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Preface

Canceris one of the most prevalent causes of natural death in the western world, and
a high percentage of people develop some kind of this disease during their lives. For
this reason medicine is one of the scientific fields which found significant interest not
only within the scientific community, but also among the general population. The scien-
tific community comprises medicine, but alsther areas of research such us Biology,
Chemistry, Mathematics, Pharmacy or Physics. This is evident from the huge number
of research works and publications in the field and the great quantity of human and
economical resources which have been devoted to cancer research in the last decades.

The development and growth of a tumor is a complicated phenomenon which in-
volves many different aspects from the saltular scale (gene mutation or secretion of
substances) to the body scategtastasis This complexity is reflected by the different
mathematical models given for each phase of the growth. The first phase is known as the
avascularphase, previous teascularization and the second one, whangiogenesis
occurs, is known agascularphase.

The aim of this work is to present the study of the mathematical analysis, the con-
trollability and a numerical simulation for a simple, avascular model of growth of a
tumor. In Section 1, we describe the biological phenomenology of several processes
which influence the growth and development of tumors. The mathematical modelling is
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presented by describing different models of partial differential equations (PDE). We fo-
cus our attention on a class of models proposed RgENSPAN[1972] and B/RNE and
CHAPLAIN [1995], BYRNE [1999a], BrRNE [1999b], BrRNE and GHAPLAIN [19964],
CHAPLAIN [1996], CHAPLAIN [1999], ORME and CHAPLAIN [1995], THOMPSONand
BYRNE [1999], WARD and KING [1998], studied in RIEDMAN and REITICH [1999],

Cul and RRIEDMAN [1999], QuiI and RRIEDMAN [2000], Cui and FRIEDMAN [2001],

Diaz and TELLO [2004], Diaz and TeLLO [2003] and by other authors. We prove
the solvability of the model equations andadsish uniqueness of solutions under addi-
tional conditions. In Section 6, we study the controllability of the growth of the tumor
by a localized internal action of the inhibitor on a nonnecrotic tumor. It is obvious that
this type of results has merely a mathematical interest and it does not suggest any spe-
cial therapeutical strategy to inhibit tumgrowth. Nevertheless our results show that
there is not anybstructionto the controllability (as it appears, for instance, in some
similar PDE’s models: seei®z and RaMos [1995]). In a final section, we address the
numerical simulation of the problem.

1. Phenomenology

A tumor originates from mutations of DNA inside cells. In order to create malignant
cells, a sufficiently large number of such mutations has to occur. Factors for mutations
can be external radiation, hereditary causes etc. Eventually, such gene mutations induce
an uncontrolled reproduction, the onset of the formation of a malignant tumor. This
process continues as long as the malignant cells find sufficient supply, and will generate
a small spheroid of a few millimeters. During this time, called #wascularphase,
nutrients (glucose and oxygen) arrive at the cells through diffusion. As the spheroid
grows, the level of nutrients in the interior of the tumor decreases due to consumption by
the outer cells. When the level of concentration of nutrients in the interior falls bellow
a critical level, the cells cannot survive, a phenomenon calkxtosis and an inner
region is formed in the center of the tumor by the dead cells, which decompose into
simpler chemical compounds (mainly water). At this time, one can distinguish several
regions in the tumor: a necrotic region in the center, an outer region, whitosis
(division of cells) occurs, and a region ietween where the level of nutrients suffices

for the cells to live, but not to proliferate. Until this moment, the tumor mauticell
spheroidwhose radius is no more than a few millimeters.

The cells of the tumor secrete some chemical substances, knoWwmas Angio-
genesis FactoréTAFs). These substances diffuse through the surrounding tissue. TAFs
stimulateendotheliakells (ECs), located in neighboring blood vessels. Endothelial cells
are thin cells which form the basement membrane of the blood vessels. When ECs are
stimulated by TAFs, they destroy theembrane basement (by secretionpobteases
andcollagenasesand migrate towards the tumor forming capillary sprouts. These grow
thanks to the proliferation of ECs and other substances located in the extracellular ma-
trix (as fibronectin), forming a capillary network. Initially, the ECs move forming par-
allel vessels and as sprouts are closer to the tumor, the sprouts branch out and connect.

This process of formation of new vessels, knowmagiogenesids one of the most
decisive steps in the growth of a tumor. Angiogenesis is present in other contexts of life,
as well, like in wound healing or in the formation of embryos.
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The connection of the blood vessels to the tumor supplies nutrients to the malignant
cells, aiding a faster proliferation of the tumor’s cells. This phase of the tumor is known
asvasculature phasand is characterized by an aggressive growth.

Finally, the cells of the tumor invade the surrounding tissue and metastasizing to other
parts of the body. The circulatory and lymphatic systems are used by the malignant cells
for transport to another sites. The process in which cells leave the tumor and enter into
the vessels is known @stravasation Cancer cells, which survive in the blood flow and
escape from the circulatory system, arrive at a new site, where a new colony of cells
may grow. Fortunately, less than08 per cent of cells which were introduced in the
circulation are able to create new coloniEsch tumor has a preference to metastasize
to a specific organ.

During the growth of a tumor, thenmune systemompetes with the malignant cells;
it will be activated through the recogniticof the cancer cells by the immune cells.
MacrophagegMs) are a type of white blood cells, which migrate into the tumor to the
regions with low oxygenhypoxicregions) in the interior of the tumor through the ex-
ternal layer of well nourished cells of the tumor. Ms move to the tumor (by chemotaxis)
attracted bynacrophage chemoattractantghich is secreted by the tumor.@ytotoxic
substance is secreted into the tumor’s cell which kills it. Ms may also help the growth
of the tumor secreting other chemicailbstances which help angiogenesis.

Itis the main strategy of atlancer therapies (apart from surgery) to inhibit the growth
of tumors with tools adapted to the phase the tumoris in. E.g., chemotherapy or radiation
therapy are intended to destroy cells of tumor, other treatments try to stimulate cells of
the immune system. The first type of therapy is nonselective, destroying both, malignant
cells and cells of the immune system. Another therapy based on genetic engineering is
being studied. The idea is to insert a therapeutic gene into the cells of a patient and
re-inject them back into the patient.

2. Mathematical modelling

Mathematical modelling of the growth of a tumor have been studied by several authors
during the last thirty years in many different works.

Among the many different PDE models we can introduce (followirge®MAN
[2002]) a rough classification into two classes: the mixed models, in which all the dif-
ferent population of cells are continuously present everywhere in the tumor, at all the
times, and segregated models, perhaps less realistic but relevant for in vitro experiments,
in which the different populations of celtwe separated by unknown interfaces or free
boundaries. Our analysis will be restricted to the second class of models (some refer-
ences on mixed models can be found iBLBoMo and RREZz10SI[2000], DE ANGE-

LIS and RREZI0SI[2000], CHAPLAIN and FREZzI0SI[2002] and RRIEDMAN [2002]).
Moreover, we shall consider spherical tumors (for other free boundary type tumors,
without symmetrical shape, arising in tumoral masses growing around a blood vessel
see, e.g., BRTUZZI, FASANO, GANDOLFI and MARANGI [2002] or BazALlY and
FRIEDMAN [2003]).

