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Resumen

We first consider blowing-up solutions y0(t), t ∈ [0, Ty0), of some ODEs

P (Ty0) : dy
dt (t) = f(y(t)), y(0) = y0,

where f : Rd → Rd is a locally Lipschitz function and d ≥ 1. The controllability
question we analyze in this work is the following: given ε > 0, can we find a continuous
deformation of y0(t), built as solution of the control perturbed problem obtained by
replacing f(y(t)) by f(y(t)) + u(t), for a suitable control u ∈ L1

loc(0,+∞ : Rd) such
that y(t) = y0(t) for any t ∈ [0, Ty0 − ε] and such that y(t) is continued to the whole
[0,+∞)? We shall also mention several applications to the case of some nonlinear
blowing-up parabolic problems and improve a previous work of the authors [4].

1. Introduction

We consider blowing-up solutions y0(t), t ∈ [0, Ty0), of some ODEs

P (f, y0) =

{
dy
dt (t) = f(y(t)) in Rd,
y(0) = y0,

where d ≥ 1, f : Rd → Rd is a locally Lipschitz function superlinear near the infinity

f(y)y ≥ C |y|p+1 if |y| > k, for some p > 1 and C, k > 0.

1



A. Casal, J.I. Dı́az, J. M Vegas

It is well known that the solutions of P (f, y0) develop blow-up processes in the sense
that the maximal existence interval is of the form [0, Ty0), for some finite time Ty0 (i.e.
there is a complete blow-up after Ty0). From the point of view of Control Theory, it is easy
to see (by arguing as in [5]) that we can avoid the blow-up phenomenon by introducing
a suitable control function u(t). To be more precise, for any small enough ε > 0 we can
find a continuous deformation y(t) of the given trajectory, y0(t), built as solution of the
control perturbed problem

P (f, y0, u) =

{
dy
dt (t) = f(y(t)) + u(t) in Rd,
y(0) = y0,

for a suitable control u ∈ L1
loc(0,+∞ : Rd) and defined on the whole interval [0,+∞)

such that y(t) = y0(t) for any t ∈ [0, Ty0 − ε]. Indeed, fix any Te > Ty0 − ε and let us
consider w ∈ C1[0,+∞) such that w(t) = y0(t) for any t ∈ [0, Ty0 − ε] and w(t) = 0 for
any t ∈ [Te,+∞). Then, defining u(t) = dw

dt (t) − f(w(t)) if t ∈ (Ty0 − ε,+∞) we get the
required conditions and that, in fact, y(t) = w(t) = 0 for any t ∈ [Te,+∞).

In this work our goal is completely different since we do not try to avoid the blow-up
phenomenon but to control it in such a way that the solutions let defined in the whole
interval [0,+∞) at least as a L1

loc(0,+∞ : Rd) function. We shall show that we can çontrol
the explosions”by allowing a more singular class of controls.

Definition. We say that the trajectory y0(t) of problem P (f, y0), with blow-up time
Tu0 , has a controlled explosion if for any small enough ε > 0 we can find a continuous
deformation, y(t), of the trajectory y0(t), built as solution of the control perturbed problem
P (f, y0, u), for a suitable control u ∈W−1,q′loc (0,+∞ : Rd) [the dual space of W 1,q

0,loc(0,+∞ :

Rd)], for some q > 1, such that y(t) = y0(t) for any t ∈ [0, Ty0 − ε], y(t) also blows-up at
t = Ty0 but y(t) can be extended beyond Ty0 as a function y ∈ L1

loc(0,+∞ : Rd).

Theorem 1. Assume f locally Lipschitz continuous and superlinear. Then, for any y0 ∈
Rd the blowing up trajectory y0(t) of the associated problem P (f : y0) has a controlled
explosion by means of the control problem P (f, y0, u).

Our main tools are the study of a suitable delayed feedback problems (in the spirit of a
previous work by the authors [Casal, Dı́az and Vegas [4]] and the application of a powerful
nonlinear variation of constants formula. This type of formula was first established in the
literature for nonlinear terms of class C2 [Alekseev [2], Laksmikantham and Leela [6], ...].
In this work we shall show that, as a matter of fact, the formula holds also for Lipschitz
functions f (which at this stage can be assumed to be in fact globally Lipschitz) and with
a very general perturbation term (which in fact can be even multivalued). For instance,
given such a f and a family of maximal monotone operators β(t, y), on the space H = Rd,
with β(t,·) ∈ L1

loc(0,+∞ : Rd), we consider the perturbed problem

P ∗(f, β, ξ) =

{
dy
dt (t) ∈ f(y(t)) + β(t, y(t)), in Rd,
y(t0) = ξ.

