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Abstract Shape of many volcanic edifices depend on different phenomena, such as parasitic
cones, erosion or coral growth. A nonlinear model proposed in 1981 proves that the shape
of volcanoes is determined by the hydraulic resistance to the flow of magma, along a line,
through the porous edifice. This model was later extended to include the shape of aseismic
and submarine ridges. In this paper we propose a modification of the above mentioned models
in order to simulate the more realistic case of volcanoes growth assuming they have a limited
base. We present the 3D extension and a generalization of the model. We formulate a new
model including the case of a possible outpointing flow.

Keywords Geometric of volcanoes · Limited base · Degenerate parabolic equation ·
Bounded free boundary
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1 Introduction

The Earth structure can be considered as divided into different layers, such as the crust,
upper and lower mantle, upper and lower core. The outermost part of the Earth formed by the
crust and upper mantle is rigid, and is termed the lithosphere. It is undelain by the viscous
asthenosphere. The lithosphere is divided into plates that move relative to each other, and
with respect to the asthenosphere. Three boundaries are defined by these plates: divergent
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boundary, convergent boundary and transform boundary. In the first case, the plates move
apart causing the ascent of mantle material to create new ocean floor. It occurs mainly at
mid-ocean ridges. In the case of convergent plate boundaries two plates, at least one of which
is oceanic, move toward each other. This sinking process is called as subduction. Finally, at
transform boundary the plates plates slide past each other and not tearing or crunching each
other.

Volcanoes abound at the tectonic plate boundaries and the type of volcano that forms
depends on whether the plates are moving apart or together. We find different formations
depending on the phenomenon: ridges that form at divergent boundaries, island arcs and
continental arcs at convergent boundaries and hot spots (or aseismic ridges).

In this paper we will deal with a model of the shape of submarine edifices. Volcanoes
can have different shapes, depending on the existence of certain phenomena are present in
the process of eruption. Composite volcanoes, or stratovolcanoes, and seamounts are convex
with steep slopes near the summit. The volcanoes that appear in the hot spots, however, are
generally concave with steep slopes on the lower flanks. However, there are phenomena that
can change this geometry. Examples include parasitic cones and erosion. The forms of the
seamounts may be affected by the growth of corals, and even the growth of volcanoes on
the flanks. The morphology of the volcanoes has been studied over the past centuries. Milne
[26,27] proposed that the shape of stratovolcano or composite volcano type in central Japan
was due to the stability of its slopes. Lacey et al. [24] suggested that the shape of volcanoes
is determined by the hydraulic resistance to the flow of magma through the volcanic edifice.
They consider that the building surface is a surface of constant hydraulic potential and assume
that the volcanic edifice has a uniform permeability.

The porous flow model for the shape of volcanoes does not require constant flow of magma
through the structure. When starting an eruption, magma seeks the path of least resistance to
the surface. Once the magma has found the way, this indicates the place of the eruption, and
the surface will begin to build on the outside with the material, increasing the resistance of
the path. Therefore, the successive eruptions may follow different paths to reach the surface.
The sum of a long series of eruptions is a surface that approximates a constant hydraulic
potential surface.

Many volcanic edifices have shapes depending on different phenomena, such as para-
sitic cones, erosion or coral growth. In [24], a nonlinear model proving that the shape of
volcanoes is determined by the hydraulic resistance to the flow of magma, along a line,
through the porous edifice is proposed. This model was later extended by Angevine et al.
[2] to study the shape of aseismic and submarine ridges. In this work we propose a mod-
ification of the above mentioned models in order to get a more realistic modelling of the
volcanoes growth (since the volcanoes have a limited base). We present the 3D extension
of the model proposed by Lacey et al. [24] and a generalization of the model proposed by
Angevine et al. [2]. We formulate a new model including the case of a possible outpointing
flow.

Finally, we prove that the free boundary (the volcano base) associated to the models
described in the above mentioned references (and so for a one dimensional variable) is
not bounded as t → +∞ (even if it is assumed that the flux generated by the magma
supply Q0(t) along a line is a bounded function). As mentioned before, this unrealistic fact
(specially in the case of volcanoes located in islands) is the main motivation to propose
a modification of the involved nonlinear equations in order to obtain a new model giving
rise to a bounded free boundary (even as t → +∞). By using suitable variations of the
modelling arguments given by Angevine et al. [2] and Lacey et al. [24] we propose the new
model,
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Fig. 1 Figure of migration of the
magma through a volcanic edifice
during an eruption. a Magma
migrates outward. b The magma
reaches the surface searching the
point of minimum resistance to
the flow. c Outpointing flow
(Modified by Lacey et al. [24])

(a)

(b)

(c)

P(μ; Q0) ≡

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂H

∂t
= K

∂2 H2

∂x2 + μx

|x |
∂Hλ

∂x
, x ∈ R − {0}, t > 0

limx→0±
(

∓∂H2

∂x
(x, t)∓ μx

|x | Hλ(x, t)

)

= Q0(t), t > 0,

H(0, x) = H0(x), x ∈ R − {0},
(1)

where the meaning of H ∈ C([0,+∞) : L1(R − {0})), the boundary condition and the
assumptions on the data will be detailed in Sect. 5. Here we assume the constants K ,
μ, λ > 0 (which depend on the constitutive porous material) are known and that Q0(t) ≥ 0,
H0(x) ≥ 0 and H0 has compact support in R − {0}. The models proposed by Angevine et
al. [2] and Lacey et al. [24] correspond to μ = 0. We prove that if λ ∈ (0, 2) and Q0(t)
is a bounded function then the free boundaries are uniformly bounded for any time: i.e., if
we denote by ξ±(t) the free boundaries given by the boundary of the support of H(t; ·),
supp H(t; ·) = [ξ−(t), 0] ∪ [0, ξ+(t)], then necessarily |ξ±(t)| < ξ∞ for any t > 0, for
some ξ∞ < +∞. This conclusion leads to a better comparison between the bathymetric and
theoretical profiles of many volcanoes.

2 Extension to 3D-shapes

We assume that the shape of the structure created by the magma is given by the surface z =
h(x, y, t). As explained by Lacey et al. [24], volcanic edifices are composed of a large number
of lava flows. This formation is illustrated in parts (a) and (b) of Fig. 1. Their assumption about
the lava flows through pre-existing matrix of channels of precedent emissions, searching the
least resistance path to the surface appears correct if we apply porous media laws (e.g. the
Darcy’s law). On the contrary, the case (c) of Fig. 1 needs a new and more complicated
hypothesis. The extension of the volcanic edifice by the flow which reaches the surface of
the precedent edifice can not be treated by means of the Darcy’s law. The free boundary
condition needs to be corrected in a similar way as was done for the study of the “seepage
face” in the case flows through a porous dam (see [10,31]).
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Fig. 2 Schematic profile of a pre-existing submarine volcanic ridge h∗ and the structure created by the magma,
h. The magma reaches surface floor through a curve �m

We assume media given by two fluids: the ocean water (an incompressible viscous fluid of
density ρw and viscosity μw) and the magma (which here is assumed to be a incompressible
Newtonian fluid of density ρm and viscosity μm). The interface is considered to be given by
the surface z = h(x, y, t). The flow spatial domain is as follows: the pre-existing volcanic
edifice is assumed to be known and given by a surface of the form z = h∗(x, y). We consider
that the depth of the ocean floor is d (so d > h∗(x, y),∀(x, y) ∈ R

2) (see Fig. 2). Notice
that the support of h∗ is the (known) set G ⊂ R

2 (i.e. h∗(x, y) = 0 ∀(x, y) ∈ R
2 − G), such

that its projection on the x-component and/or y-component is a bounded interval.

