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Abstract We consider a reaction-diffusion in which the reaction takes place on
the boundary of the reactive particles. In this sense the particles can be thought of
as a catalysts that produce a change in the ambient concentration w" of a reactive
element. It is known that depending on the size of the particles with respect to their
periodic repetition there are different homogeneous behaviors. In particular, there is
a case in which the kind of nonlinear reaction kinetics changes and becomes more
smooth. This case can be linked with the strange behaviors that arise with the use
of nanoparticles. In this paper we show that concentrations of a catalyst are always
higher when nanoparticles are applied.

1 Introduction

We consider a reaction-diffusion problem in which the reaction takes place on the
boundary of the inclusions. In this sense the inclusions can be though as a catalysts
that produce as change in the ambient concentration w" of a reactive element. This
is standardly modeled as 8̂̂<̂

:̂
��w" D 0 ˝";

@�w" C "�� g.w"/ D 0 S";

w" D 1 @˝;
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where g is a nondecreasing function such that g.0/ D 0, ˝" is a perforated domain,
@˝" D S" [ @˝ . R. Aris defined (see, e.g., [1]) the effectiveness of a reactor ˝ as

�" D 1

jS"j
Z

S"

g.w"/dx: (2)

In the case where the particles are large (in a sense that would be precised later),
the problem can be though homogenous, as ˝" ! ˝ then w" ! w (in a sense that
would be precised later), where the homogenized problem results(��w C Ag.w/ D 0 ˝;

w D 1 @˝;
(3)

for a certain constant A. In this setting Aris defined the effectiveness for the
homogenized problem as

� D 1

j˝j
Z

˝

g.w/dx: (4)

This kind of problems, when g is not Lipschitz, has been shown to develop, in some
cases, a region of positive measure fx 2 ˝ W u.x/ D 0g. This region, which is
sometimes known as a dead core, has been studied in [2, 5].

Nonetheless, when the holes are of a sufficiently small size with respect to their
repetition, the behaviour of the limit changes and becomes(

��w C Bh.w/ D 0 ˝;

w D 1 @˝;
(5)

and h is a new nonlinearity, which we will introduce later, and B > 0 is a constant.

This change in behaviour, which is related to the pioneering paper [3], will be
linked to new surprising properties that arise with the use of nanoparticles (see [11]).
In this setting, the correct definition for the effectiveness of the limit problem is
unclear.

The aim of this paper is to show that homogenized problem is more effective
in the case associated with nanoparticles than the other cases. It represents a
mathematical proof of some experimental facts in the literature.
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2 Statement of Results

Let ˝ be a bounded domain in R
n, n � 2, with a smooth boundary @˝ and let

Y D .�1=2; 1=2/n. Denote by G0 D B1.0/ the unit ball centered at the origin. For
ı > 0 and " > 0 we define ıB D fx j ı�1x 2 B g and e̋

" D fx 2 ˝j�.x; @˝/ > 2"g.
Let

a" D C0"˛; (6)

where ˛ > 1 and C0 is a given positive number. Define

G" D
[
j2�"

.a"G0 C "j/ D
[
j2�"

G j
";

where �" D f j 2 Z
n W .a"G0 C "j/ \ e̋

" ¤ ;g, j�"j Š d"�n, d D const > 0, Zn

is the set of vectors z with integer coordinates. The reference cell is represented by
Fig. 1.

Define Y j
" D "Y C "j, where j 2 �" and note that G

j
" � Y

j
" and center of the ball

G j
" coincides with the center of the cube Y j

" . Our “microscopic domain” is defined
as

˝" D ˝ n G"; S" D @G"; @˝" D @˝ [ S";

which can be represented as in Fig. 2.
We define the space W1;p.˝"; @˝/ be the completion, with respect to the norm

of W1;p.˝"/; of the set of infinitely differentiable functions in ˝" equal to zero in a
neighborhood of @˝ .

We are interest in understating the comparison of the limits of (1) when ˛ 2
.1; n

n�2
/ and ˛ D n

n�2
, which are known as the subcritical and critical cases in

homogenization. The case ˛ D 1 was studied in [4]. In order to do this, we consider

Fig. 1 The reference cell Y
and the scalings by " and "˛ ,
for ˛ > 1. Notice that, for
˛ > 1, "˛T (for a general
particle shaped as T) becomes
smaller relative to "Y, which
scales as the repetition. In our
case T will be a ball B1.0/

T

Y = −1
2 ,

1
2

N

εαT

εY
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Fig. 2 The fixed bed reactor, i.e., the domain ˝"

the change in variable u D 1 � w, �.u/ D g.1/ � g.1 � u/ we have8̂̂<̂
:̂

��u" D 0 ˝";

@�u" C "���.u"/ D "��g.1/ S";

u" D 0 @˝:

(7)

The direct study of the family of solutions .u"/">0 is difficult, since they are not
defined in the same domain. We consider a family of linear extension operators
(see [10])

P" W fu 2 H1.˝"/ W u D 0; @˝g ! H1
0.˝/ (8)

such that

krP"ukL2.˝/ � krukL2.˝"/: (9)

We define the different possible limits u:

• If ˛ 2 �
1; n

n�2

�
then u D unon-crit, which for A D Cn�1

0 !n satisfies(��unon-crit C A�.unon-crit/ D Ag.1/ ˝;

unon-crit D 0 @˝:
(10)
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• If ˛ D n
n�2

then u D ucrit, which for B D .n � 2/Cn�2
0 !n D n�2

C0
A satisfies(��ucrit C BH.ucrit/ D 0 ˝;

ucrit D 0 @˝;
(11)

where H is the solution of the functional equation

n � 2

C0

H.s/ D �.s � H.s// � g.1/: (12)

We will start by indicating that, in the sense of maximal monotone graphs, in the
particular case of �.u/ D g.1/ � g.1 � u/ one has

Lemma 1 Let � be a maximal monotone graph, then the solution H of (12) is
given by

H.u/ D �
�

g�1

�
n � 2

C0

�
�

C Id

��1

.1 � u/: (13)

Hence H.u/ � 0 for every u 2 Œ0; 1	.

Remark 1 Notice that, in particular, in Eq. (5) we have

h.w/ D
�

g�1

�
n � 2

C0

�
�

C Id

��1

.w/ (14)

which is a nondecreasing function such that h.0/ D 0.

Lemma 2 Let � be a bounded maximal monotone graph of Œ0; 1	 � R, then H is
non-expansive in Œ0; 1	 (and hence Lipschitz continuous).

Proof If � 2 C 1.Œ0; 1	/, differentiating (12) with respect to s we derive

H0.s/ D � 0.s � H.s//
n�2
C0

C � 0.s � H.s//
2 .0; 1/: (15)

Hence,

jH.t/ � H.s/j � jt � sj (16)

for all t; s 2 Œ0; 1	. If � is a maximal monotone graph, let �ı 2 C 1.Œ0; 1	/ be an
approximation in the sense of maximal monotone graphs �ı ! � . In particular,
Hı ! H pointwise, and hence

jH.t/ � H.s/j � jt � sj (17)

which concludes the proof. ut
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We have the following homogenization result.

Theorem 1 ([12]) Let ˛ > 1, � D ˛.n �1/�n, � 2 C 1.R/ be such that �.0/ D 0,

0 < k1 � � 0.s/ � k2; (18)

and let u" be the weak solution of (7). Then, the extension P"u" converge as " ! 0

P"u" !
(

unon-crit if ˛ 2 �
1; n

n�2

�
;

ucrit if ˛ D n
n�2

;
(19)

strongly in W1;p
0 .˝/ for 1 � p < 2 and weakly in H1

0.˝/.
Since, in our case 0 � u" � 1 then we can have a simple corollary:

Corollary 1 Let � 2 C .Œ0; 1	/, nondecreasing and such that �.0/ D 0, then (19)
holds weakly in H1

0.˝/.

Proof Applying the estimates in [9] we check that .P"u"/ is bounded in H1
0.˝/,

hence there exists a limit Ou such that, up to a subsequence, P"u" ! Ou strongly in L2.
Let �ı be such that it satisfies Theorem 1 and �ı ! � in C .Œ0; 1	/ as ı ! 0. Let

u";ı the solution of (7) with �ı . We can check, again with estimates in [9] that

ku" � u";ıkL2.˝"/ � Ck� � �ıkC .Œ0;1	/: (20)

Passing to the limit as " ! 0

kOu � uıkL2.˝/ � Ck� � �ıkC .Œ0;1	/: (21)

On the other hand, applying the theory of maximal monotones graphs, it is easy to
check that Hı the solution of (12) with �ı satisfies Hı ! H in the sense of maximal
monotone graphs. In both cases, uı ! u in L2 where u is the solution of the problem
with H or � . Therefore u" ! u weakly as " ! 0. ut
It is known already (see [7]) that, for the non critical cases the effectiveness behaves
as expected

�" ! �; as " ! 0: (22)

However, in the noncritical case the reaction kinetics changes. Therefore it is not
clear whether it is natural to define the effectiveness in the usual way. Nonetheless,
we can give a pointwise comparison inequality. Let ucrit and unon-crit be the solutions
of (11) and (10):

Theorem 2 Let � 2 C .Œ0; 1	/ be such that �.0/ D 0. Then

ucrit � unon-crit: (23)
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Proof Since H.s/ � 0 we have that

BH.s/ D .n � 2/Cn�2
0 !nH.s/ D Cn�1

0 !n
n � 2

C0

H.u/ (24)

D Cn�1
0 !n .�.s � H.s// � g.1// D A .�.s � H.s// � g.1// (25)

� A .�.s/ � g.1// : (26)

Therefore, applying the comparison principle, ucrit � unon-crit. ut
Remark 2 Therefore, if g 2 C .Œ0; 1	/, the concentration w in the critical case is
always larger than in the non critical cases

wcrit � wnon-crit: (27)

Hence, we get a pointwise better reaction.

Remark 3 The basic convergence result given in Theorem 1 has been proved in
many different cases. In particular, for non smooth � in the form of a root or a
Heaviside function and nonlinear diffusion in the form of a p-Laplacian see [6]. The
case of Signorini type boundary conditions can be found in [8].
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