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1. Introduction
The notion of weak solution of a boundary value problem, on a
bounded domain Ω, is associated to functions in some energy space
satisfying the equation in a weak form, after multiplying by any test
function in such energy space and integrating by parts. Nevertheless,
in many relevant cases in the applications the right hand side datum
is merely in L1loc (Ω) and a di¤erent notion of solution is required. For
instance, in the case of second order problems the notion of very weak
solution is reduced to functions in L1(Ω) satisfying the equation
passing the second order derivatives to the test functions.

Most of the theory on very weak solutions available in the literature
deals with second order equations. Recently, sharper results have
been obtained, to this case, when the data are merely in L1(Ω, δ),
with δ = dist (x , ∂Ω)). That was originally proved by Haim Brezis, at
the seventies, in a famous unpublished manuscript concerning
Dirichlet boundary conditions (see also his paper [?], published in
1996 with T. Cazenave, Y. Martel, and A. Ramiandrisoa: for more
recent references see J.I. Díaz, J.M. Rakotoson [?] [?] and our
collaboration with J. Hernández [?]).
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The main goal of this lecture is to present some new results proving
that in the case of higher order equations and Dirichlet boundary
conditions the class of L1loc (Ω) data for which the existence and
uniqueness of a very weak solution can be obtained is larger than
L1(Ω, δ) (the optimal class for the case of second order equations).
For instance, for some stationary onedimensional semilinear 4th-order
equations we shall prove that the optimal class of data is the space
L1(Ω, δ2). Moreover we shall analyze the optimal solvability also for
the case of other boundary conditions: something which, as far as
we know, was not considered before in the literature.

In some sense, the obtained results give an answer to the question
about of the greatest weight pro�le which can support a simple beam
such that its two extremes are horizontally supported (for instance to
a wall) and do not experience any de�ection.
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To �x ideas I will present the results for the relevant model of the
Euler-Bernoulli beam model (i. e. a fourth order onedimensional
spatial operator) but most of the results remain valid for equations of
order 2m, m 2 N. In a �rst part we shall consider the stationary case:

(SP)
�

d 4u
dx 4 = f (x) x 2 Ω = (0, l),
+ boundary conditions (BC ).

We shall consider here only the most classical type of boundary
conditions. (BC ) corresponds to two set of two identities (two at
x = 0 and another two at x = l) among the following possibilities8>><>>:

a0u(0) = 0, b0u(l) = 0,
a1u0(0) = 0 b1u0(l) = 0,
a2u00(0) = 0, b2u00(l) = 0,
a3u000(0) = 0, b3u000(l) = 0.
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Here the coe¢ cients are taken such that ai , bi 2 f0, 1g and
∑ ai = 2,∑ bi = 2 in order to have a simple way to state general
results. For instance the usual Dirichlet conditions (supported beam)
corresponds to

(DBC )
�
u(0) = 0, u(l) = 0,
u0(0) = 0 u0(l) = 0.

Nevertheless, if the beam is simply supported at its extremes then�
u(0) = 0, u(l) = 0,
u00(0) = 0, u00(l) = 0.

Neumann type boundary conditions are here of the style of�
u00(0) = 0, u00(l) = 0,
u000(0) = 0, u000(l) = 0,

but other combinations (with a0 = b0 = 0) are also of interest.
Finally, a very often situation corresponds to a cantilever bar (x = 0
clamped and x = L free)�

u(0) = 0, u00(l) = 0,
u0(0) = 0 u000(l) = 0.
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In a second part I will consider the Euler-Bernouilli transient
hyperbolic problem (with a possible damping term)

(HP)

8>><>>:
∂2u
∂t2 +

∂u
∂t +

∂4u
∂x 4 = f (t, x) t 2 (0,T ), x 2 (0, l),

+ boundary conditions, t 2 (0,T ),
u(0, x) = u0(x) x 2 (0, l),
ut (0, x) = v0(x) x 2 (0, l),

as well as the so called (Duvaut and Lions 1972) "quasi-static"
associated problem (now of parabolic type)

(HP)

8<:
∂u
∂t +

∂4u
∂x 4 = f (t, x) t 2 (0,T ), x 2 (0, l),

+ boundary conditions, t 2 (0,T ),
u(0, x) = u0(x) x 2 (0, l).
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We shall see that the optimal weight w(x) in order to solve the above
problems is

δab(x) = maxfa1d(x , 0)2, a2d(x , 0), a3gmaxfb1d(x , l)2, b2d(x , l), b3g.