Remark 1 In the case of the symmetric volcanoes the pre-existing edifice can be assumed of
revolution type

z = h∗(r), where r = (x2 + y2)1/2(see [24]).
In the case of seamounts the pre-existing edifice can be assumed y-independent:

z = h∗(x).

We assume a given (and so to be known) curve �m of the (x, y)-plane, where the magma
reaches the surface floor z = 0. In the case of symmetric volcanoes �m = {(0, 0)} is reduced
to a point and in the case of seamounts �m = {(x, 0) : x ∈ R}. The velocity vector of the
magma flow will be denoted by:

v = ue1 + ve2 + we3 (i.e. v = (u, v, w))

where ei is the unit vector in the i-direction. The governing equations for the flow are: the
incompressibility condition

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (2)

and the Darcy’s law corresponding to a flow in a rigid isotropic porous medium (see e.g.
[31])

u = − k

μφ

∂p

∂x
, (3)

v = − k

μφ

∂p

∂y
, (4)
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w = − k

μφ

(
∂p

∂z
+ ρm g

)

. (5)

Here, p is the magma pressure, ρm is the magma density, μ is the magma dynamic viscosity
and k and φ are the permeability and the porosity of the porous pre-existing magmatic edifice.
g is the value of the Earth gravity (but the theory remains true for other planets: see some
remarks on the case of Mars in [24]). Notice that the ocean water could be assumed in
movement with a velocity:

vw = uwe1 + vwe2 + wwe3.

By the incompressibility condition (for the ocean water) we also know that:

∂uw
∂x

+ ∂vw

∂y
+ ∂ww

∂z
= 0 (6)

and that we must impose the compatibility condition in the free boundary

v(x, y, h(x, y, t)) = vw(x, y, h(x, y, t), t). (7)

The complete description of vw requires the usual Navier-Stokes system for a viscous incom-
pressible flow

ρw

(
∂vw
∂t

+ (vw · ∇) vw

)

− μw�vw = −∇ pw − ρwge3. (8)

Remark 2 Notice that we can not apply the Darcy’s law for vw beyond the pre-existing
magmatic edifice (where is located the porous medium). We could apply the Darcy’s law only
to the region where the ocean water occupies the upper part of the pre-existing magmatic
edifice which is not occupied yet by the magma.

Remark 3 Notice that we consider that the inertia of the magma is negligible and the mag-
matic flow can be considered very slow [2,24]. We neglect the t-dependence in the magmatic
flow (so, v is assumed to be t-independent).

On the magmatic region M(t), we can use the conditions (3), (4) and (5) substituted in
Eq. (2) to get an equation for the magmatic pressure:

∂2 p

∂x2 + ∂2 p

∂y2 + ∂2 p

∂z2 = 0 in M(t), (9)

(here we are using the decomposition of the spatial domain R
2 × [0, d] = O(t) ∪ M(t)

where M(t) is the region occupied by the magma, at time t , and O(t) the region occupied by
the ocean water, at time t). Notice that we are assuming that the boundary of M(t) is given
by:

∂M(t) = {z = h(x, y, t)}
︸ ︷︷ ︸

(I )

∪ {z = 0; (x, y) ∈ support of h}
︸ ︷︷ ︸

(I I )

,

where (I) is the upper surface of the new magmatic region and (II) is the base of the new
magmatic region:

∂M(t) = P(t)
︸︷︷︸
profile

∪ B(t)
︸︷︷︸
base
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Fig. 3 Vertical cross section of
the domain

(notice that necessarily B(t) ⊂ G, ∀t ≥ 0, where G is the base of the pre-existing edifice,
see Fig. 3). The crucial part to derive the differential equation of the movement of the
free boundary (interface or profile) z = h(x, y, t) is obtained through the formulation of
the interface conditions [now formulated in terms of pressure (besides the compatibility
condition (7)].

Since the free boundary is the fluid surface of the magma (i.e., z = h(x, y, t) represents
the space occupied, at time t > 0, of the particles which originally where in other place at
t = 0) then, necessarily,

w(x, y, h(x, y, t)) = ∂h

∂t
(x, y, t)+ u(x, y, h(x, y, t))

∂h

∂x
(x, y, t)

+ v(x, y, h(x, y, t))
∂h

∂y
(x, y, t). (10)

(see e.g. [21,29]). Moreover, at this point, we follow the fundamental assumption of the
papers [2,24] which suppose that the free boundary z = h(x, y, t) is a surface of constant
hydraulic potential, i.e.,

p(x, y, h(x, y, t)) = pw(x, y, h(x, y, t)), (11a)

pw(x, y, h(x, y, t)) = ρwg(d − h(x, y, t)). (11b)

Notice that condition (11b) assumes the ocean water flow is static, in which case (8) is reduced
to:

∇ pw = −ρwge3

(

i.e.
∂pw
∂x

= ∂pw
∂y

= 0 and
∂pw
∂z

= −ρwg

)

and to integrate the z-component from z = h(x, y, t) to z = d we use the renormalization
that p(x, y, d) = 0 at the top of the ocean. This is the Pascal’s approach. As usual, the
function pw + ρwgz is denoted as the hydraulic potential (since its gradient gives the total
force in the static case).

Remark 4 This assumption is a little bit controversial (see e.g. [8,32]). [We shall replace it
by a corrected version of it further on.]