In this section, we describe different rhamatical models for each phase. A first and
simple model describing the avascular phase was presenteRlEENEPAN[1972], as-
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suming spherical symmetry iR3. The outer boundary delimiting the tumor is denoted

by R(r) and the concentration of nutrients and inhibitorssbgnd 8, respectively. Ac-
cording to principle of conservation of mass, the tumor mass is proportional to its vol-
ume%nRS(t), assuming the density of the cell mass is constant. The balance between
the birth and death rate of cells is given as a function of the concentration of nutrients
and inhibitors. LefS be this balance, then after normalizing, we obtain the law

d <4 3 ) / - ~ ~
—( =Rt ) = S(o(x,1), B, 1)) dx
dr\3 (F1<R()} ( )

Depending on the author, the functiSican be written in differentways. REENSPAN
[1972] studied the problem in the presencemifrehibitor, and the pssibility that this af-
fects mitosis, when the concentration of the inhibitor is greater than a criticaldets
propose(f(o-, B)=sH(oc —6)H (B — B), whereH (-) denotes the maximal monotone
graph ofR? associate with the Heaviside function, i.B.(k) =0 if k <0, H(k) =1 if
k >0 andH (0) = [0, 1]. BYRNE and CHAPLAIN [1996a] study the growth when the
inhibitor affects the cell proliferation and proposea B)=s(c —&)B—B) (for a
positive constant). In the absence of inhibitors or in case that the inhibitor does not
affect mitosis, they choos’é(o, B) =so (o — ). FRIEDMAN and REITICH [1999] and
Cuil and RRIEDMAN [2000] study the asymptotic behavior of the radiRs:), with the
cell proliferation rate free of the action of inhibitors. They assumeﬁmats(o —0),
whereso is the cell birth-rate and the death-rate is givensBy(see also the survey
SLEEMAN [1996]).

We assume that the tumor is composed of an homogeneous tissue and that the dis-
tribution of the concentration of nutrientsis governed by a PDE in the spheroid. As-
suming that there is no inhibitor, that the tumor has not necrotic core and that diffusion
is high, we obtain the equation

diAoc =Xro, |x| <R,

whereio represents the nutrient consumption by cells dnds the diffusion coeffi-
cient.

In necrotic tumors, an inner free boundary appears, which is denoted:by It
separates the necrotic core (wheréalls belowo;,) from the remaining part. A model
for necrotic tumors was presented ity BNE [1997a], who proposes the equation

0=Ao —AH(|x| —,o(t)), x| < R(1),

where the effect of time-delay appears in the radial growth. In addition, asymptotic
techniques are used to show the effect of the delay terms.

Several authors (BAM [1986] and BRITTON and CHAPLAIN [1993]) studied a
model proposed by $rMKO and Q. AsSsS [1976] where cell proliferation is controlled
by chemical substancéarowth inhibitor factor(GIFs) as chalones. GIFs secreted by
cells reduce the mitotic activity. Two different kinds of inhibitors appear, depending on
the phase of the cell cycle stage at which inhibition occurs. The inhibitor can act before
DNA synthesis (as epidermal chalon in Melanoma or granulocyte chalon in Leukemia)
or before mitosis (see™ALLAH [1976]). The concentration of GIF (denoted &Y is
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modeled by one PDE in a bounded domgirof R3,

aC

5 =dACH[(O)+5(). xe2. (>0, (2.1)
aC

DZ—+PC=0. xci2. 1>0 P>0, (2.2)
n

C(x,t)=Cox), xe€8, (2.3)

where S(x) is a source term ang (C) represents the decay of GIF (se®&/ and
BELLOMO [1997]).

In 1972, REENSPAN[1972] proposed a radially symmetric model employing the
Heaviside functior”d for modelling the necrotic part. The avascular model considers a
chemical inhibitorg, which is produced in the necrotic core. The distribution of nutri-
entso is given by the equation

do

Y diAoc = —\(og — a)H(|x| - p)H(R — |x|), (2.4)

whereR is the outer boundary of the tumor apds the radius of the necrotic core.
The chemical substancg™ (produced within the tumor) inhibits the mitosis of can-
cer cells without causing their death and satisfies the diffusion equation
ap

5—d2Aﬂ=PH(|x|—p)H(R—|x|)—PdH(p—|x|). (2.5)

This model, proposed by Greenspan, has been studied by several authors in the last
thirty years. We shall focus on the study of a similar model and detail the modelling and
some mathematical results in the next section.

When asymmetric distribution of nuémts or displacement of cells produced by
nonuniform density appears in the interior of the spheroid tumor, the internal forces
may break the symmetry of the outer boundary. Several authors have studied, in dif-
ferent models, the symmetry breaking of the boundaREB\NSPAN[1976] studied a
model where the pressupeof the cancer cells satisfies

Ap=3S,

inside the tumor, wheréd is the rate of volume lost per unit volume (assumed con-
stant). The distribution of nutrients satisfies a elliptic equation outside of the tumor.
Using Darcy’s law, (the velocity of the boundary is proportional to the gradientgf
that isv = uV p, with suitable boundary conditions fgr ando, Greenspan obtains
nonsymmetric explicit solutions using spherical harmonics.

Darcy’s law has been used in different models in order to describe the movement of
the free boundary. BRNE [1997b], BrRNE and GHAPLAIN [1996b] and B'RNE and
MATTHEWS [2002] propose similar models improvingREENSPAN[1976]; they study
the stability of radially symmetric solutions via perturbations with spherical harmon-
ics. FRIEDMAN and ReITICH [2001] study the bifurcation of non-symmetric solutions
from any radially symmetric steady state. Bessel functions are userlBDMAN and
REITICH [2001] and also in RIEDMAN, Hu and VELAzZQUEZ [2001] in a protocell
model.
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LEVINE, SLEEMAN and NLSEN-HAMILTON [2000] and LEVINE, PAMUK, SLEE-
MAN and NLSEN-HAMILTON [in press] (see also biLMES and S EEMAN [2000]) de-
veloped models of angiogenesis based on analysis of the relevant biochemical processes
and on the methodology of the reinforced random walk 0H@ER and SEVENS
[1997]. A mathematical analysis of the model proposed BvINE, SLEEMAN and
NILSEN-HAMILTON [2000] have been performed inONTELOS, FRIEDMAN and
Hu [2002]. Their model involves several diffusing populations and several chemical
species. Another model of angiogenesis with one diffusing population and two non-
diffusing ones, was developed inNdERSONand CHAPLAIN [1998] and GIAPLAIN
and ANDERSON[1997]. They denote the density of the endothelial cellpbthe con-
centration of the tumor angiogenesis factor (secreted by the tumat)dnydw repre-
sents the density of the fibronectin cells, then