Notice that, for instance for the Dirichlet problem
[a = (1, 1, 0, 0),b = (1, 1, 0, 0)], we must take δab(x) � δ2(x) with
δ = dist (x , ∂Ω).

A plan for the rest of the lecture:

2. Necessary and Su¢ cient conditions for the existence of
solutions for the stationary problem.

3. Perturbation results for the stationary operator in
L1(0, L : δab).The semigroup approach for the parabolic problem in
L1(0, L : δab) and remarks on the hyperbolic problem in L2(0, L : δab).

4. Some numerical experiences.

Sections 2 and 3 will appear in RACSAM. Section 3 is part of a joint
work with I. Arregui and C. Vázquez.
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2. Necessary and Su¢ cient conditions for the existence of solutions
for the stationary problem.
To �x ideas I will consider now the case of Dirichlet boundary conditions.
De�nition. Given f 2 L1loc (0, l) a function u 2 L1loc (0, l) is a "solution of
(SP) in D 0(0 , l)" if �

u,
d4ζ
dx4

�
D 0D

= hf , ζiD 0D

for any ζ 2 D(0, l) = C∞
c (0, l).

We introduce now the space associated to the boundary (BC ) as

V = fζ 2 C 4([0, l ]): ζ satis�es (BC )gW
4,∞(0,l)

.

For instance, for the case W 4,∞(0, l) of Dirichlet boundary conditions
V = W 4,∞(0, l) \W 2,∞

0 (0, l).
De�nition. Given f 2 L1(0, l : δab) a function u 2 L1(0, l) is a "very
weak solution" of (SP) and (BC ) ifZ l

0
u(x)

d4ζ
dx4

(x)dx =
Z l

0
f (x)ζ(x)dx

for any ζ 2 V .
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Remark 1. It is not di¢ cult to show that ζ 2 V implies that
jζ(x)j � cδab for any x 2 (0, l) and so the above identity is well
justi�ed.

Main result: Theorem.
1 (Su¢ ciency) a) Su¢ ciency. Assume that a2a3 = 0 if b2 = b3 = 1
(respectively,b2b3 = 0 if a2 = a3 = 1). Then, for any
f 2 L1(0, L : δab) there exists a unique very weak solution of (SP)
and (BC ). Moreover we have the estimate (weak maximum principle)

C ku+kL1(0,l) � kf+kL1(0,l :δab) , (1)

for some C > 0 (C = 24L4 for (DBC )) where, in general,
h+ = max(0, h). Moreover u 2 C 3([0, L]).

2 (Strong maximum principle) Let f 2 L1(0, l : δab) with f � 0 a.e.
x 2 (0, l). Then the very weak solution satis�es )
u(x) � C kf kL1(0,l :δab) δab(x) > 0 for any x 2 (0, l), for some C > 0.

3 (Necessity) Assume that f 2 L1loc (0, l), such that f � 0 a.e.
x 2 (0, l). Then if

R l
0 f (x)δab(x)dx = +∞ it can not exists any

u 2 C 3([0, l ]) satisfying (BC ) being also solution in D 0(0, l) of (SP).
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Idea of the proof of the Theorem 1. For the existence part it is
enough to use the Green function associated to the boundary
conditions (see,e.g., Stakgold 1998). Indeed the expression
u(x) =

R L
0 G (x , y)f (y)dy is well justi�ed since we have that

jG (., y)j � Cδab(y). For the proof of the L1�estimate we shall use
some "conservation formula". For the case of (DBC ) (for other
boundary conditions the arguments are similar) we have:

Lemma 1. Let f 2 L1(0, L : δ2) and let u be any very weak solution
of (SP) and (DBC ). Then 24L4

R L
0 u(x)dx =

R L
0 x

2(L� x)2f (x)dx .
We also know (see Chow-Dunninger-Lasota (1973)) that if
f 2 L1loc (0, L), f � 0 on (0, L) then u(x) � 0 for any x 2 (0, L).
The last ingredient, to prove the L1�estimate is an abstract result
applied usually to hyperbolic equations
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Lemma 2 (Crandall-Tartar 1980). Let X ,Y two vector lattices and
λX ,λY be nonnegative linear functionals on X and Y respectively.
Let C � X and f , g 2 C imply f _ g 2 C. Let T : C ! Y satisfy
λX (f ) = λY (T (f )) for f 2 C . Then (a)) (b)) (c) where
(a), (b), (c) are the properties:
(a) f , g 2 C and f � g imply T (f ) � T (g),
(b) λY ((T (f )� T (g))+) � λX ((f � g)+) for f , g 2 C,
(c) λY (jT (f )� T (g)j) � λX (jf � g j).
Moreover, if λY (F ) > 0 for any F > 0, then (a), (b), (c) are
equivalent.