We also need the (external) boundary conditions. On the top and the floor (which is not
the magma supply curve �m), it is enough to formulate them in terms of pressure:

pw(x, y, d) = 0, (12)

(already used to get (11b))

∂p

∂z
(x, y, 0) = −ρm g if (x, y) ∈ B(t)− �m, (13a)
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vw(x, y, 0, t) ≡ b(x, y, t) if (x, y) ∈ R
2 − (B(t)− �m). (13b)

Notice that (13a) is equivalent to the condition

w(x, y, 0) = 0 in (x, y) ∈ B(t)− �m

obtained by means of the Darcy’s law (5). As that is the nonpenetration condition, v · n = 0,
with n = −e3 the unit external normal vector at this part of the boundary of the spatial
domain. The condition (13b) will not be used in the following, but it is assumed to be given
a direction for the ocean water b(x, y, t) which can not have a vertical component (13b) can
then be replaced by another condition of the form:

∂pw
∂z

(x, y, 0) = −ρwg if (x, y) ∈ R
2 − (B(t)− �m) (13c)

for the case of the static ocean flow (as assumed in the fundamental assumption of Angevine
et al. [2] and Lacey et al. [24] recalled before). Notice that (13c) is verified always in the part
of the base of the pre-existing edifice occupied by the water since the Darcy’s law applied to
this part would imply that:

uw = − k

ρwφ

∂pw
∂x

, (2w)

vw = − k

ρwφ

∂pw
∂y

, (3w)

ww = − k

ρwφ

(
∂pw
∂z

+ ρwg

)

, (4w)

and at z = 0 we must impose thatww = 0. It remains to formulate the magma supply through
the curve �m , but that shall made later since it is not used to get the differential equation
for h(x, y, t). Now we shall use an asymptotic analysis to get the differential equation for
h(x, y, t). In contrast to Lacey et al. [24] we shall not use the Dupuit approximation (assuming
that ∂h

∂x and ∂h
∂y are very small). As in [2], we shall use as small parameter, ε, the aspect ratio

(all those magmatic edifices have a small hight in comparison with the size of their base).

Remark 5 In the paper [8] the small parameter Q is taken differently as Q = q
z2

0

√
Kx Ky

where q is the emitted magma, z0 the hight and Kx , Ky the principal values (in x and y) of
the hydraulic conductivity tensor.

To follow closely the notation in [2] we assume (a priori) a general expansion of the form:

p = P0 + εp0 + ε2 P1 + ε3 p1 + · · · (14)

Before substituting in the set of condition given before, it is useful to modify the z-component
by defining:

Z = z

ε

with ε << 1 (which will subsequently disappear from the analysis). We also introduce the
rescaled depth:

D = d

ε
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As in [2], we are only interested in solutions at large times (mature magmatic edifices), so
we shall also modify time as:

T = tε.

Finally, the new rescaled free boundary is given by:

H(x, y, T ) = h
(
x, y, T

ε

)

ε
(15)

i.e., T of the order of the unity, which implies that t >> 1 since ε << 1. Now, we must
modify all the above conditions. Therefore, for instance, condition (9) leads to:

ε2 ∂
2 p

∂x2 + ε2 ∂
2 p

∂y2 + ∂2 p

∂Z2 = 0, (16)

conditions (11a) and (11b) lead to:

p(x, y, H(x, y, T )) = ερwg(D − H), (17)

condition (10) leads to:

w = ε2 ∂H

∂T
+ εu

∂H

∂x
+ εv

∂H

∂y
, if Z = H(x, y, T ) (18)

and, finally, condition (13a):

∂p

∂Z
= −ερm g, if Z = 0 and (x, y) ∈ B(t)− �m . (19)

Substituting (14) in (16) and rearranging terms, we obtain:

∂2 P0

∂Z2 + ε
∂2 p0

∂Z2 + ε2
(
∂2 P0

∂x2 + ∂2 P0

∂y2 + ∂2 P1

∂Z2

)

+ ε3
(
∂2 p0

∂x2 + ∂2 p0

∂y2 + ∂2 p1

∂Z2

)

+ · · · = 0.

(20)
Since (20) must be true for any ε > 0 small enough, all the coefficients must vanish. Then,
in particular,

∂2 P0

∂Z2 = 0, (21)

which implies that:
P0(x, y, Z) = a(x, y)Z + b(x, y) (22)

for functions a(x, y) and b(x, y) to be determined with the boundary condition (19) at the
floor Z = 0 of the order of ε:

∂P0(x, y, 0)

∂Z
= 0, i.e., a(x, y) = 0. (23)

Moreover, the condition (17) is also of the order of ε, so

P0(x, y, H(x, y, T )) = b(x, y) = 0 (24)

and thus, necessarily
P0 ≡ 0. (25)

Analogously, from (20) we have that

∂2 p0

∂Z2 = 0 (26)
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which implies that
p0(x, y, Z) = a(x, y)Z + b(x, y) (27)

Now conditions (19) and (17) are pertinent (since they are of the order of ε) and we get,
respectively that

∂p0

∂Z
(x, y, 0) = −ρm g = a(x, y) (28)

and

p0(x, y, H(x, y, T )) = −ρwg(D − H(x, y, T )) = a(x, y)H(x, y, T )+ b(x, y). (29)

Thus, we get

p0(x, y, Z) = −ρm gZ + ρwg(D − H(x, y, T ))+ ρm gH(x, y, T ) (30)

i.e.
p0(x, y, Z) = ρm g(H(x, y, T )− Z)+ ρwg(D − H(x, y, T )). (31)

Since P0 ≡ 0, vanishing of the ε2-coefficient in (20) leads to:

∂2 P1

∂Z2 = 0, (32)

and since the boundary conditions (19) and (17) are of the order ε we get (as in the case of
P0) that necessarily

P1 = 0. (33)

Notice that (25) and (33) explain that there is not loss of generality in the expansion assumed
by Angevine et al. [2]. From the ε3-coefficient in (20) we get that

∂2 p1

∂Z2 = −
(
∂2 p0

∂x2 + ∂2 p0

∂y2

)

(34)

and from (31) we get

∂2 p1

∂Z2 = −g(ρm − ρw)

(
∂2 H

∂x2 + ∂2 H

∂y2

)

independent on Z. (35)

Thus

p1(x, y, Z) = 1

2
g(ρw − ρm)

(
∂2 H

∂x2 + ∂2 H

∂y2

)

Z2 + b(x, y)Z + c(x, y) (36)

with a, b and c to be determined. The boundary condition (19) is of the order of ε, so

∂p1

∂Z
= a(x, y)g(ρw − ρm)

(
∂2 H

∂x2 + ∂2 H

∂y2

)

Zz=0 + b(x, y) = b(x, y) = 0 i.e. b ≡ 0 (37)

and since the condition (17) is of order of ε we get

p1(x, y, H(x, y, T )) = 1

2
g(ρw − ρm)

(
∂2 H

∂x2 + ∂2 H

∂y2

)

H2 + c(x, y). (38)

Thus we get

p1(x, y, Z) = 1

2
g(ρw − ρm)

(
∂2 H

∂x2 + ∂2 H

∂y2

)

(H2 − Z2). (39)

We can now get the expressions for u, v and w in Z = H in terms of function H by using
the conditions (3), (4) and (5), and the expansion (14) with (25), (31), (33) and (39). For
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instance, since p1 = 0 if Z = H we see that p1 does not appear in the expression of u and
v (but merely (31)). Then

u(x, y, H(x, y, T )) = −ε k(ρm)− ρwg

μφ

∂H

∂x
(x, y, T ), (40)

v(x, y, H(x, y, T )) = −ε k(ρm)− ρwg

μφ

∂H

∂y
(x, y, T ). (41)

Nevertheless, to compute w we must start by rescaling (5)

w = − k

εμφ

(
∂p

∂Z
+ ρm g

)

,

and then using (31) and (39) we get

w(x, y, H(x, y, T )) = − k

μφ

(
∂p0

∂Z
+ ε2 ∂p1

∂Z
+ ∂ρm g

∂ε

)

= ε2 k

μφ
g(ρm − ρw)

(
∂2 H

∂x2 + ∂2 H

∂y2

)

H. (42)

Finally, substituting (40), (41) and (42) in (18) we get

ε2 k

μφ
g(ρm − ρw)

(
∂2 H

∂x2 + ∂2 H

∂y2

)

H = ε2 ∂H

∂T

−ε2 k

μφ
g(ρm − ρw)

[(
∂H

∂x

)2

+
(
∂H

∂y

)2
]

.