(1)

We know that once that f is globally Lipschitz function, the solutions of P (f, β, ξ) are
well defined, as absolutely continuous functions on [0, T ], for any given T > 0 (this is
an easy consequence of the general theory: see [3]). Now, we reformulate the trajectory
y0(t) in more general terms (by modifying the initial time and the initial condition) as
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y0(t) = φ(t, t0, ξ) with φ(t, t0, ξ) the unique solution of the ODE

P ∗(f, 0, ξ) =

{
y′(t) = f(y(t)) in Rd,
y(t0) = ξ.

(2)

We introduce the formal notation Φ(t, t0, ξ) = ∂ξφ(t, t0, ξ), where ∂
ξ

denotes partial dif-
ferentiation. Then we shall prove:

Theorem 2. The flow map φ is Lipschitz continuous, Φ is absolutely continuous and the
solution y(t) of the “perturbed problem” P ∗(f, β, ξ) has the integral representation

y(t) = y0(t) +

∫ t

t0

Φ(t, s, y(s))β(s, y(s))ds, for any t ∈ [0, T ], (3)

where y0(t) = φ(t, t0, ξ) is the solution of the “unperturbed” problem P ∗(f, 0, ξ).
In the above formula we assumed, for simplicity, that β(t,·) is single-valued but a suit-

able similar expression can be stated if β(t,·) is multivalued. Applications of this arguments
to parabolic partial differential equations (see Remark 3) will be presented elsewhere.

2. Case 1. f ∈ C2 and superlinear (e.g. f(y) = |y|p−1 y with
p > 1).

For the sake of presentation we shall start with the study of regular superlinear func-
tions f.
Theorem 3. Assume f ∈ C2 and superlinear. Then, for any y0 ∈ Rd the blowing up
trajectory y0(t) of the associated problem P (f : y0) has a controlled explosion.
Proof. Step 1 (the strategy). Define τ = Ty0 − ε. We make the change of variable

t̃ = t− τ

and consider the delayed problem

P̃ (f, y0, B) =

{
y′(t) = f(y(t)) +B′(t)g(y(t− τ)), 0 < t < τ

y(θ) = χ(θ), −τ ≤ θ ≤ 0
(4)

(where, for simplicity we denote again t̃ by t, so that, for any −τ ≤ θ ≤ 0 we are identifying
χ(θ) with χ(θ+Ty0−ε), for some suitable functions B(t),and where g(r) is any C2 function
(for instance g(r) = r). Our goal is to show that we can chose the control term

u(t) := B′(t)g(y(t− τ))

such that the solution of P̃ (f, y0, B) is defined on the whole interval [0, τ) and that u ∈
W−1,q′(0, τ : Rd). Since y(t−τ) = χ(t−τ) for any t ∈ [0, Ty0− ε], this will prove the result
by iteration on the intervals τ < t < 2τ, ..., nτ < t < (n+ 1)τ, n ∈ N.
Step 2 (choice of function B and reformulation as neutral equation). Given q > 1, a > 0
and α ∈ (0, 1q ) and a continuous function m (taken, for instance, in order to have B(0) = 0)
we define
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B(t) =
a

|t− t∗|α
+m(t), t ∈ [0, τ ], (5)

with t∗ = ε (i.e. t = Ty0 in the original time scale). We assume that t∗ ∈ (0, τ), i.e. 2ε < Ty0 .

As in [4] we can reformulate P̃ (f, y0, B) as the neutral problem
d

dt
[y(t)−B(t)g(y(t− τ))]

= f(y(t))−B(t)
d

dt
[g(y(t− τ))] , t > 0,

y(θ) = χ(θ), −τ ≤ θ ≤ 0

(6)

Instead, we will change our strategy and make use of a very useful, but little-known
mathematical device: Alekseev’s nonlinear variation of constants formula [2]. We now
briefly recall this result in a very simple setting (a more general statements will be obtained
in the next section).

Proposition. [Alekseev’s formula, [2]] Let f : R2 → R be C2 and G : R→ R be L1
loc.

