solution of P (q, α, λ) consider

λc = inf
u∈Cq

Λ(u). (35)
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Here by assumption λc = +∞ if Cq = ∅. We have

Lemma 3.2. We have λc > λ1. Furthermore, there exists a nonnegative minimizer wc ∈ Cq
of (35), i.e. λc = Λ(wc) and wc ≥ 0 in Ω.

Proof. Observe that Λ(tu) = Λ(u) for t > 0, i.e. Λ(u) is a zero-homogeneous functional. Therefore
(35) is equivalent to

λc = inf
u∈Cq∩S1

Λ(u),

where S1 := {u ∈ H1
0 (Ω) : ||u|| = 1}. Let (wm) be a minimizing sequence of this problem. Since

it is bounded in H1
0 (Ω), then by the Sobolev embedding and Eberlein-Ŝmulian theorems there are

wc ∈ H1
0 (Ω) and a subsequence (again denoted (wm)) such that wm ⇀ wc weakly in H1

0 (Ω) and
wm → wc strongly in Lp(Ω) for p ∈ (1, 2∗). Suppose wc = 0. Then G(wm) ≡

∫
Ω
|wm|2 dx → 0.

However in this case T (wm)/G(wm) = 1/G(wm) → +∞ and consequently Λ(wm) → +∞ as
m → ∞. Thus we get a contradiction and therefore wc 6= 0. By the same arguments, it follows
that N(1− α)A(wc) + 2A∇(wc) > 0. Thus wc ∈ Cq. By weak lower semi-continuity of T (u) we get

Λ(wc) ≤ lim inf
m→∞

Λ(wm).

Since wc is an admissible point of (35), then here only equality is possible. Thus λc = Λ(wc).
Furthermore, we may assume that wc ≥ 0 since Λ(wc) = Λ(|wc|).
Recall that by Rayleigh-Ritz inequality

T (u)

G(u)
≡
∫

Ω
|∇u|2 dx∫

Ω
|u|2 dx

≥ λ1.

Therefore

Λ(wc) =
T (wc)

G(wc)
+

2(1 + α)T (wc)A(wc)

G(wc)[N(1− α)A(wc) + 2A∇(wc)]
≥

λ1(1 +
2(1 + α)A(wc)

N(1− α)A(wc) + 2A∇(wc)
) > λ1.

Lemma 3.3 For any λ ∈ (λ1, λ
c) problem P (q, α, λ) has no free boundary solution in C1(Ω).

Proof. Let λ < λc. Suppose, contrary to our claim, that there exists a free boundary solution
uλ ∈ C1(Ω) of P (q, α, λ), that is, uλ satisfies P (q, α, λ) and (8). Then by Corollary 3.1 we have
λ = Λ(uλ) and uλ ∈ Cq. Observe that by the definition of λc

Λ(uλ) ≥ λc.

On the other hand, by the assumption λ < λc and therefore

λ < λc ≤ Λ(uλ) = λ.

Thus we get a contradiction.
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3.2. On non-existence of compact supported solution on the whole line

In this Subsection, we study the case when problem P (q, α, λ) has no free boundary solution for
all λ > λ1. Observe that by Lemma 3.3 this will happen if λc = +∞. From (35) this holds if and
only if Cq = ∅, that is

N(1− α)A(u) + 2A∇(u) = 0, ∀u ∈ H1
0 (Ω). (36)

It is easy to see that (36) holds if and only if q satisfies the following linear partial differential
equation

2(x,∇q(x)) +N(1− α)q(x) = 0 a.e. in Ω. (37)

Thus we have

Lemma 3.4 Assume q ≥ 0 in Ω and (7) holds. Then problem P (q, α, λ) has no free boundary
solutions if q satisfies equation (37).

Let us find some particular solution to (37). Take q(x) = |x|γ . Then (37) is rewritten as follows

2Nγ|x|γ +N(1− α)|x|γ = 0 ⇔ 2Nγ +N(1− α) = 0.