(43)
This equation can be rearranged to get:

∂H

∂T
= k

μφ
g(ρm − ρw)div(H∇ H) (44)

notice that

div(H∇ H) = ∇ H · ∇ H + Hdiv(∇ H) =
(
∂H

∂x

)2

+
(
∂H

∂y

)2

+ H

(
∂2 H

∂x2 + ∂2 H

∂y2

)

.

Equation (44) is the extension, to the case of 3d-edifices, of the Eq. (20) of the paper [2]
in which only 2d-edifices are considered. Equation (44) is a nonlinear partial differential
equation of parabolic type but it is not uniformly parabolic but degenerate since the diffusion
coefficient is

k

μφ
g(ρm − ρw)H(x, y, T ) ≥ 0

and vanishes on the set of points (x, y, T ) where H(x, y, T ) = 0.
For many purposes (see, e.g., the definition of weak solution given in Sect. 5) it is conve-

nient to observe that (44) has to be reformulated as:

∂H

∂t
= k

2μφ
g(ρm − ρw)�(H

2) (45)

since

H∇ H = 1

2
�(H2).



Geometrical evolution of volcanoes

It is posible to rewrite (45) in terms of the unknown

U = H2.

We shall show H(x, y, T ) ≥ 0 and so H(x, y, T ) = √
U (x, y, T ). Then, the equation (45)

becomes
∂

∂t

√
U = k

2μφ
g(ρm − ρw)�U. (46)

In polar coordinates, r = (x2 + y2)1/2, er = (x, y)

r
, since

∇ A(r, T ) = ∂

∂r
A(r, T )er

and

div(B(r, T )er ) = 1

r

∂

∂r
(r B(r, T )),

we get that, when H(x, y, T ) = H(r, T ), equation (44) can be rewritten as:

∂H

∂t
= k

μφ
g(ρm − ρw)

1

r

∂

∂r

(

r H
∂H

∂r

)

(47)

Remark 6 Notice that parameter ε disappeared of the final equation for H (44). As a matter
of fact, the same process could be applied to show that the coefficients of higher order than
ε3 (i.e., p2, p3…) in (14) must also vanish. We also point out that Eq. (44) was deduced for

(x, y) /∈ �m , (x, y) ∈ B(0) ⊂ G, and T ≥ 0 such that H(x, y, T ) ≤ h∗

ε
(x, y), nevertheless,

from a mathematical point of view we can extend H(x, y, T ) to 0 if (x, y) ∈ R
2 − B(0),

(x, y) /∈ �m .

Now we are in conditions to formulate the boundary condition expressing the intrusion
of magmatic flow through �m . We shall assume that:

− H(x, y, T )∇ H(x, y, T ) · n = Q0(x, y, T ), for any (x, y) ∈ �m,∀T ≥ 0. (48)

Here n is the exterior normal vector to �m when it can be correctly defined.

Remark 7 A more correct formulation of (48) could be obtained by approximating �m by
a family �n

m of Jordan simple curves (see Fig. 4). In that case, the normal vector is well-
defined. The case of the flux condition (45) must be understood as the limit case of those
approximating problems when the parameter n (approximating �m by �n

m) converges to ∞.

Therefore, the complete formulation is: given Q0(x, y, T ) and H0(x, y) find H(x, y, T )
such that

(Pn)

⎧
⎪⎪⎨

⎪⎪⎩

∂H

∂T
= k

μφ
g(ρm − ρw)div(H∇ H), (x, y) ∈ R

2 − Dn
m, T > 0,

H∇ H · n = Q0(x, y, T ), (x, y) ∈ �n
m, T > 0,

H(x, y, 0) = H0(x, y), (x, y) ∈ R
2 − Dn

m,

where Dn
m is the subset of R

2 such that ∂Dn
m = �n

m . Notice that the initial base B(0) is given
through the condition:

B(0) = support of H0(·, ·) ⊂ R
2
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Fig. 4 Family of Jordan simple
curves

and because we are assuming that G (the pre-existing edifice) is such that

(B(0) ∪ Dn
m) ⊂ G. (49)

There are some relevant cases in which the approximation of the curve �m by �n
m is auto-

matically verified: the first case corresponds to conic volcanoes for which

H(x, y, T ) = H(r, t), �m = (0, 0),G = BR(0, 0),n = −er

As mentioned before, Eq. (44) leads to equation (47) and so

H∇ H · n = −H(r, T )
∂H

∂r
(r, T ). (50)

Obviously, for T ≥ 0 such that Q0(r, T ) �= 0 we will get a singularity of the gradient,
∇ H2, at r = 0: Notice that if we define

Dn
m = B1/n(0, 0) (51)

then �n
m = {(x, y) ∈ R

2 : x2 + y2 = 1

n2 }, which verifies that �n
m → � = {(0, 0)} when

n → ∞. Moreover, the limit flux condition can be written as

lim
n→∞ H∇ H · n

∣
∣
∣
�n

m

= −H(0, T )
∂+ H

∂r
(0, T ) = −1

2

∂+

∂r
(H2(0, T )) (52)

where
∂+

∂r
represents the directional derivative.

∂+

∂r
(H(r, T )) = lim

δ→∞,δ≥0

H(r + δ)− H(r)

δ
.

Remark 8 In [24], the flux condition (their condition (7)) is formulated as:

− 2πK g

μ
rh
∂h

∂r
→ Q∗

0 as r → 0. (53)

Obviously their Q∗
0 corresponds to a different notation than (48) and (50). In fact, if we

identify the constant coefficients

2πK

μ
g ≈ K

μφ
g(ρm − ρw) (54)

then we get that

Q∗
0 = Q0(r, T )

r
, (55)
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but (what is fundamental) we observe the coincidence of sign in both notations:

Q∗
0 ≥ 0 ⇔ Q0 ≥ 0.