Let y = φ(t, t0, ξ) represent the unique solution of the ODE{
y′ = f(y(t)),

y(t0) = ξ,
(7)

and let Φ(t, t0, ξ) = ∂ξφ(t, t0, ξ), where ∂
ξ

denotes partial differentiation. Then φ is C2, Φ
is C1 and the solution z(t) of the so-called “perturbed problem”{

z′ = f(z(t)) +G(t),

z(t0) = ξ,
(8)

has the integral representation

z(t) = y(t) +

∫ t

t0

Φ(t, s, z(s))G(s)ds, (9)

where y(t) = φ(t, t0, ξ) is the “unperturbed” or “reference” solution.
Remark. Notice that Φ(t, t0, ξ) satisfies Φ(t, t, ξ) = 1. Notice also that Alekseev’s

formula is usually stated under stronger regularity conditions on G. However, it is very
simple to check by direct differentiation that the function z(t) defined by (9) is an abso-
lutely continuous solution of the (Carathéodory) equation. Alekseev’s formula is usually
applied to the more ambitious setting of having G depending on t and z, which is typical
of control theory. (9) then becomes an integral equation and a more delicate analysis is
required.

Fortunately, we can consider the retarded term as an external “forcing”

G(t) = B′(t)g(ξ(t− τ)), (10)

and by setting t0 = 0, ξ = z(0) = χ(0), y(t) = φ(t, 0, ξ), write (formally):

z(t) = y(t) +

∫ t

0
Φ(t, s, z(s))B′(s)g(y0(s− τ))ds, (11)

4



Nonlinear variation of constants and blow-up control

and integrate by parts:

z(t) = y(t) + [Φ(t, s, z(s))B(s)g(χ(s− τ))]s=ts=0

−
∫ t
0 B(s)

d

ds
[Φ(t, s, z(s))g(χ(s− τ))] ds

= y(t) + Φ(t, t, z(t))B(t)g(χ(t− τ))

−
∫ t
0 B(s)

d

ds
[Φ(t, s, z(s))g(χ(s− τ))] ds.

(12)

By the remark above, Φ(t, t, z(t)) = 1. On the other hand, as we saw before, for χ ∈
W 1,q(−τ, 0) and g ∈ C1 the composite function s 7→ g(χ(s − τ)) is also W 1,q(−τ, 0)
and so is its product by the C1 function Φ(t, s, z(s)). Therefore, its derivative belongs
to Lq(−τ, 0) and the indefinite integral, as in all the previous cases, is an absolutely
continuous function. This means that the integration by parts is legitimate and we may
state the following result, which is an extension of the previous ones. We may summarize
the previous comments in the following way:

The initial value problem

P̃ (f, χ,B) =

{
y′(t) = f(y(t)) +B′(t)g(y(t− τ)), 0 < t < τ

y(θ) = χ(θ), −τ ≤ θ ≤ 0
(13)

with f ∈ C2(R2), g ∈ C1(R2) and initial function χ in W 1,q(−τ, 0) has a precise integral
sense in [0, τ ] by means of the neutral equivalent equation and its unique solution z admits
the integral representation

z(t) = y(t) +B(t)g(χ(t− τ))−
∫ t

0
B(s)

d

ds
[Φ(t, s, z(s))g(χ(s− τ))] ds, (14)

(where y(t) = φ(t, 0, χ(0)))). Then, for every ξ ∈ W 1,r(0, τ) (where 1/q + 1/r = 1) the
neutral Cauchy problem has a unique solution given by the identity (14). Therefore z ∈
Lq(0, τ) and z(t)− B(t)g(χ(t− τ)) is an absolutely continuous function and we may write
symbolically

z(t) = B(t)g(χ(t− τ)) +AC (15)

where “AC” means “an absolutely continuous function”. As a consequence, the singular-
ities of the solution on [0, τ ] are also singularities of B. Thus, in particular, let t∗ = ε
(notice that t∗ = Ty0 in the original scale of time), 0 < α < 1, let m be continuous on
[0, τ ] and let

B(t) =
a

|t− t∗|α
+m(t), (16)

Since the initial function χ satisfies χ(t∗ − τ) = χ(ε) 6= 0, then t∗ is also a singularity of z
and

z(t) ' a

|t− t∗|α
g(χ(ε)), as t→ t∗, (17)

is an asymptotic expansion of z near t∗ = Ty0 , which gives the qualitative picture of the
behavior of the solution near singularities of B. Obviously, from the choice of α we get
that the control u(t) := B′(t)g(y(t− τ)) is in W−1,q′(0, τ : Rd)).
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3. Case 2. Controllable explosions for f locally Lipschitz
and superlinear: a generalization of the nonlinear varia-
tion of constants formula.