Thus if

γ = −1− α
2

then q(x) = |x|γ satisfies (37). Let us verify whether |x|− 1−α
2 ∈ H1(Ω). To this end it is sufficient

to check the criterion ∫
Ω

|x|−2( 1−α
2 +1)dx < +∞.

We see that it holds if

−2
3− α

2
+N − 1 > −1 ⇔ α > 3−N.

Notice that, due to our assumption α ∈ (0, 1), dimensions N = 1, 2 of the space RN cannot be
considered in this example. On the other hand when N ≥ 3 this is satisfied for all α ∈ (0, 1). Thus
we have

Corollary 3.3. Assume g(x) = |x|− 1−α
2 , N ≥ 3 and α ∈ (0, 1). Then problem P (q, α, λ) has

no free boundary solution for any λ > λ1.

4. On the dependence on λ: asymptotic estimates

In this Section we shall study the dependence of solutions with respect to the parameter λ. We
shall start by proving some continuity, monotonicity and differentiability properties of the energy
functional Eλ with respect to λ. The Section ends with some asymptotic estimates when λ↘ λ1

and when λ↗ +∞.
First of all, we emphasize that although we do not know whether, for each fixed λ ∈ (λ1,+∞),

the ground state uλ of (1) is unique we know that the map

λ 7→ Ĵλ ≡ Eλ(uλ)
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is a single-valued function from (λ1,+∞) into R+ by virtue of the unique determination of the
energy of ground solutions.

Observe that by the zero-homogeneity of the functional Jλ(v) on H1
0 (Ω) it follows that problem

(11) is equivalent to the following minimization problem:

Ĥλ = min{Hλ(w) : A(w) = 1}. (38)

Moreover

Ĵλ =
(1− α)

2(1 + α)

1

(−Ĥλ)
1+α
1−α

. (39)

Thus, we know that, for every λ ∈ (λ1,+∞), there exists a minimizer wλ of (38) and by Lemma
2.1 the function

uλ =

(
1

−Hλ(wλ)

)1/(1−α)

wλ ≡
(

1

−Ĥλ

)1/(1−α)

wλ. (40)

is a weak solution of (1). In particular, the map

λ 7→ Ĥλ ≡ Hλ(wλ)

from (λ1,+∞) into R+ is a single-valued function.
Let us prove

Lemma 4.1 Let λ > λ1. Then for h > 0 small enough we have

− hG(wλ+h) ≤ Hλ+h(wλ+h)−Hλ(wλ) ≤ −hG(wλ). (41)

Proof. By the definition of the minimizer (38) we have

Hλ(wλ+h) ≥ Hλ(wλ). (42)

From here and since
Hλ(wλ+h) = Hλ+h(wλ+h) + hG(wλ+h)

we have
Hλ+h(wλ+h) + hG(wλ+h) ≥ Hλ(wλ). (43)

Thus we get the first inequality in (41).
Observe now that

Hλ+h(wλ+h) ≤ Hλ+h(wλ). (44)

Hence, since
Hλ+h(wλ) = Hλ(wλ)− hG(wλ)

we deduce
Hλ(wλ)− hG(wλ) ≥ Hλ+h(wλ+h), (45)

and the result holds.
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In consequence, Hλ(wλ) is a monotone decreasing function in (λ1,+∞) and consequently by
(39) the same property holds for Jλ(uλ) = Eλ(uλ). Noticing that by Hλ(uλ) = −A(uλ) we can
write

Eλ(uλ) = − (1− α)

2(1 + α)
Hλ(uλ) =

(1− α)

2(1 + α)
A(uλ).

Thus we get that −Hλ(uλ) and A(uλ) are also single-valued monotone decreasing functions. We
get:

Corollary 1. Corollary 4.1. Let (a, b) ⊂ (λ1,∞). Then the set (uλ)|λ∈(a,b) of ground solutions
of (1) is uniformly bounded in H1

0 (Ω), i.e.

||uλ|| ≤ Ca,b < +∞, ∀λ ∈ (a, b),

with Ca,b independent on λ.