A second example in which the approximation of �m is quite evident concerns the case of
seamounts for which

�m = {(0, y) : y ∈ R}. (56)

In that case we can define �m = {(x, y) : |x | = 1

n
and y ∈ R}. Thus,

n = (−1, 0) if x ∈ �n,+
m ,

n = (1, 0) if x ∈ �n,−
m ,

where

�n,±
m =
{

(x, y) : x = ± 1

n
, y ∈ R

}

.

We observe, again, the singularity of the gradient at �m since

H(x, y, T )
∂+

∂x
H(x, y, T ) → −Q0(y, T ), if x ↘ 0, (57)

but

H(x, y, T )
∂+

∂x
H(x, y, T ) → Q0(y, T ), if x ↗ 0. (58)

If we assume the symmetry H0(x, y) = H(−x, y), x > 0, then it is enough to impose only
(57) (and (58) is automatically verified). Notice that in [2] this is expressed in their condition
(25)

−k(ρm − ρwg)

μφ
h
∂h

∂x
→ Q∗

0

2φ
. (59)

Again, as in Remark 8, we point out that their notation is different to (57) but there is a
coincidence of sign

Q∗
0 ≥ 0 ⇔ Q0 ≥ 0. (60)

Remark 9 Perhaps, it is now interesting to remember the fact that the similarity variables f
and ξ introduced in the papers [24] and [2] are coincident (see (29) and (30) of [2]), since the
geometry of the spatial structures studied in the papers are different. Here our formulation
does not need the reduction of the spatial dimension by means of symmetry conditions.
Moreover, we can consider seamounts and (submarine) volcanoes of conic geometry (which
are excluded in the framework of [2]).

Remark 10 Besides the singularity in the gradient of H(x, y, T ) at the curve �m , there is a
different singularity of the gradient of H . Indeed, since the parabolic equation is degenerate,
we shall see later that the support of H is bounded, and that (in many cases) it may arise that

∇ H(x, y, T ) �= 0

for (x, y) ∈ support of H(·, ·, T ), i.e., the function H has a zero gradient outside its support
but the gradient is not zero when we arrive to the points of the boundary of its support from
interior points.
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3 On a generalization of the previous model

In the precedent framework, the crucial aspect was the simplification of the Navier-Stokes
equation (8) in the upper medium over the magma flow by the assumption that the free
boundary is a surface of constant hydraulic potential (conditions (11a) and (11b)), which
corresponds to the Pascal approximation for water (i.e. the water is absolutely static).

Keeping a complete generality (imposing (8)) will make it almost impossible to reach a
simple differential equation for the free boundary H(x, y, T ) (as done in (44)). An interme-
diate path is to modify the condition in [2] by allowing a small correction term:

p(x, y, h(x, y, t)) = ρwg(d − h(x, y, t))+ c(x, y, T, h, ε) (61)

where the correction term c(x, y, T, h, ε) to be suitably defined. If we repeat the above
argument concerning the expansion (14) we see that we can reach the corrected equation

∂H

∂T
= k

ρφ
g(ρm − ρw)div(H∇ H + e(x, y)Hλ), (62)

for some given vector e(x, y) and for some λ ∈ (0, 2) if we choose c(x, y, T, h, ε) in a
suitable way. Before doing it more explicitly, it is convenient to make specific (62) (and
e(x, y)) for the two relevant spacial cases:

(i) The radial symmetric case: H = H(r, T ), r2 = x2 + y2. Then, a natural choice is to
take

e(x, y) = rer (x, y), where er is the radial unit vector, er = (x, y)

r

and so Eq. (62) becomes (recall (47))

∂H

∂T
= k

ρφ
g(ρm − ρw)

1

r

(

r H
∂H

∂r
− r Hλ

)

. (63)

(ii) The x-symmetrical case: H = H(x, t). Then (44) simplifies (since any dependence with
respect to y disappears) and thus a natural choice is

e(x, y) = τ

2

(−x2

|x | , 0

)

=

⎧
⎪⎨

⎪⎩

τ

2
(−x, 0), if, x > 0,

τ

2
(x, 0), if, x < 0,

for some τ > 0. Then, equation (62) becomes

∂H

∂T
= k

ρφ
g(ρm − ρw)

∂

∂x

(

H
∂H

∂x
− τ

2

x2

|x | Hλ

)

(64)

which can be reformulated as

∂H

∂T
= K

∂2 H2

∂x2 + μx

|x |
∂Hλ

∂x
, (65)

if we identify

K = k

2ρφ
g(ρm − ρw),

μ = τ

2

k

ρφ
g(ρm − ρw).
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Remark 11 For a previous presentation of a modelling leading to equation (65) see Arjona
et al. [4].

Coming back to the meaning of the correction term c, we point out that if we assume

c(x, h) = ελ
∫ x

0
hλ−1(s, T )ds (66)

then we reach the Eq. (65) in the relevant case of the x-symmetrical case. Notice that since
(as we shall show later) maxx∈R h(x, t) is finite then (66) means that the correction term
is proportional to the distance to x = 0 (i.e. to the the top of the profile). Moreover, since
λ ∈ (0, 2), the coefficient in (66) is small (since ε << 1). This correction term only appears
in the computation of p0(x, y, Z) (see (28)), which now becomes

p0(x, y, Z) = ρm g(H(x, y, T )− Z)+ ρwg(D − H(x, y, T ))+ μελ
∫ x

0
hλ−1(s, T )ds,

and substituting into u leads to the following modification of (40):

u = −ε k(ρm − ρw)

μφ
g
∂H

∂x
− μελHλ−1.

Finally, replacing it in the condition (18) we get

ε2
(
∂H

∂T
− kg(ρm − ρw)

μφ

∂

∂x

(

H
∂H

∂x

)

+ μ
x

|x |2 Hλ−1 ∂H

∂x

)

= 0,

which is (65).

4 Formulation including an outpointing flow

A more general case corresponds to

h(x, y, t) ≤ h∗(x, y) for any (x, y, t) (67)

and
h(x0, y0, t0) ≤ h∗(x0, y0) for some (x0, y0, t0). (68)

The difficulty comes from the fact that now h is not strictly included in the porous medium
and we can not apply the Darcy’s law.