Now, to prove the L1�estimate (1) we take C = X = L1(0, L : bδ2),
Y = L1(0, L), λX (f ) =

R L
0 x

2(L� x)2f (x)dx , λY (F ) =
R L
0 F (x)dx

and T (f ) = 24L4u (with u the very weak solution of (SP) and
(DBC )). Then the identity of Lemma 2 coincides with Lemma 1. So
we get (b) of Lemma 2 which is the wanted L1�estimate.
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The proof of the strong maximum principle uses the estimate
jG (., y)j � Cδab(y). To prove part c), and more speci�cally the
complete blow up (in the whole interval (0, L)) when
f /2 L1(0, L : δab) we truncate f generating fn(x) = min(f (x), n).
Now, if un is the associated solution ( fn 2 L∞(0, L) � L1(0, L : δab))
then un(x) � C kfnkL1(0,L:δab) δab(x), which implies that
un(x)% +∞ for any x 2 (0, L).

Remarks.

1 It is possible to give a physical meaning to the solvability (necessary
and su¢ cient) assumption f 2 L1(0, L : δab). For instance, for the
Dirichlet case it means that the momentum function of the shear
stress at any interior point x with respect the two extremes must be
an integrable function.

2 Theorem 1 extends many previous works in the literature:
Aftabizadeh (1986), Gupta (1988), Agarwal (1989), O�Regan (1991),
Bernis (1996), Pao (1999), Yao (2008)...
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3 We also mention that the above versions in the literature on the weak
maximum principle (valid under weaker conditions than the above
(BC) have a non-quantitative version. Estimate (1) is new in the
literature. It seems possible to extend the above result to the case of
several dimensions but restricted to balls and under symmetry
conditions on f . The maximum principle is false on some ellipsoidal
domains (see Boggio 1905 and the conjecture by Hadamard 1908
�rstly proved by Du¢ n (1949) and Garabedian (1951)). For balls see
Bachar-Māagli-Masmoudi-Zribi (2003) which also contains ver sharp
estimates.

4 The existence result holds also in the more general class of Radon
measures f 2 M(0, L : δab): something very useful to justify the
engineers study in with the weight on the beam is concentrated in
isolated points. Notice that although the usual Radon measure space
(without wieight) M(0, L) is a subset of the dual space H�2(0, L) it
is not always true that the duality hf , ζiH�2(0,L),H 20 (0,L) coincides with
the hf , ζiM (0,L),C 0([0,L]) =

R L
0 ζ(x)df duality.
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3. Perturbated operators in L1(Ω, δab).

Many extensions of the above theorem are possible. For instance, the
nonlinear problem

(NLSP)
�

d 4u
dx 4 + β(u) = γ(u) + f (x) x 2 Ω = (0, L),
+boundary conditions (BC ),

arises in many di¤erent frameworks: the linear case β(u) = ku (and
γ � 0) corresponds to the so called elastic beam (Boggio 1905,
Hadamard 1915).
Monotone non decreasing functions β(u) were used in McKena and
Walter 1987 in the modeling of suspension bridges. A quite curious
fact (Schroeder 1967, Kawhol and Sweers 2002): the strong
maximum principle for the linear equation d 4u

dx 4 + ku = f (x) and
boundary conditions a0 = b0 = a2 = b2 = 1 is only true for
k 2 (�k0, k1), for some k0, k1 > 0 depending on L.
This also holds for the case of Dirichlet conditions: the associated
Green function G (x , y) can be explicitly built (for instance by means
of the use of Mapple (see Díaz 2010) and it can be shown that if k is
large enough then G (x0, y0) for some (x0, y0) 2 [0, L]2.
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Estimate (1) is quite "universal" as we can prove it for the solution of
many related nonlinear problems. For instance, we have:

Theorem 2. For any β maximal monotone graph of R2 and any
constant ω > 1

24L4 there exists a unique function u, with
d 4u
dx 4 2 L

1(0, L : δab) and β( d
4u
dx 4 ) 2 L

1(0, L : δab), solution of the
equation

β(
d4u
dx4

) +
d4u
dx4

+ωu = f (x)

and satisfying (DBC ). Moreover, if bu is the solution for bf , we have
24L4 ku � bukL1(0,L:δab) �




f � bf 



L1(0,L:δab)

.