Proof. Suppose, contrary to our claim, that there is a sequence (λm) ⊂ (a, b) and λ ∈ (a, b) such
that λm → λ and ||uλm || → ∞ as m → ∞. Let vm = uλm/||uλm ||, then Jλm(vm) = Jλm(uλm) =
Ĵλm . The boundedness of (vm) in H1

0 (Ω) implies by the Sobolev embedding and Eberlein-Ŝmulian
theorems that there is v̂ ∈ H1

0 (Ω) such that the subsequence of (vm) (which we denote again (vm))
converges vm ⇀ v̂ weakly in H1

0 (Ω) and vm → v̂ strongly in Lp(Ω) for 1 < p < 2∗ as m → ∞.
Arguing as in the proof of Lemma 2.2 we obtain that v̂ 6= 0, Hλ(v̂) < 0 and

Jλ(v̂) ≤ lim inf
m→∞

Jλm(vm) ≤ Ĵλ.

Since v̂ is an admissible point of (11) then in this formula may be only equality. This implies, in
particular, that vm → v̂ strongly in H1

0 (Ω) as m → ∞. Using this we obtain tλm(vm) → tλ(v̂) <
+∞. Noticing now that tλ(vm) = ||uλm ||, m = 1, 2, ..., (see (10)) we obtain a contradiction.

From Lemma 4.1 and Corollary 4.1 we have:

Corollary 4.2. The map λ 7→ Hλ(wλ) is a differentiable function in (λ1,+∞). Moreover

d

dλ
Hλ(wλ) = −G(wλ), (46)

and the map λ 7→ G(wλ) is a monotone nondecreasing function in (λ1,+∞).

Since we have

d

dλ
Jλ(wλ) =

d

dλ

(
(1− α)

2(1 + α)

1

(−Ĥλ)
1+α
1−α

)
=

1

2(−Hλ(wλ))
2

1−α

d

dλ
Hλ(wλ), (47)

by (40) and Corollary 4.2 we get:

Corollary 4.3. The maps λ 7→ Eλ(uλ) and λ 7→ Jλ(uλ)) are differentiable functions in (λ1,+∞).
Moreover,

d

dλ
Eλ(uλ) = −1

2
G(uλ) and

d

dλ
Jλ(uλ) = −1

2
G(uλ). (48)
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4.1. Asymptotic estimates for λ→ λ1

Let vλ = uλ/||uλ||. Then uλ = tλ(vλ)vλ, tλ(vλ) = ||uλ|| and ||vλ|| = 1. Let φ1 be the
eigenfunction corresponding to the first eigenvalue λ1 normalized now in the sense that ||φ1|| = 1.
From Subsection 2.2 we get information which, in particular leads to the following result:

Corollary 4.4.
i) ||uλ|| ≡ tλ(vλ)→∞ as λ ↓ λ1,
ii) Let wλ be a minimizer of (38), λ > λ1, φ̃1 be the eigenfunction corresponding to the first

eigenvalue λ1 such that A(φ̃1) = 1. Then tλ(wλ) → ∞ as λ ↓ λ1, Hλ(wλ) → 0 as λ ↓ λ1 and
wλ → φ̃1 strongly in H1

0 (Ω) as λ ↓ λ1,
iii) Let (uλ), λ ∈ (λ1,+∞) be a set of ground solutions of (1). Then Eλ(uλ) → ∞ and

−Hλ(uλ) = A(uλ)→∞ as λ ↓ λ1.
Proof . i) and iii) follows quite directly from the results of this and previous sections. To get ii)
we shall prove that for any ε > 0, there exists δ > 0 such that for any λ with λ − λ1 < δ we have
||wλ − φ̃1||H1

0
< ε. Indeed, suppose, contrary to our claim, that there exists ε0 > 0 and a sequence

λm ↓ λ1 as m→∞ such that
||wλm − φ̃1||H1

0
> ε0.

From the results of this this and previous sections we get that there exists a subsequence λmi ,
i = 1, 2, ..., such that wλmi → φ̃1 strongly in H1

0 (Ω) as i→∞. Thus we get a contradiction.