We still have the property that the free boundary is a fluid surface. Therefore, we have
(10). Now, we assume that (x0, y0, t0) satisfies (68). Then

v(x0, y0, t0) · n(x0, y0, t0) ≥ 0 (69)

with v the velocity of the particle (x0, y0) at the time t0 and n the unit exterior normal vector
to the porous medium at the point (x0, y0, h∗(x0, y0)). However,

n =
(

−∂h∗

∂y
,
∂h∗

∂x
,−1

)

,

(
n ·
(
∂h∗
∂y ,− ∂h∗

∂x , 1
)

= 0
)

. The implicit formulation of the free boundary is

St ≡ {ψ(x, y, z, t) = 0} where z − h(x, y, t) ≡ ψ(x, y, z, t).
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Then

d

dt
ψ(x, y, h(x, y, t)) = 0

∣
∣
∣
∣
t=t−ε

≥ 0,

but inside of the porous media is

w − ∂h

∂t
− ∂h

∂x
u − ∂h

∂y
v

∣
∣
∣
∣
t=t−ε

≥ 0,

where u, v, w are given as in the previous steps 1 and 2. Making ε ↓ 0 we deduce that

H(x, y, t) ≤ H∗(x, y), (70)
(
∂H

∂T
− K g

μφ
(ρm − ρw)div(H∇ H + e(x, y)Hλ)

)

≤ 0. (71)

Moreover

H(x, y, t) < H∗(x, y) implies

(
∂H

∂T
− K g

μφ
(ρm − ρw)div(H∇ H + e(x, y)Hλ)

)

= 0,

(72a)(
∂H

∂T
− K g

μφ
(ρm − ρw)div(H∇ H + e(x, y)Hλ)

)

> 0 ⇒ H(x, y, t) = H∗(x, y) (72b)

Since otherwise we know that ( ∂H
∂T − K g

μφ
(ρm − ρw)div(H∇ H + e(x, y)Hλ)) = 0 by (62).

In conclusion, H satisfies the variational inequality
(
∂H

∂T
− K g

μφ
(ρm − ρw)div(H∇ H + e(x, y)Hλ)

)

+ β(H − H∗) � 0 (73)

with β the maximal monotone graph of R
2 given by:

β(r) =
⎧
⎨

⎩

φ (the empty set) if r > 0,
{0} if r < 0,
[0,+∞) if r = 0.

(74)

Indeed:

(a) H − H∗ ∈ D(β) = (−∞, 0] ⇔ H ≤ H∗ which is (70).
(b) If H ≤ H∗ ⇒ β(H − H∗) = 0 which is (72a).
(c) If H = H∗ ⇒ β(H − H∗) is formed by positive values which is (71).

and finally
(d) rβ(r) = 0 which is (72a)–(72b).

We point out that to get a weak formulation of the problem it is useful to observe that

div(H∇ H) = 1

2
�H2, (75)

and so, by introducing
(H∗)2 = U∗, (76)

we get that Eq. (73) can be reformulated as
⎛

⎝
∂
√

U

∂T
− K g

2μφ
(ρm − ρw)

⎡

⎣�
√

U − 2div

⎛

⎝eU

λ

2

⎞

⎠

⎤

⎦+ β(U − U∗)

⎞

⎠ � 0. (77)
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In the same line of arguments is mentioned in Remark 7 we mention that the existence of a
weak solution to problem (Pn) (as well as the variational inequality associated to this PDE)
can be found in [1]. In fact, the study of the free boundary can be also carried out for such
class of weak solutions by means of a variant of the “energy method” introduced in Díaz
[18]. For the numerical analysis of the model see [22]. The question of the uniqueness of the
weak solution (when the domain is such as indicated in problem (Pn)) is much more delicate
(see the references mentioned in the next Sect. 5).

5 No limited base

We are going to prove that the free boundary is not bounded as t −→ +∞, in the case of
the model simplified to a one-dimensional variable. Before doing that we shall recall here
some results on the existence and uniqueness of solutions of problem P(μ, Q0). Since the
spatial domain has two different connect components, our first remark about the mathematical
treatment of problem P(μ, Q0) is that the problem can be decomposed in two different
uncoupled problems P+(μ, Q0) and P−(μ, Q0):

P+(μ; Q0) ≡

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂H

∂t
= K

∂2 H2

∂x2 + μx

|x |
∂Hλ

∂x
, x ∈ (0,+∞), t > 0,

−∂H2

∂x
(0, t)− μHλ(0, t) = Q0(t), t > 0,

H(0, x) = H0(x), x ∈ (0,+∞),

(78)

and

P−(μ; Q0) ≡

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂H

∂t
= K

∂2 H2

∂x2 + μx

|x |
∂Hλ

∂x
, x ∈ (−∞, 0), t > 0,

∂H2

∂x
(0, t)− μHλ(0, t) = Q0(t), t > 0,

H(0, x) = H0(x), x ∈ (−∞, 0).

(79)

In other words, a function u(x, t) defined on (R − {0})× [0,+∞) is solution of P(μ, Q0)

(in any mathematical sense) if and only if there exist two functions u+(x, t) and u−(x, t)
defined on (0,+∞)×[0,+∞) and (−∞, 0)×[0,+∞), respectively, with u+(x, t) solution
of P+(μ; Q0) and u−(x, t) solution of P−(μ; Q0) such that

u(x, t) =
{

u+(x, t) if x > 0,
u−(x, t) if x < 0.

This is the way in which the boundary condition stated in P(μ, Q0) must be understood.
Now, concerning the notion of solution, it is enough to refer to one of both problems, e.g.
P+(μ; Q0) (since the treatment of P−(μ; Q0) is entirely similar).

Since problem P+(μ; Q0) is degenerate it is well known that we need to introduce some
notion of solution weaker than classical solutions. We shall always assume that

Q0 ∈ H1(0, T ) ∩ L∞(0,+∞), for any T > 0,

and
{

H0 ∈ L∞(R − {0}), H0 ≥ 0, support H0 is a compact of R

(H0)
2 ∈ H1(R − {0}).
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Definition 1 A function u+(x, t) is a weak solution of P+(μ; Q0) if u+ ∈ C([0, T ] :
L1(0,+∞) ∩ L∞(0,+∞ : L∞(0,+∞)), (u+)2 ∈ L2(0, T : H1(0,+∞)), (u+)t ∈
L2(0, T : H−1(0,+∞) ∩ L∞(0,+∞)), u+(0, .) = H0(.), and satisfies

∂u+
∂t

= K
∂2u2+
∂x2 +

μ
∂uλ+
∂x

and −∂u2+
∂x

(0, t)−μuλ+(0, t)) = Q0(t) in D′((0, T )× (0,+∞)) for any T > 0, i.e.,

for any φ ∈ L2(0, T : H1(0,+∞))∩ H1(0, T : L1(0,+∞))∩ L∞(0,+∞ : L∞(0,+∞)),

with support of φ(t, .) compact for any t ∈ [0, T ] we have

∫ T

0
〈(u+)t (t, .), φ(t, )〉 dx +

∫ T

0

∫ +∞

0
(u+(t, x)− H0(x))φt (t, x))dxdt = 0

and

∫ T

0
〈(u+)t (t, .), φ(t, )〉 dx+

∫ T

0

∫ +∞

0
(K (u+)2+μuλ+)φx dxdt +

∫ T

0
Q0(t)φ(t, 0)dt = 0.

The existence of a weak solution to P+(μ; Q0) is a direct consequence of Theorem 1.7 of
[1] (although this result was stated for the special case Q0(t) ≡ 0 their Remark 1.10 applies
to the case Q0(t) �= 0). As a matter of fact, the existence of weak solution is also a small
variant of other results in the literature dealing with the same partial differential equation but
on the whole real line instead (0,+∞) (and so without any boundary condition): see, e.g.
[14,16,20,23], and their references. In particular, thanks to the presence of the degenerate

diffusion term
∂2u2+
∂x2 it is well-known that any weak solution satisfies that

support of u+(t, .) is a compact subset of (0,+∞), for any t ≥ 0.