ap . o ow

— =div|Vp—pl—V \% , — = 1—w),
» < p p<1+c c+p w)) a7 yr(1—w)
dc

or . MPS

wherec, p, y andu are positives constants. The asymptotic behavior of the solutions
has been studied for some values of the parameters and special initial detaimAN
and TELLO [2002]. A computational approach is used by ¥NCIANO and CHAPLAIN
[2003a], \WLENCIANO and CGHAPLAIN [2003b] to obtain numerical solutions for simi-
lar models. [EVINE and S EEMAN [1997] study the chemotaxis equations developed in
the context of reinforced random walks. They use the classification of the second order
part of a modified equation in the “Hodograph plane” and study the existence of blow
up of solutions in finite time.
Recently, BERTUZZI, FASANO, GANDOLFI and MARANGI [2002] have developed a
model for the phase transition in tumor cells and their migration towards the periphery.
The macrophages cells are part of the response of the immune system to cancer; their
movement has been modeled by different authors (seeroand S1ERRATT [1999]).

3. A simple mathematical model

In this section we describe a simple mathematical model which will be studied through-
out the remainder of this work. It belongs to a group of first generation cancer models
with Greenspan’s model (2.4), (2.5) being one of the earliest ones. Similar models have
been proposed and studied by several authorg(& and CHAPLAIN [1996a], RRIED-
MAN and REITICH [1999], QuI and FRRIEDMAN [2000], Qui and FRRIEDMAN [2001]
and Diaz and TELLO [2004], Diaz and TELLO [2003]). We assume that the density of
live cells is proportional to the concentrations of the nutrient$he tumor occupies a
ball in R® of radiusR(r) which is unknown (which is reason why is usually called
the free boundary of the problem).

The tumor comprised a centracrotic core of dead celld)& necrotic core is covered
with a layer (of living cells) resulting in a second free boundary denoted (by in
GREENSPAN[1972].
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The transfer of nutrients to the tumor through the vasculature occurs below a certain
levelop, and it is done with a rate . During the development of the tumor, the immune
system secretes inhibitors as a immune response to the foreign body. The structure of
inhibitor absorption is similar to the transference of nutrients (for a consgntf
we assume that the nutrient consumption rate is proportional to the concentrations of
nutrients, the nutrient consumption rate is giveniay. Both processes, consumption
and transference, occur simultaneously in the exterior of the necrotic core, where cells
are inhibited by3. We assume that the host tissue is homogeneous and that the diffusion
coefficientds, is constant. The reaction between nutrients and inhibitors can be globally
modelled by introducing the Heaviside maximal monotone graph (as functioyafd

A

some continuous functiong (s, 8). Thens satisfies

do N N
T diAo € r]_((O'B —0)— A0 — k,B)H(U —oy) + g1(o, B). (3.1)
We also assume a constant diffusion coefficient for the inhibitorgoncentlzé,tidm
The model considers the permanent supply of inhibitors, modelef &yd localized
on a small regiomg inside the tumor. This ternfi was introduced in nz and TELLO
[2003] to control the growth of the tumor. Th@nsatisfies
op

3, ~d20B € —ra(B — Bp)H (o —0n) + &2(0, B) + f Xeos (3.2)

adding initial and boundargonditions, we obtain

o n=0o, PEH=PF |F=R0), (3.3)
o(x,0)=00(x),  B* 0 =po(), [X|<Ro. (3.4)

In this formulation, the presence of the maximal monotone grdpis the reason
why the symbole appears in Eq. (3.2) instead of the equal sign (a precise notion of
weak solution will be presented later). Qifent constants appears in the equations and
boundary conditions which lead to a wide variety of special cagess the level of
concentration of nutrients above which the cells can live (below this level the cells die
by necrosi3, @ and are the concentration of nutrients and inhibitors in the exterior of
the tumor. The diffusion operatay is the Laplacian operator and,, denotes the char-
acteristic function of the seig (i.e., xu, (¥) = 1, if X € wo, andy,, (¥) = 0, otherwise).

Notice that the above formulation is of global nature and that the inner free boundary
p(t) is defined implicitly asthe boundary of the sdi € [0, R(¢)): o < g,,}. So, if
for instance, the initial daturag satisfiesog(x) = o, on [0, pol, for somepg > 0 and
g1(oyn, B) €10, r1(op — 0,) — Aoy, ] for any B > 0O, the above formulation leads to the
associate double free boundary formulation in whickatisfies

do R n ~

T diAc +r0 =r1(op — o) +g1(0, B), p@) <|x| < R(1),
O-(ivt)zo-ﬂv |i| <p(t)7
o(x,1)=0, IX| =R(@),

R(0) = Ro, p(0) = po, o(x,0) =o00(X), po < |X| < Ro.



196 J.I. Diaz and J.1. Tello

The free boundarR(z) is described by the ODE presented in Section 2,

E<‘—17rR3(t)> =/ S(o (&, 1), B(E,0)dF,  R(0) = Ro. (3.5)
dr\3 (1F1<R(®)}

4. Existence of solutions

In this section, we study the existence of solutions to (3.1)—(3.5) after introducing some
structural assumptions ofy andS. We also introduce some functional spaces and a
useful change of variables. The existence result is presented in Theorem 4.1 and proved
by using a Galerkin approximation based on a weak formulation of the problem.

We shall assume that the reaction tergasand the mass balance of the tuntor
satisfy:

¢; are piecewise continuous |g;(a, b)| < co + c1(lal + |b]), (4.1)
S'is continuous and — o < S(a, b) < co + c1(lal® + |b]?) (4.2)

for some positives constants, co, c1.

The above assumptions ((4.1) and (4.2)) do not constitute biological restrictions, and
previous models satisfy them providedindg are bounded. They are introduced in or-
der to carry out the mathematical treatment, and its great generality allows us to handle
all the special cases from the literature previously mentioned. They are relevant due to
its generality. It is possible to show thaet absence of one (or both) of the conditions
implies the occurrence of very complicatedithematical pathologies, and much more
sophisticated approaches would be needed for proving that the model admits a solution
(in some very delicate sense).