Remark 4.1. We point out that it is possible to get a direct proof of the above results without
passing by the results mentioned in Subsection 2.2.

The main result of this subsection is the following asymptotic estimate when λ→ λ1 :

Proposition 4.1. Let (uλ), λ ∈ (λ1,+∞) be a set of ground solutions of (1). Then

uλ =
1

(λ− λ1)
1

1−α
· 1

G(φ̃1)
1

1−α
· φ̃1 +

1

(λ− λ1)
1

1−α
· o(1) as λ ↓ λ1 (49)

where o(1) represents a function θ(λ) ∈ H1
0 (Ω) such that ||θ(λ)|| → 0 as λ ↓ λ1.

Proof. Let (uλ), λ ∈ (λ1,+∞) be a set of ground states of (1). As we know wλ = uλ/A(uλ) is a
minimizer of (38). By Corollary 4.4 we know that Hλ(wλ)→ 0 as λ ↓ λ1, and G(wλ)→ G(φ̃1) > 0
as λ ↓ λ1. Thus (46) implies

Hλ(wλ) = −(λ− λ1)G(φ̃1) + o(λ− λ1) as λ ↓ λ1. (50)

Hence by Taylor series expansions we have

tλ(wλ) =

(
1

−Hλ(wλ)

)1/(1−α)

=(
1

(λ− λ1)G(φ̃1) + o(λ− λ1)

)1/(1−α)

=

1

(λ− λ1)
1

1−α
· 1

G(φ̃1)
1

1−α
+

1

(λ− λ1)
1

1−α
· o(1).
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as λ ↓ λ1. This and (40) yield

uλ =

(
1

(λ− λ1)
1

1−α
· 1

G(φ̃1)
1

1−α

)
wλ +

1

(λ− λ1)
1

1−α
wλ · o(1) (51)

as λ ↓ λ1. From here we get

||uλ −

(
1

(λ− λ1)
1

1−α

1

G(φ̃1)
1

1−α

)
φ̃1||1 · (λ− λ1)

1
1−α ≤

1

G(φ̃1)
1

1−α
||φ̃1 − wλ||1 + o(1)

Using now Corollary 4.4 we get the proof of the proposition.

5. On the existence of solutions with compact support

Our first result deals with a simple case:

Proposition 5.1. Let q(x) ≡ q0 > 0 and Ω = BR(0). Then there exists λ∗ > λ1 such that:
a) if λ = λ∗ there exists a unique radially symmetric positive solution uλ∗ such that ∂uλ∗

∂ν = 0
on ∂Ω.

b) if λ > λ∗ there is a family of nonnegative solutions uλ with compact support in the sense
that

support (uλ) ( Ω.

Proof. We make the change of variables

uλ(x) =
(q0

λ

) 1
1−α

U(
√
λx) (52)

with U the solution of the special problem P (1, 1, 1), i.e.{
−∆u+ |u|α−1u = u in B√λR(0),
u = 0 on ∂B√λR(0).

(53)

Then, if we define λ∗ = 1/R2 the transformed problem P (1, 1, 1) takes place on the ball B1(0) and
thus it is enough to apply the results [22] to get conclusion a) for the radially symmetric solution
uλ∗(x) = uλ∗(|x|). Since this solution can be exteded to the whole RN by zero outside BR(0) we
can introduce a change of variables leading to the relation

uλ(x) =

(
λ∗

λ

) 1
1−α

uλ∗(

√
λ√
λ∗
x),

and thus

‖uλ‖∞ =

(
λ∗

λ

) 1
1−α

‖uλ∗‖∞
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and for any x0 ∈ BR(0) such that B√λ∗√
λ
R

(x0) ⊂ BR(0) we can construct the solution

uλ(x;x0) :=


(
λ∗

λ

) 1
1−α

uλ∗(
√
λ√
λ∗
|x− x0|) on B√λ∗√

λ
R

(x0),

0 on BR(0) \B√λ∗√
λ
R

(x0),

which proves b).