The proof of Theorem 1 is exactly the same than the one of Theorem 3 once we let
able to show Theorem 2. Notice that since what we need is merely to have a control of
the way in which the solution growths near the blow-ups time Ty0 the proof of Theorem
2 is only needed for globally Lipschitz functions f.

Proof of Theorem 2. Let fn ∈ C1(Rd : Rd) be a sequence approximating f in W 1,s(Rd : Rd),
for any s ∈ [1,+∞), and such that

‖∂xfn(·)‖L∞(Rd:Md×d)
≤ ‖∂xf(·)‖L∞(Rd:Md×d)

:= M for any n ∈ N and (18)

(see, for instance, Adams [1] ). Let y0n = φn(t, t0, ξ) be the unique solution of the unper-
turbed ODE

P ∗(fn, 0, ξ) =

{
y′(t) = fn(y(t)) in Rd,
y(t0) = ξ,

(19)

and let Φn(t, t0, ξ) = ∂ξφn(t, t0, ξ),. Let us consider the sequence of perturbed problems

P ∗(fn, β, ξ) =

{
dyn
dt (t) ∈ fn(yn(t)) + β(t, yn(t)), in Rd,
y(t0) = ξ.

(20)

Then, by the classical version of the Alekseev formula we know that

yn(t) = y0n(t) +

∫ t

t0

Φn(t, s, yn(s))β(s, yn(s))ds, for any t ∈ [0, T ], (21)

(as before, in the above formula we assumed, for simplicity, that β(t,·) is single-valued but
a suitable similar expression can be obtained if β(t,·) is multivalued). But since fn → f
and f is locally Lipschitz we know that y0n(·) → y0n(·) and yn(·) → yn(·) strongly in
AC([0, T ] : Rd) for any fixed T > 0 (this is an easy application of Theorem 4.2 of Brezis
[3]). Moreover since any maximal monotone operator is strongly-weakly closed we know
that, at least, β(·, yn(·)) ⇀ β(·, yn(·)) in L2(0, T : Rd). Moreover, from the classical Peano
theorem we know that there exists a Φ(t, s, y) such that

Φn(t, ·, yn(·))→ Φ(t, ·, y(·)), for a.e. t ∈ (0, T ),

strongly in L2(0, T :Md×d). Indeed, Φn(t, t0, ξ) is the solution of the problem{
Φ′(t) = Hn(t, t0, ξ)Φ(t) in Md×d,
Φ(t0) = I,

where
Hn(t, t0, ξ) = ∂xfn(φn(t, t0, ξ)).

But, we know that, if M is given by (18) then

‖Hn(t, t0, ξ)‖L∞(t0,T :Md×d)
≤M for any t0 ∈ (0, T ) and for any ξ ∈ Rd.
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Thus, by Gronwall inequality, there exists a positive constant M̃ = M̃(t0, ξ) such that

‖Φn(·, t0, ξ)‖W 1,∞(0,T ) ≤ M̃

which implies that there exists a Lipschitz function Φ(t, s, ξ) such that Φn(t,·, yn(·)) ⇀
Φ(t,·, y(·)) in W 1,q(0, T :Md×d) for any q ∈ (1,∞). This leads to the strong convergence
in L2(0, T :Md×d). Then we can pass to the limit in formula (21) and get that

y(t) = y0(t) +

∫ t

t0

Φ(t, s, y(s))β(s, y(s))ds, for any t ∈ [0, T ].

Remark 2. Notice that since our main interest is to study the asymptotic, near Ty0 ,
we do not need to identify the limit matricial function Φ(t, s, y). This is a complicated task
over the set of points y ∈ Rd where f is not Frechet differentiable in y (see a nonlinear
characterization in Mirica [7]).

Remark 3. Several applications to the case of the some nonlinear blowing-up parabolic
problems of the type

(PN )


∂y
∂t −∆y = |y|p−1 y + u(t, x) for (t, x) ∈ (0,+∞)× Ω,
∂y
∂n(t, x) = 0, for (t, x) ∈ (0,+∞)× ∂Ω,
y(0, x) = y0(x), for x ∈ Ω,

(22)

once we assume p > 1, for suitable conditions on y0 ∈ L2(Ω) and for an appropriate choice
of the control function (taken as a suitable delayed feedback control) can be given in a
similar way to the results presented in [4]. By limitations in the length of this work, those
results will be given elsewhere.
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