(see, e.g, Proposition 2 of [15]). Due to that, without loss of generality, given T > 0 we can
replace the spatial domain (0,+∞) by a bounded interval I = (0, L) for some L = L(T ).
Thus any weak solution u+ of P+(μ; Q0) is also a weak solution of

P+(μ; Q0, I )≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂H

∂t
= K

∂2 H2

∂x2 +μ∂Hλ

∂x
, x ∈ (0, L), t ∈ (0, T ),

−∂H2

∂x
(0, t)− μHλ(0, t)= Q0(t), H(L , t)= 0 t ∈ (0, T ),

H(0, x) = H0(x), x ∈ (0, L).
(80)

It was shown in [6] and [9] that the semigroup theory also leads to the existence of
a weak solution in the sense that the unique “(exact) mild solution” associated to the
diffusion-convection operator is also a weak solution of the problem. It is useful to recall this
notion:

Definition 2 A function u+(x, t) is an (exact) mild solution of P+(μ; Q0, I ) if u+ ∈
C([0, T ] : L1(0, L)), u+(0, .) = H0(.) and for any δ > 0 there exists ε > 0 such that,
for any partition of [0, T − ε], t0 = 0 < t1 < · · · < tn ≤ T , with ti − ti−1 ≤ ε, T − tn ≤ ε,
and for any approximation of the datum Q0(t),

{
Qi

0

}n
i=1 with

∑

i

∫ ti

ti−1

∣
∣
∣Q0(t)− Qi

0

∣
∣
∣ ≤ ε,
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there exists a set of stationary functions {ui }n
i=1 ⊂ H1(0, L) solving (in D′(0, L)) the implicit

time-discretization problem

I D P+(μ; Q0, I )≡

⎧
⎪⎪⎨

⎪⎪⎩

Hi − Hi−1

ti − ti−1
= K

∂2 H2
i

∂x2 + μ
∂Hλ

i

∂x
, x ∈ (0, L), i = 1, . . . , n,

−∂H2
i

∂x
(0)− μHλ

i (0) = Qi
0, Hi (L) = 0,

(81)
with

‖u+(., t)− ui (.)‖L1(0,L) ≤ δ for any t ∈ (ti−1, ti ].
To be more precise, as in [6] and [9], we define the operator

A(t)u = −K
∂2u2+
∂x2 + μ

∂uλ+
∂x

if u ∈ D(A(t)),

with

D(A(t)) =
{

w ∈ L∞(0, L), w2 ∈ H1(0, L), w2(L) = 0

and − ∂w2

∂x
(0)− μwλ(0) = Q0(t) in the sense of traces

}

.

Then it is proved in the above mentioned references (for Q0(t) ≡ 0) that A(t) is a m-T-
accretive operator on the Banach space X = L1(0, L). The extension to the case Q0(t) �= 0
is a routine matter. Moreover A(t) satisfies the t-dependence of condition of [19] and so the
(exact) mild solution u+ of P+(μ; Q0, I ) is constructed as

u+(.) = lim
n→+∞ u+n

with u+n being solution of the above stationary problem I D P+(μ; Q0, I ). We point out
that the uniqueness of the weak solution of P+(μ; Q0, I ) is a delicate question. It requires
the introduction of some special type of solutions: “entropy solutions” (see [11,12,28]) or
“renormalized solutions” (see [7,13]). Fortunately we do not need to recall such technical
notions since, under the conditions of our special case, any weak solution is a entropy solu-
tion and a renormalized solution. In conclusion, there is a unique weak solution of problem
P+(μ; Q0, I ) (see [13,28]). Note that without loss of generality, for the uniqueness of solu-
tions we can assume Q0(t) ≡ 0. As a final corollary, the (exact) mild solution is the unique
weak solution to problem P+(μ; Q0, I ).

Now we come back to the main result of this section: the free boundary ξ(t) associated to
the model by Angevine, Turcotte and Ockendon, (i.e. Problem P(0; Q0)) is an unbounded
function of t :

Theorem 12 Let ξ(t) the free boundary of the problem P(0, Q0), then ξ(t) −→ +∞ if
t −→ +∞.

We shall build the proof in two different steps. Firstly, we shall prove that if U (t, x) and
H(t, x) are weak solutions of the respective problems P(0, 0) and P(0, Q0) with the same
initial data then we have U ≤ H . As a consequence, if ζ(t) and ξ(t) are the free boundaries
of the problems P(0, Q0) and P(0, 0), with the same initial data, then 0 < ζ(t) ≤ ξ(t) for
any t > 0. In a second step we shall prove that ζ(t) −→ +∞ as t −→ +∞. This will
conclude the proof since, thus, necessarily, ξ(t) −→ +∞ if t −→ +∞.

The first step is a special conclusion of a more general comparison statement in which the
new fact (with respect the comparison results of [6,9]) is the variation of the datum Q0(t).



A. Arjona, J. I. Díaz

Proposition 1 Let H1 and H2 be the weak solutions of P(μ, Q0) corresponding to μ ≥ 0,
Q0,1, Q0,2 and H0,1, H0,2 respectively. Then, for any t > 0 we have the estimate

∫

R−{0}
(H1(t, x)− H2(t, x))+dx ≤

∫

R−{0}
(H0,1(x)− H0,2(x))+dx

+
∫ t

0
(Q0,1(τ )− Q0,2(τ ))+dτ (82)

where, we used the notation, a+ = max(0, a).

Corollary 1 Let H1 and H2 be the weak solutions of P(μ, Q0) corresponding to μ ≥ 0,
Q0,1, Q0,2 and H0,1, H0,2 respectively. Then:

(i) Q0,1 ≤ Q0,2 for any t > 0 and H0,1(x) ≤ H0,2(x) for x ∈ R − {0} implies H1(t, x) ≤
H2(t, x) for any t > 0 and for x ∈ R − {0},

(ii) the following quantitative expression on the continuous dependence holds for any t > 0,
∫

R−{0} |H1(t, x)− H2(t, x)| dx ≤ ∫
R−{0}
∣
∣H1,0(x)− H2,0(x)

∣
∣ dx

+ ∫ t
0

∣
∣(Q1,0(τ )− Q2,0(τ ))

∣
∣ dτ.

