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Part I. Introduction

PRESSURE TREATMENT OF FOODS
• Increasing interest in food processing and 

preservation

• Importance of knowing the exact 
pressure/temperature conditions of each 
process



THERMAL CONTROL IN PRESSURE 
TREATMENT

 Compression
• Temperature increase due to the work of 

compression
• Food composition
• Initial temperature
• Pressurising fluid
• Applied pressure
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THERMAL CONTROL IN PRESSURE 
TREATMENT

Holding time
Heat loss through the wall of the  HP vessel

Temperature gradients in the processed food

Non uniform distribution of enzyme and/or microbial 
inactivation, nutritional and/or sensorial quality 

degradation,...



Materials and methods

HIGH-PRESSURE EQUIPMENT
• GEC ALSTHOM ACB 

High-Pressure equipment

• A cylindrical chamber 
(2.35 l net volume)

• Thermoregulated at 37ºC

• Assayed pressures: 200, 
300 and 400 MPa

• Sample: Liquid water
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MODEL TO SIMULATE THE 
THERMAL EXCHANGE



The model includes:

All the thermal exchanges that occur
• Thermoregulating bath/ambient
• Pipes/ambient
• Steel of the vessel/thermoregulating fluid
• Steel of the vessel/ambient
• Sample/steel of the vessel

Calculation of the temperature variation 
during the compression or expansion

MODEL DESCRIPTION



Heat transmission ways considered
• Convection

(ambient air, fluid inside the bath and fluid 
inside the vessel or sample)

• Conduction

(through the different solid layers in the 
vessel)



COMPRESSION UP TO 400 MPa



About 20 minutes were necessary to dissipate 
heat inside the vessel and re-equilibrate its 

temperature

Mean absolute errors
Sample: 0.6%
Entrance of the surrounding coil: 0.2%
Exit of the surrounding coil:0.3%
Thermoregulating bath: 0.1%



EXPANSION FROM 400 Mpa



Good agreement between the simulated and 
experimental temperature values at different 

points in the high-pressure equipment

Mean absolute errors
Sample: 1.0%
Entrance of the surrounding coil: 0.3%
Exit of the surrounding coil:0.1%
Thermoregulating bath: 0.2%



Part II. A simplified mathematical model: 
restricted control at the Robin boundary 
condition
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1. Optimal control: Given k, w and y0 and yd find the 
control                           minimizing (over       )u C∈ adU



2. Approximate Controlabilty: Given              find
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Control constrains (limitations of the thermoregulating device)

State constrains (sterilization: Olin Ball &Olson (1957))

Mathematical results: 

i) Existence of the optimal control (it uses the 
Lions compactness theorem)



ii) Optimality conditions 
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(the proof uses a result due to Bonnans and Casas (1984))

iii) Approximate controllability with constraints 
By passing to the limit, in some a priori estimates obtained 
from the optimality conditions, when              , it is possible 
to show the approximate controllability once we assume

k →∞
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Numerical experiences
for a related problem: Díaz&Ramos 
(2000) 



CONCLUSIONS
• The model reproduces the thermal behaviour of the 

high-pressure system in different points satisfactory

• It allows to study the effect of the different 
variables implied in the system (thermoregulating 
fluid, flow, target temperature, heating/cooling 
power of the bath...)

• Non trivial mathematical problems in Control 
Theory 
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