We introduce the change of variables,

x = (x1,x2,x3) = %, (4.3)

u(x,t) = G(R(t)x, t) -0 (4.4)
and

v(x,1) = B(R()x, 1) — B. (4.5)

Let the unit ball{x € R3: |x| < 1} be denoted by and define functions from? to
2% py

gi(c —o,B —E) = (F1((op — 0) = 210) = AB)H (0 — 0n) + §1(0, B), (4.6)
g2(0 =0, B —B):=—r2B — Bp)H (0 — o) + §2(0, B),
e = 4 ey
S(c—o.8—B):= gS(a,,B) (4.7

fe, )= f(xR@),t),  @h={(x,1)eBx[0,T]: R(t)x € wo}.
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Problem (3.1)—(3.5) becomes
au di R'(t)

— = ——Au-— v B

ot RGP u RO x-Vu e g1(u,v), xX€B, t>0,

v do R'(t)

—— v— x-Vvegou,v)+ fxz, xeB,t>0,

at R( )2 R ¥ da (4.8)
R(t)™ d——fBS(u v) dx, t >0,

M(.X,t)_ U(.x,t)_ s xeaB, t>0,

R(0) = Ro, u(x,0) =uo(x), v(x,0) =vo(x), x€B.

We introduce the Hilbert spaces
H(B):=L*(B)*>.  V(B)=Hy(B)*
and define inner products by

(‘P,W}H(B)Z/ ¢~ll/tdx, Cp lI/ V(B) Z d /(V@i)t -Vll/i dx
B i=1.2

forall @ = (@1, ), ¥ = (¥, ¥2).

For the sake of notational simplicity we usle=H(B) andV =V (B). GivenT > 0,
we introducel = (1, v), Ug = (uo, vo) and defing : R2 — 28 x 28 andF : (0, T) x
B — R? by

GW) = (g1(u,v), g2, v)),  F(t,x)=(0, f(t, ) xz1)-
We have

|GU)| = |g1(u, v)| + |g2(u, v)| < Co+ C1IU| = Co + Ca(Jul + |v]). (4.9)

DEFINITION. (U, R) € L%(0, T : V) x WL>(0, T : R) is a weak solution of the prob-
lem (4.8) if there existg™ = (g7, &3) € L2%(0, T : H) with g*(x,1) € G(U(x,1)) a.e.
(x,1) € B x (0, T) satisfying

T T T
/ —(U, ®)n dt+/ at, U, ®)dr= | (g, @) dt
0 0 0

T
(U 2O+ [ (F0). 0,
0
V@ € L2(0,T : V)N HY(0, T : H) with &(T) = 0, where
N 1 R'(1)
D)= —— D)y — -VU, @ 4.1
a,u,®) Rz(t)w, v RO (x - VU, @) (4.10)
andR(z) is strictly positive and given by

1dR(1)
dr

R()™ =/ S(Ux,n)dx forre (O, 7).
B
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DEFINITION. (o, 8, R) is a weak solution of (3.1)—(3.5) if

(F,1) = it +5 and B@E.1)= ir +8

o(x,t)=u R(t)’ o X,t)=v R(t)’ s
fort € (0, T) andx € R3, |¥| < R(¢), where(U = (u, v), R) is a weak solution of (4.8)
foranyT > 0.

REMARK 4.1. The definition of weak solution and the structural assumption& on
imply thatdU /dr € L2(0, T : V(B)’) and the equation holds i’ (B x (0, T)).

THEOREM 4.1. Assume(4.1), (4.2) Ro > 0 and oo, Bo € L?(0, Ro), then problem
(3.1)—(3.5)as at least a weak solution for eagh> 0.

PROOF We shall use a Galerkin method to construct a weak solution.R(et €
w120, T : R) such thatR'(r)/R(t) > —ig a.e.t € (0, T). For fixedt € (0, T), we
consider the operatds(r) = A(R(1)) : V — V' defined by

Au—BO vy 0
A(R(t))(U)z( Rup A~ )

d R'(1)
0 R(zZ)ZAv_ ‘X Vv
A(r) defines a continuous, bilinear form dhx V,

ait:-,):VxV—->R
fora.e.r € (0, T) (see (4.10)). Sinc&'(r)/R(t) > —Xo, a satisfies

ait,U,U) = (U,U)V—R—(x-VU,U)H

R?(1)
1 R (t)

=720 Y YT k0

_2 A0 5
Z | maxR(s ) Ulig — = IU13.
(max{rR()}) 10N - VI O

(U, U

Now we establish soma priori estimateswhich will be used later. In fact, those
estimates can be applied even for other existence methods, different from the Galerkin-
type one, as, for instance, iterative methods, fixed point methods, etc. (see, for instance,
SHOWALTER [1996]).

LEMMA 4.1.

1UN1E < C(exp{(ro+2C1+ DT} = 1) + I F 1720 ) + 1Vl

PROOF InsertingU! as test function into the weak formulation of (4.8), one obtains

d

dt/ ledx—i-a(t U, U)+/g (U)HU' dx = /F U dx
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for someg* € L2((0, T) x B)? andg*(x,1) € G(U(x,1)) fora.e.(x,t) € B x (0, T).
The definition ofa yields

1 d
IIUIIH IIUIIH (Ig*In +IEI) U In- (4.11)

Thus by Young's mequallty and (4.9) imply

1d o (ko 1, . )
S—|U c U C2+IFII3).
2dt” Il (2 +C1+ )II [FES 2( o+ IFIIR)

Integrating with respect to time, we get

1 5, 1 2 1 1
EIIUIIH—EIIUOIIH— 2 +C1+ ||UI|L2(OTH) 2(C0T+||FI|L2(0TH))
and by Gronwall's lemma,

U1 < C§(exp{(ro+2C1+ DT} = 1) + I Fli72g 7y + IV0lIF < C.  (4.12)

O
REMARK 4.2. Sincel is bounded irH (by (4.12)),R satisfies
t p1
R(7) = Roexp{// S(U)dxdt} < Roekt! (4.13)
0Jo
and
R(t) > Roexp{—Aot}, (4.14)
consequentlyR € W10, T).
LEMMA 4.2. |Ull2¢0.7:vy < K(T, F, G, Uop).
PROOF SelectingU as test function in (4.8), we have
D 2
RgezKlT ”U”LZ(O,T:V) - ?”U”LZ(O,T:H)
S CuUIZ 20741y + (Co+ I F 20,70 1U 20,7210
By (4.12), we get
1UN20,7:v) < K(F, G, Uo, T). (4.15)
(Il

REMARK 4.3. By Lemma 4.2 and Remark 4.2, we get that

d1 do
= Au e L0, T:L*B)), v — ahve L?(0, T : L*(B))
and obtain the extra regularity

U, AUe[L?(0,T:L%B)]. (4.16)
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Now, as previously in the proof of Theorem 4.1, we consider the approximate prob-
lem

% + A(R*())U* =G#(U)+ F(t) onB x(0,7T),
U?(0, x) = U, U¢=0 onodB, (4.17)

1 dR® \
= _/BS(U)dx,

whereG*® = (g1, g5) is a Lipschitz continuous function such that

G* — G whene — 0 a.e. inR2.