Remark 5.1. As in the one-dimensional case, for q(x) ≡ q0 > 0 (see [13]), many other different
consequences can be obtained from the change of variable (52) and Proposition 5.1. For instance
we get the exact decay, when λ → +∞, of all the energies as well as of ‖uλ‖∞. We also recall
that it was shown in [23] that in the case of q(x) ≡ q0 any solution with compact support of the
equation of P (1, 1, 1) on the whole space RN must be radially symmetric. That was one of our
main motivations to deal in this paper with more general coefficients q(x).

For the consideration of the general case of q(x) satisfying (24) we shall need an extra information
which is well-known in some circunstances. We shall require the information that

lim
λ→+∞

‖uλ‖∞ = 0. (54)

Remark 5.2. Two completely different proofs were given on such property, for the special case of

q(x) ≡ q0 > 0 : one in [13] (for the case N = 1) and a different one in [26] (for N ≤ 2(1+α)
(1−α) ). As a

matter of fact, it is very easy to see that the proof given in [26] holds also if q(x) is not constant
but it satisfies (24). We believe that it is possible to get a proof of this property in any dimension
and for any bounded q(x) satisfying (24) by means of rearrangement techniques but we shall not
pursuit this goal in this paper.

We have:

Theorem 5.2. Let q(x) satisfying (24) and assume (54). Then for any λ > λ1 large enough the
ground solution uλ has compact support in Ω.

Proof. The function
f(x, u) := q(x)uα − λu

is a nondecreasing function of u, a.e. x ∈ Ω, at least on the interval u ∈ [0, δλ], where

δλ :=
(αq0)

1
1−α

λ
1

1−α
.

Then, thanks to the assumption (54), for any λ > λ1 large enough the expression f(x, uλ) is a
nondecreasing function of the ground solution uλ a.e. x ∈ Ω and thus the comparison principle
holds. Now it is a routine matter to check that for any λ > λ1 large enough Theorem 1.9 of [10]
can be applied since ∫

0+

ds√
αq0

sα+1

α+1 −
λ
2 s

2
< +∞.
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In particular, if for any µ > 0 we define the function ψµ : [0,+∞)→ [0,+∞) by

ψµ(τ) :=
1√
2µ

∫ τ

0

ds√
αq0

sα+1

α+1 −
λ
2 s

2
,

then we get that for any x0 ∈ Ω the function

U(x;x0) = η 1
N

(|x− x0|)

is a local supersolution of the equation on ΩR := BR(x0) ∩ Ω, where ηµ is the inverse function of
ψµ

ηµ(s) = (ψµ)−1(s),

assumed that
R ≥ ψ 1

N
(δλ). (55)

Notice that since uλ is a continuous function this implies that uλ(x0) = 0. But from assumption
(54) we know that this holds for any x0 ∈ Ω such that

d(x0, ∂ΩR − ∂Ω) ≥ ψ 1
N

(C(λ)),

for some C(λ) > 0 and for λ large enough. Moreover this set of points x0 of Ω is not empty if λ is
large enough. This gives the compactnees of the support of uλ for λ large enough.

Remark 5.3. Of course that once that the ground solution has compact support its continuation
to the rest of RN by zero outside Ω generates a solution of the same equation (taking as q(x) any
extension to RN outside Ω) having compact support (contained in Ω). In this way, Theorem 5.1
contains the result obtained in [24], [22], [5] and specially [16] where the solution is not required to
be radially symmetric and q(x) is not necessarily to be constant.

Remark 5.4. With the usual philosophy of reaction-diffusion equations giving rise to a free bound-
ary, we have shown that, in the case of problem (1) the ”diffusion-absorption balance” condition
on the nonlinearities is obviously satisfied since α < 1 and that the ”balance condition between the
data and the domain” is here represented by means of the requirement to assume λ large enough
(as a function of q0 and diamΩ). The simultaneous fulfillment of both balances are required in
order to get solutions with compact support (see Section 1.2 of [10]).
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