Idea of the proof of Theorem 2. The operator
A : D(A)! L1(0, L : δab) given Au = d 4u

dx 4 if u 2 D(A) with
D(A) = fu 2 L1(0, L : δab) \ C 3([0, L]) : d

4u
dx 4 2 L

1(0, L : δab) and u
satis�es the (DBC )g satis�es that 9 C > 0 such that
C kukL1(0,L:δab) � kAukL1(0,L:δab) for all u 2 D(A). So, its inverse
operator J = A�1, satis�es that J + C�1I is accretive (and also I � J
when C > 1): see Benilan-Crandall-Pazy 2001.
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d4u
dx4

) +
d4u
dx4

+ωu = f (x)

and satisfying (DBC ). Moreover, if bu is the solution for bf , we have
24L4 ku � bukL1(0,L:δab) �




f � bf 



L1(0,L:δab)

.

Idea of the proof of Theorem 2. The operator
A : D(A)! L1(0, L : δab) given Au = d 4u

dx 4 if u 2 D(A) with
D(A) = fu 2 L1(0, L : δab) \ C 3([0, L]) : d

4u
dx 4 2 L

1(0, L : δab) and u
satis�es the (DBC )g satis�es that 9 C > 0 such that
C kukL1(0,L:δab) � kAukL1(0,L:δab) for all u 2 D(A). So, its inverse
operator J = A�1, satis�es that J + C�1I is accretive (and also I � J
when C > 1): see Benilan-Crandall-Pazy 2001.
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Then, in particular, for any accretive operator B on L1(Ω, δab) and
for any λ > 0 and f 2 L1(0, L : δab) the problem
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C w) + w = f has at most one solution
w 2 L1(Ω, δab) and we have the continuous dependence estimate
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.

The existence part is obtained �rstly by truncating f and by passing
to the limit after using the a priori estimate mentioned before. �

In general the operator A is not T-accretive in L1(0, L : δab) and the
comparison principle fails for the associated parabolic problem: take,
for instance (Friedman 1990), for R replacing (0, L),
u(t, x) = ε� t + x 4

4 .
Nevertheless, it is possible to show the following �positivity result�
(which improves Gazzola-Grunau 2009 for the one-dimensional case):
Theorem 3 (eventual positivity). Let f 2 L1loc (0,+∞ : L2(0, L))
with ∂f

∂t 2 L1(0,+∞ : L2(0, L)) be such that f (t, x)! f∞(x) in
L2(0, L) as t ! +∞, with f∞(x) � 0, f∞ 6= 0.
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Then, for any u0 2 H4(0, L) \H20 (0, L) and for any ε > 0 small
enough there exist a time Tε � 0 such that the mild solution
u 2 C ([0,+∞) : L2(0, L)) of

(HP)

8>><>>:
∂u
∂t +

∂4u
∂x 4 = f (t, x) t 2 (0,T ), x 2 (0,+∞),

u(t, 0) = 0, u(t, L) = 0,
∂u
∂x (t, 0) = 0

∂u
∂x (t, L) = 0,

t 2 (0,+∞),

u(0, x) = u0(x) x 2 (0, L),

satis�es that u(t, x) � C (kf∞kL1(0,L:δab) � ε)δab(x) > 0 for any
t � Tε and for any x 2 (0, L).Idea of the proof. It is enough to use
that u(t, x)! u∞(x) in W 2,∞(0, L) as t ! +∞ (apply Theorem 3.9
of Brezis 1973) with u∞(x) given as the unique solution of (SP) and
(DBC ) with f∞ as right hand side and to apply the strong maximum
principle b) of Theorem1.

4. Some numerical experiences
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Test 1

{
∆2u = f , en Ω = (0,1)×(0,1)
u = ∆u = 0 , en ∂Ω

Segundo miembro:

f (x,y) =
1

|x+ ε|k
1

|1+ ε− x|k
1

|y+ ε|k
1

|1+ ε− y|k

k = 1

Resolución, en cada nivel, por un método directo
Refinamiento según el gradiente del segundo miembro.
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Aproximación numérica del laplaciano de la solución, ε = 10−4

I. Arregui, C. Vázquez Resultados numéricos del problema del bilaplaciano



Test 3
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