G°¢ is obtained replacing/ by

0 ifs<0O, L
s .
2 <s< =
HeGs) =1 : ifO<s o
1 ifs>-.
&

Now, we apply the Galerkin method to the approximated problemal.end¢,
H(}(B) for n € N be the eigenvalues and eigfunctions associated toA satisfying

_A¢n = )Ln‘l’m

We considerV,, the finite-dimensional vector space spanned{y,..., ¢,,}. We
search for a solutiolV;, € L?(0, T : V,,) of the problem

d
—Ug + A(R (D) UL = GE(US) + Fu (1),

dr
Un (0 =Ug s (4.18)
RE (1)~ 1R, () /S(U,;(x,r))dx,

dr B

where the initial conditiong/g,, = P,(Uo) (where P, is the orthogonal projection
from L?(B) ontoV,,) andF,, = P,,(F). Then

R (t)_Roexp{// U; (x, s) dx ds}

PrRoOPOSITION4.1. (4.18)has a unique solutiot!, for any T < co.

PROOF Problem (4.18) can be written as a suitabbnlinear ordinary differential sys-
tem. LetUf, = (uf,, vf,) be defined by

uh, =Y a" O, VEO= D b"(O¢n

n=1,...m n=1,...m
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and denote
a™ = (ai",ag",....ay"), b= (b{". 5", ... b)),
Ao = (r1a", .. amal) and A= (A1b{", .. AmbiM).

Thena®”, b*" andR;, satisfy

W e e DL (6 = g (0 b7,
b + (;;)2 + ¢e (@™, b)Y LY (a*", b*™) = g (a"™, b*™) + F™ (1),
Ko — (a0,

where
ou(a ™) = [ s(w)a,
L’f(a“",bf’")=/3x.wfn¢ndx forn=1,...,m,
L’Z"(a”",bsm)z/Bx Vol ¢pdx forn=1,...,m,

g’l"(am,bm)z/gi(u;,vfn)%dx forn=1,...,m,
B

g?(a”",b”"):/gé(ufn,vfn)qﬁndx forn=1,...,m.
B

Since G, is a Lipschitz function, we obtain that there exists a unique solution
at®, b, R*™ to the system fofl small enough. Moreover, (4.12) and (4.14) hold,
and we get the existence of a solution of (4.18) for &hy co. By (4.15) and (4.16),
(U5, QUE) =100 is uniformly bounded inL?(0, T : V) x L?(0,T : V). So, there

exists a subsequen¢g,, € L2(0, T : V) with $U2, € L2(0, T : V') such that
5 d & 5 d & i 2 2 /
Upin g Uni ) = (U U ) weaklyinZ2(0.7:V) x L30.T : V).

andR? . — R® weakly in WLP(0, T) for p < co. Taking limits whenmi — oo, we get
the existence of a weak solution to (4.17) for @y co.

To end the proof of Theorem 4.1, we take limits in the equation when 0. We
employ (4.12) and (4.14) and the compact embedtHégB) Cc L*(B) (for s < 6) in
order to obtain the existence of a subsequéritesuch that

U U inL?(0,T:[L°(B)]?)
and in particular

U > U inL?%O0,T:H)



202 J.I. Diaz and J.I. Tello
(see, e.g., MON [1987]). Since
H*(u*+o)—~heHu+c) weaklyinL?(0,7 :L*(B))
and
v¥ —> v inL30,T:L°(B))
(see Lemma 3.4.1 of KABIE [1995]), we have
G (U*) — g* € G(U) weaklyinL'(0, T : H).
Since|R'| < C, there exists a subsequenRg; such that

Reijj —~ R weaklyinWh7(0,T), p < oo,

and we deduce tha&,;; — R in CO([0, 7). Finally, taking limits in the weak formula-
tion of the problem (4.17), we get

T T T T
[ wioma+ [ ako.v.eya+ [ omd= [ roma
0 0 0 0
forall ® € L2(0, T : V) and, moreover,
R(r)—1w=/ S(U(x, 1)) dx
dr B

Notice that

/ glj/x Vg dx dt = / w/uﬂjl//—ug,]x Vi dx dt
Rezj 8!]

/ gl]/x Vugijp dx dr = / gljfvgl]w—vs,]x Vi dx dr.
81] 8’]

We conclude thato, 8, R) defined by

o(t,X)=u < R()>+0 and B(r, x)—v(,%)-kﬁ

is a weak solution to (3.1)—(3.5). The additional regularity

—diAc  and ,3;—d2A,36L2< U (O,R(t))x{t})

1€[0,T]

follows from the fact that

aa_ltj(t) +A(RM)U ) € L3(0, T : L¥(B)?). O
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5. Uniqueness of solutions

We begin by pointing out that if, for instance,

riop

. riop>0, 81(6.8
Y 108 g1(o, B)

On 2

is a decreasing function &f and independent of and the initial datunwo(%) is such
thatoy(po) = o (p0) = 0, then itis possible to adapt the arguments ofDand TELLO
[1999] in order to construct more than one solution of problem (3.1)—(3.5). This and the
presence of non-Lipschitz terms at both equations clarify that any possible uniqueness
result will require an significant set of additional conditions.

In this section we prove the uniqueness of solution for two different cas@sal
FRIEDMAN [2000] prove uniqueness of radial symmetric solutions without forcing term

(i.e., f=0).
5.1. 3-dimensional case with forcing term

When a tumor does not have a necrotic core, Egs. (3.1) and (3.2) simplify such that
reaction terms become linear, i.the nutrients concentratiah and the inhibitors con-
centrationg satisfy

~

9 )
a_(: — 1A —Fi(op —6)+ 16 + 2B =0, x| <R@), 1 €0, T),
B . .

B —d2AB —12Bp — B) = fXwo» x| <R(), t€(0,T).

For notational convenience we shall assume that the diffusion coeffiedlearsdd,
are equal and constadit = d> = d. Thus by normalizing the unknown densities

F108 + AB3

(Fr+r1) F=F=Ps

0c:=06—
and setting

. 3~ 4
ri=r1+ A, S(o, B) :=—5(0,B),
4

we arrive at the formulation

do

= —dAa+no+A=0, |x|<R(), 1€OT), (5.1)

%_dAﬁ+r2ﬂ=wao, Ix| < R(1), t €(0,T), (5.2)

R(1y2 3RO =/ S(c,B)dxr., R(0)=Ro, t € (0,T), (5.3)
dr Ix|<R(t)

o(x,0) =o0(x), B(x,0) = Bo(x), Ix| < Ro, (5.9

o(x,t) =0, Bx,t)=pB, |x|=R(@), te(0,T), (5.5)
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where Ro > 0, the normalized nutrient and inhibitor densities at the exterior of the

tumora, B and the initial densitieéro, Bo) are known. We introduce again the changes
of unknown and variables (4.3)—(4.5) and set

t
(1) ;=/O R™2(p) dp. (5.6)
Note that sinceR is a continuous function and/k%(r) > 0, we obtain thaf(r) €

cio, T]) and employing the implicit function theorem, one derives the existence of
the inverse function(f) € C1([0, T]). Then, problem (5.1)—(5.5) reduces to

% + A() + R?riu = R*(ric + AM(v+B)), ie€B, (01, (5.7)
% + A@) + R%rpv = szxag — R%B, ieB,icT), (5.8)
R(f)%R(f) = /B S(uE, 0 +7, v, 1) +?)di, R(0) = Ro, (5.9)
u@ H=vE )=0, FedB, ie(0T), (5.10)
u(x,0) = uo(x) = oo(x Ro), v(x, 0) = vo(¥) = Bo(X Ro), (5.11)

whereT = (T), 56 = {f € B: R(t(I))x € wo}, for any7 € [0, T] and
A(w) := —dAw — RRX - Vw.