Proof Since the (exact) mild solution is the unique weak solution and since both solutions
have a compact support, for any t ∈ [0, T ] for any prescribed T > 0, it is enough to prove that
if u1,i and u2,i are the corresponding solutions of the implicit time-discretization problems
(81) then, for any i = 1, ..., n
∫

I
(u1,i (x)− u2,i (x))+dx ≤

∫

I
(u1,i−1(x)− u2,i−1(x))+dx + (Qi

0,1 − Qi
0,2)+. (83)

(as before, the proof on the connect component x < 0 is entirely similar). As a matter
of fact, it is enough to prove (83) only for i = 1 since the rest of the cases are obtained by
an iteration of the same argument of the proof. Now, we multiply the difference of the two
associated equations by a regular approximation pn(r), n ∈ N, of the Heaviside type function

sign+,0(r) = 0 if r ≤ 0 and sign+,0(r) = 1 if r > 0,

with r = (u2
1,i (x)− u2

2,i (x)). For instance, we can take as pn the function

pn(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if r ≤ 0,

nr if r ∈ [0, 1

n
],

1 if r >
1

n
.

(84)

Then,
∫

I
(u1,1 − u2,1)pn(u

2
1,1 − u2

2,1)dx −
∫

I
(u0,1,1 − u0,2,1)pn(u

2
1,1 − u2

2,1)dx

= t1 K
∫

I

∂

∂x
((
∂

∂x
(u2

1,1−u2
2,1))pn(u

2
1,1−u2

2,1)dx+ t1μ
∫

I

∂

∂x
(uλ1,1 − uλ2,1)pn(u

2
1,1 − u2

2,1)dx .

Finally, using the definition of weak solution (i.e. integrating by parts) we get easily the
result for the case μ = 0: Indeed, it is enough to pass to the limit, as n → +∞, and use the
fact

sign+,0(u2
1,1(x)− u2

2,1(x)) = sign+,0(u2
1,1(x)− u2

2,1(x))
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to get
∫

I
[u1,1(x)− u2,1(x)]+dx ≤

∫

I
(u0,1,1(x)− u0,2,1(x))sign+,0(u2

1,1(x)− u2
2,1(x))dx

+(Qi
0,1 − Qi

0,2)sign+,0(u2
1,1(0)− u2

2,1(0).

But a · sign+,0(b) ≤ a+ for any a, b ∈ R and we arrive to the desired inequality. The
case μ �= 0 is a little bit more elaborated. We get the conclusion arguing as in the proof of
Proposition 2.4 of [6] (see also Proposition 1 of [9]). ��
Proof of Theorem 12 Once we know, from the above Corollary that 0 < ζ(t) ≤ ξ(t) for
any t > 0 the result is consequence of the qualitative properties of solutions of the Cauchy
problem

⎧
⎨

⎩

∂H

∂t
= K

∂2 H2

∂x2 , x ∈ R, t > 0,

H(0, x) = Ĥ0(x), x ∈ R.

(85)

Indeed, we can take an auxiliary initial datum Ĥ0(x), radially symmetric, such that 0 ≤
Ĥ0(x) ≤ H0(x) a.e. x ∈ R − {0}. Then the solution Ĥ of (85) verifies that Ĥ(t, x) is also

a radially symmetric for any t > 0 and, in consequence, ∂ Ĥ2

∂x (t, 0) = 0. Thus Ĥ coincides

with the solution of P(0, 0) associated to the initial datum Ĥ0(x). To this type of initial data
it is well known (see, e.g. [23]) that the free boundary is unbounded and thus the conclusion
holds. ��

6 Limited base

The following result shows that the new model, with μ > 0, leads to a uniformly bounded
free boundary ξ(t) once that the convection exponent is small enough:

Theorem 13 Assume (H0)
2 ∈ H1(R − {0}), H0 ≥ 0 bounded and with compact support.

Assume Q0 ∈ H1(0, T ), for any T > 0, Q0 ≥ 0 such that

0 ≤ Q0(t) ≤ Q0,∞, for any t > 0 (86)

for a suitable Q0,∞. Let μ > 0 and

0 < λ < 2,

Let the H(t,·) be the weak solution of problem P(μ, Q0).Then support H(t,·) = [−ξ(t), 0)∪
(0, ξ(t)], and

|ξ(t)| ≤ ξ∞,

for any t > 0 and for some finite 0 < ξ∞ < ∞ depending on λ, K , μ, Q0,∞ and H0(x).

Proof Thanks to Corollary 1 it is enough to construct a supersolution H2(t, x) with a
uniformly bounded support for any t ≥ 0. In fact, we can construct such a function as
H2(t, x) = U (x) solution of the ordinary differential equation

{
K (U 2)x + C1Uλ = 0x ∈ (0,+∞),

U (0) = C2.
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Using that λ < 2 the support of U is compact and since H(t, x) is bounded we can choose
suitably C1,C2 > 0 as to have

Q1,0(t) ≤ C1Cλ
2 for any t > 0 and H1,0(x) ≤ U (x) for x ∈ �,

and the proof is complete. ��
Remark 14 Other supersolutions leading to other qualitative properties of the free boundary
can be found in the papers [3,5,14–17,23].

Remark 15 The results of this paper can be generalized to a more general model leading to
the confinement of the support of the volcano for any t :
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂H

∂t
= K

∂2 H2

∂x2 + μx

|x |
∂Hλ

∂x
− αHβ x ∈ R − {0}, t > 0

limx→0±
(

∓∂H2

∂x
(x, t)∓ μx

|x | Hλ(x, t)

)

= Q0(t), t > 0,

H(0, x) = H0(x), x ∈ R − {0}.

(87)

under the assumptions K > 0, μ, α ≥ 0 and

λ, β ∈ (0, 2).

The new term αHβ could be understood as an absorbing (or friction) property of the medium
(the soil) in which the volcano lava spreads. It can be shown that the presence of this term
also implies that free boundary (i.e. the volcano base) is uniformly bounded even if μ = 0).

7 Summary and conclusions

In this work a model to study geometrical evolution of volcanoes that includes a scalar
nonlinear parabolic equation obtained by asymptotic singular has been presented. We have
generalized the starting model of Lacey et al. [24] and Angevine et al. [2] to consider 3-
dimensional geometric shapes. A careful review of the problem to limit the singular terms of
the asymptotic analysis has been necessary. To achieve it we have reasoned in an alternative
manner to previous works, which use the Dupuit approximation and required more restrictive
conditions for its implementation. We have also added a correction transport term. We show
that although small in amplitude, it can modify the behavior of the free boundary condition
defined as the base of the volcano in every moment of the time. We also propose a new model
that allows the study of the geometric shape of the edifice even when the flow comes out of
pre-existing porous volcanic edifice. Moreover, in this edifice the Darcy’s law is valid. This
case had not been considered before. By taking into account the transport terms mentioned
above, we prove that the free boundary (the volcano base) associated to the models described
in the above mentioned references is not bounded as t → +∞ (even if it is assumed that
the flux generated by the magma supply Q0(t) along a line is a bounded function). This
unrealistic fact (especially in the case of volcanoes located on islands) is the main motivation
to propose a modification of the involved nonlinear equations in order to obtain a new model
giving rise to a bounded free boundary (even as t → +∞).
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