We assume that

S e wh>(Rr?), (5.12)
Frz €LP(O. 1) x2), p>4, (5.13)
(00, o) € W2 (B(Ro0))". (5.14)

LEMMA 5.1. Assumg5.12)—(5.14)then the solutior(u, v, R) to the problem(5.7)—
(5.11)satisfies

ueL!(0,7:W?4(B) W4 (0,T : L1(B))
forall 1 < ¢ < oo and

veLP(0,T: W2P(B))nWhP(0,7T : LP(B)).
PROOF By Theorem 4.1, we know that

(u,v, R) € [L2(0, T : HY(B))]? x W->(0, T).
Sincevg € H%(B) and f € L?((0,T) x B), we get

ve WhP((0,T) x B)NLP(0,T : W>P(B))

(see, e.g., BDYZENSKAJA, SOLONNIKOV and URALSEVA [1991], Theorem 9.1,
Chapter IV). Sincey > 4, WL-7((0, T) x B) C L°°([0, T] x B), hence
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ueWhi((0,T) x B)nLI(0,T : W24 (B)),

for ¢ < oo. Consequently, we g&t € W27 (0, T). U

One obtains from the lemma, in view &fy” (B x [0, T1) € L>(B x [0, T) (for
p > 4) the following corollary.

COROLLARY 5.1. u,v € L®(B x [0, T]).

Utilizing the cortinuous embedding

Wh4(0,T) x B)NLI(0,T : W21(B)) c L?(0, T : W->(B)),
WP((0,T) x ByNLP(0,T : W2P(B)) C L2(0, T : W->(B)),

and undoing the change of variables and unknown (4.3)—(4.5) and (5.17), we obtain
COROLLARY 5.2. Under the assumptions of Theordni, we have
! 2 2
/0 (||G||Wl-°°(R(t)) + ”ﬂnwloo(R(t))) dt < kO
for somekg < oo.

The uniqueness of solutions is established in the next theorem.

THEOREM 5.1. Let f € LP(wo x (0,T)) with p > 4, and (o9 — o, Bo — ﬁ) €
W2S(B(Ro)) N Hy(B(Ro)), for s > 4. Then, there exists a unique solution(f1)-
(5.5)

PROOF In arguing by contradiction, we assume that there exist two different solutions
(01, B1, R1) and(oz, B2, R2). Let

R(1) =min{R1(1), R2(1) }, 0 =01—02, B=pB1— P2
Then(o, B, R) satisfies the problem,

aa—f—dAo+r10+w=0, x| < R(t), 1 €(0,T), (5.15)
%_dAIB—i-rzﬂ:O, x| < R(1), 1 € (0, T), (5.16)
o(x,0)=0, B(x,00=0, |x|< Ro, (5.17)
o(x,t)=01(x,t) —o2(x,1), |x|=R(t), t€(0,T), (5.18)
Blx.1)=Pi(x.1) — Pa(x. 1), |x|=R(®), 1€ (0,T). (5.19)

We introduce a new unknown defined by

z=kio — k2,
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with

A .
k]_:l, k2= |frl¢r2,
1 ri—r2

k1= -, ko =
! 2 2 r1— 2r2

By construction ot;, we have

if ri=rp#0.

3
O dAz+4rz=0, |x|<R@®), te(0,T),

ot
z(x,0)=0, |x| < Ro, (5.20)
z=kio —k2p, |x| = R(1), t € (0, T).

We need the following preliminary result.

LEMMA 5.2. Letz be the solution to the probles.20)and 8 the solution to(5.16)
(5.19) then€t'z and €2’ 8 take their maximum and minimum o = R(z).

ProoF Multiplying Eqg. (5.20) by &, we obtain that '@’ satisfies

%(e’ltz) —dA(€Yz) =0, |x|<R(@), t€(0,T),

z(x,0) =0, |x| < Ro, (521)
gz =€V (k1o — kop), x| =R(), t€(0,T).

In the same way,’® 8 satisfies
3(erzt/a) —dA(€7B) =0, |x|<R(), te(0,T),
ot 5.22)
B(x,0 =0, Ix| < Ro, (5.
€2 =€e?(B1— pa), lx|=R(), t € (0, T).

Applying Corollary 5.1, we obtain that®¥z and &2’ 8 are bounded. Let
7 =maxq{eVz(x,1),1€[0,T],x €dB(R(1))},
Zex =Minf{&Vz(x,1),1 €[0, T], x € 9B(R(1))},
B =max{e? B(x,1),1 €[0,T],x €dB(R(1))},
B =mMin{&? B(x,1),1 €[0,T],x € dB(R(1))}.
Notice thatz** > 0, f** > 0, z4+ < 0 andB.s < 0. Let Ty andT* be defined by

k, ifs>k,
s, ifs<k.

I R koo
Tk(s)_{k, if s < k. and T(s)_{

Taking To(€'Y z — z**) as test function in (5.21) and integrating by parts aR€R(r)),
we arrive after some manipulations at

d / [To(¢'z — 2**)]°dx <O.
dt Jra)
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We deduce that’gz takes his maximum onx| = R(¢). In the same way, taking
791z — z,.) as test function, we obtain

Zax <€V < 7 (5.23)
The proof of

Bax <€ B < B, (5.24)
is analogous. a

END OF THE PROOF OFTHEOREMb5.1. Giverr € [0, T'], we can assume, without lost
of generality, thatR1(¢) < R2(r). Consider

RZ(t)R1(1) — R5(1) Ro(t) = / (S(o1, B1) — S(02, B2)) dx

B(R(1))

—/ S(o2, B2) dx.
Ry(t)<|x|<Rx(t)

SincesS is bounded, then

/ S(02, B2) dx' <N|R3() — R3(1)| < M|R1(r) —
Ry()<|x|<Ra(r)

whereM depends only ofS|.~. SinceS is Lipschitz continuous, integrating in time,
it results

T
/ / |S(o1. 1) — (o, o) cx
0 JB(R())
T
g/ / S| wiee ) (SUPlo | + sup|B]) dx dr
B(R(1))
T
/ / ko<— sup|z+k2ﬂ|+sup|ﬂ|)dxdt
0 JB(R()) k1

T
// C (suplz| + sup|B]) dx dr
0 JB(R()

T
/ / C(suge "'e&z| + suge "2'&? B|) dx
0 JB(R())

T
/ / C (€7 sugert'z| + €27 suger? ) dx dr
0 JB(R®)

</ / ka(suge'z| + suge’? B|) dx dr.
0 JB(R())

From Lemma 5.2, we know

T 37 T
/ / sude“’z(x,t)|dxdt<e’1T—/ R3(t) sup |z(x,1)|dr.
B(R(1)) 4 Jo Ix|=R(1)
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By Corollary 5.2, we deduce that

T
2 2
/0 (”O'ZHW].,OO(B(R(I))) + ”ﬁznwl,oo(B(R(t)))) dt g KO,

and consequently,

T
2
/0 ”Z”Wl,oo(B(R(t)))dt g K

Since

€Vz(x, 1) = e“’(kl(cfz(x, 1) _5) - kz(ﬁz(x, 1) — E)) on|x| = R(),
we deduce

T
e”Ts—n/ R3(t) sup |z(x,n)|dr
4 Jo Ix|=R(t)

T
< k4/0 llo2llwice Ry T ||ﬂ2||wl-oo(B(R2(;)))|R1(f) - R2(1)| dr

T

_ 1/2 2

<ka _sup |R1(t) = Ro()|T / (o203 00 B(Rp 001y
<t<T 0

2
+ ”0-2” Wl.OO(B(RZ(t)))) dt

<k sup [Ri(t) — Ro(1)|TY2.
O<t<T

In the same way,

O<t<T

T
/ / kasuplB|dxdr <k sup |Ru(r) — Ro(1)|TY2.
0o JBR®)
Then

T
/ |RZ(1) R1(1) — R5(1)Ro(1)| dt < Co sup |R1(t) — Ro(0)|(T + TY?). (5.25)
0 0

<t<T

Let § = max¢jo,71{R1(t) — R2()} then
|R3(t) — R3(1)] < 3Cod(T + TY/?),

since|R3(t) — R3(1)| = 3R3|R1(1) — Ra(1)|, it follows 8 < ko8 (T + TY/2). Furthermore,
fT <Th= min{1/4k§, 1}, necessarilyR1 () = R2(¢). Since &’z and €2 8 take their
maximum and minimum o®R(z) = R1(¢) = R2(t), andR(?) is zero, =0 andz =0,
and we deduce = 0. Repeating the process, starting now frém we conclude the
uniqueness of solutions for affy> 0 providedR(T) > 0. |

REMARK 5.1. Other qualitative properties of the solutions of this type of models have
been studied in the literature by different authors. In particular, we mention the study
of the asymptotic behavior, when— +oo (see, e.g., BRNE and CGHAPLAIN [1996a],
FRIEDMAN and REITICH [1999], QuI and FRRIEDMAN [2000], Cul and FRRIEDMAN
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[2001]) and the continuous dependence arfidrbation phenomena with respect to pa-
rameters (see, e.g.,YBNE and GHAPLAIN [1995], FRIEDMAN and REITICH [2001],
FRIEDMAN, HU and VELAZQUEZ [2001], among others).

5.2. Uniqueness of solutions with radial symmetry

Let (6, B) be a solution of problem (3.1)—(3.5) without forcing term (i.+ 0). We

assume the solution is radially symmetric and define 5 — 7, 8 =  — B andr = |x|.
Then(o, B) verifies

%_j_%;_r<r2;_ra>egl(a’ﬁ)’ O<r<R(@), 0<t<T,
B d2d (9 )\
5_7237<r a—rﬂ>—g2(0,ﬁ), O<r<R@®),0<t<T,
R(1)
R(z)zdlém =/ S(o, pyredr, O<r1<T,
, d 30 (5.26)
9 0.n=0 Lon=o 0<t<T,
ar ar
o(R(1),1) =0, B(R(1),1) =0, O<t<T,
R(0) = Ro,
o(r,0) =o0(r), B(r,0) = Bo(r), 0<r <Ro,
whereg; are given by
2100, B) = —[(r1+ M) (0 +7) —riog + (B +B)|H (o +5 —02), (5.27)
g2(0, B) =—r2(B + B). (5.28)
We will assume in this subsection that
S € W5 (R?), (5.29)
S is an increasing function i and decreasing iff, (5.30)
> rnos —p (5.31)
r+Aa

and the initial datdoo =6 — &, Bo = fo — E) belong toH2(0, Ro) and satisfy

900 n=0, Pon=o0 o0<i<r. (5.32)
ar ar
o(R(1),1) =0, B(R(),1)=0, O<t<T. (5.33)

THEOREMS5.2. There is, at most, one solution (6.26)

We will use some earlier results in the proof.
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LEMMA 5.3. Every solution(o, B) of the problen(5.26)is bOlinded and satisfieg <
o <op and—p < f < maxX{ o} providedo, < oo < op and—p < fo.

PROOF By the ‘“integrations by parts formula” (justifying the multiplication of the
equation byTp(c — op) and posterior integrations in time and space, seg and
LUCKHAUS [1983], Lemma 1.5), we have

1

R(?) 2 t rR(s)
5/ [To(a — UB)] r2dr < / / g1(o, B)To(o — op)r?drds.
0 0 JO

Since
—[r14+1)(0 +5) —rios + (B+B)]H(0 +5 — 0x)Tolo — o3)
= —(r1+ M To(o —op)* — [r1+2) (0B +T) —riop+ (B — E)]TO(U —0B)
< —[ro5 + (r1+ 17 + (B+ B)]To(o —05)

= 1 =
<T%(B+B)Tole —op) < 5([1°(8 +B)]" + [Toe —on)]").

we obtain

R(t) t pR(s) —
/ To(o — op)?r?dr < / / [TO(,B + ,3) + To(o — ag)z]rz dr ds.
0 0 JO
(5.34)

In the same way, we consid&P (s + ?), and since

ra(B+B)H(o +5 —0u)TO(B+B) <ra[T°(8 +B)],
it follows that

R() — t rR(s) _
/ [7°(8 +B)]*r?dr < / / r2T%(B + B )r?dr ds. (5.35)
0 0 JO

Adding (5.34) and (5.35), we obtain thanks to Gronwall’'s lemma

oc<op and B> -5.

Notice thatg > — B implies 4 > 0.
Let us considet > 0 and takeT%(c — o, — ¢) as test function in the weak formula-
tion, then
1

R(1) )
—/ [To(cr — 0o, — s)] r2dr <O0.
2 Jo

Now, taking limits ag — 0, one concludes

1 (RO
5/ [TO(O' — an)]zrzdr <0,
0

which provesr > o,.
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Knowingo andR, 8 is well-defined as the unique solution of the equation

a dz 0 a =
8_/3_7;5(”25 ):—rz(ﬁ—l—ﬂ), 0<r<R(t),0<t<T,
op
B(R(),1) =0, 3_20 onO<t<T.
r

SincepBp > —ﬁ, it follows that

9 dy 9 9
_ﬂ__2_<r2_ ><0,

at  r2or\ or
and we obtain by maximum principle th&t< max 8o} |

COROLLARY 5.3. There exists a positive constamt such thatR(r) < RoeM’ and
R'(t) < RoMeMT,

ProOOF The above result shows (r, 1), B(r, 1)) €[04, 0B] X [—E, maxXBo}]. SinceS
is a continuous function, it attains its maximum (denoted hf) ®n that set. Thus,

R(1)
R?(1) dR() < / 3Mr?dr.
0

dr
Integrating the above equation, we havk(d/dr < M R(¢). Finally, the conclusion
follows by Gronwall's lemma. a

REMARK 5.2. As in the previous subsection the solutieng) of (5.26) satisfies
! 2 2
/0 (151310 ey + 1812 e ey Y < €
forall e > 0.
PROOF OF THEOREM 5.2. We argue by contradiction and assume ftlaat 81, R1)

and(o2, B2, R2) are two solutions of the problem. L&(#) := min{R1(¢), R2(t)}, 0 :=
o1 — oz andg := B1 — B2 be the solution to

0 di 0 0

8_(; - r—;g<f250) =g1(o1, 1) — g1(02,B2), r <R@®), O<t<T,
0 do 0 0

B_/f - 755(#5 ) =go(0o1, B1) — g2(02,B2), r<R@®), O0<t<T,
o(R(1), 1) =01(R(1), 1) —o2(R(1), 1), O<t<T,
B(R().t) = Pr(R(1), 1) — B2(R(1), 1), 0<t<T,
O'(I",O)ZO, ,3(1’,0)20, 0<r<R0

Now, we state a technical lemma.
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LEMMA 5.4. | B8] takes the maximum on the bound®t) ando satisfies
R(t) 2
#412..2
- <
/0 [To(o —o™)]°r dr\Tc[IQ[wog%(]{ﬂ}] :
where

o =tg[10§%<]{a(R(t),t)}.

PrROOF Let us consideB, = min{0, B(R(¢), )} and

22(1) — 82(B2) = —r2[(BL— B) — (B2~ B)] = 2P,
then

(82(B1) — g2(B2))T°(B — B) = —r2BT°(B — B.) <O.
Multiply the equation by °(8 — B.), we get

R()
/ (706 — p)]r2dr <O
0

and obtaing > .. In the same way, we prove thattakes its maximum oR(¢).
Let us consider

g1(o1, 1) — g1(02, B2)
=—([1+M)(01+5) —riog+ (BL+B)|H (01 +5 — o)
—[r1+ 1) (0247 ) —riop + (B2 + E)]H(Gz +3 —on))
= (r1+)»)[(01+§—0,,)H(01+§—0n) — (az—l-g—an)H(az—i—g—an)]
+ (= (r1+ Moy +riop — E)(H(al +6 —ou) — H(o2+5 —0y))
- [,31H(01 +5— on) - ,32H(02 +o— on)].
Since(o + o —0,)H (0 + & — 0,,) is an increasing function af, we obtain that
—[(01 +o— crn)H(ol +o— on) — (crz +o— 0,,)H(02 +o— O'n)]
x To(o1 — o2 —0™) 0.
Since—(r1 + Aoy + r105 — B < 0, it follows that
(—(r1+Non +r108 — B)(H(o1+5 — 0,) — H(02 45 —02))
x To(o1 — o2 —0™) 0.
Then
[g1(01. B1) — g1(02, B2) | To(01 — 02 — )
< —[B1H(014 0 —0,) — B2H (02+ T — 0y) | To(o1 — 02 — o)
< —(BL— B2)H (02+7 — 0,)To(o1 — 02 — ™)
< =T%B1— B2)To(o1 — 02 — 0™) < =B To(o1 — 02 — ™).
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Multiplying the equation, as before, (o — o), we get

R(t) 5 tPROT g 2
/ [To(cr - a*)] r2dr —i—/ / |:—T0(cr - cr*)] r2dr ds
0 0 Jo or

t pR(s)
= / / (31(01. B1) — g1(02. B2)) To(o — o*)r? dr dis
0 JO
t pR(s)
< —/ / B«To(o — o*)r?dr ds
0 JO

TC t pRGs)
S Tﬂf +A/o /0 [To(o1 — 02 — ™)) dr ds.

Now, we choose. such that

R(s) 5
)L/ [To(crl — 09 — a*)] r2dr
0

RO g 2
—/ |:—T0(O’ - 0*)i| r2dr <0 aere(0,T),
0 ar

then,
R(1) 2
/ [To(cr — a*)] r2dr < TC,Bf
0
holds, which ends the proof.

END OF THE PROOF OFTHEOREM5.2. Let us define
8= max{|Ri(r) — R2(1)|} =0,
t€[0,T]
and consider

RE(1)RY(t) — R5(1) Ry(1)

R(1)
_ /0 (S(o1. B1) — S(02. f2))r2 dr

R1(t) Ro(1)
+ / S(o1, Br)r?dr — / S(o2, Bo)r2dr.
R(t) R(t)

By (5.29) and Lemma 5.3, we obtain

R;i (1)
/ S(ai, Bir?dr
R()

<M§ (fori=1,2),

where

M =max{S(a, B) for any (o, B) € [on, 551 x [ B, max(Bo}]}.
(5.29) and (5.30) imply
R(1)

R(1)
/0 (S(o1. 1) = S(o2. p))rdr < € /O (To(0) — TO(B))r? .

213

(5.37)

(5.38)
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SinceTy(o) < To(o — o*) + o* and—T%(B) < — B, we obtain
R(1)
/0 (S(01. B1) — S(02. B2))r? dr

R(1)
< C/ (To(a —0")+o*— ﬁ*)rzdr
0

R(1) 1/2
gC’([/O To(a—a*)zrzdr] —I—a*—ﬂ*)

By Lemma 5.4, it follows that

R(1) 1/2
c’([/ To(o —o*)zrzdr] +o* —ﬂ*) <C'(0* — (T +D)By).
0

Sinceo; (R; (¢),t) =0 (for j = 1 or 2), we obtain

o (R(), 1) ( > loillwroo ey &, (,)))|R1<r> — Ra(1)],

i=1,2

|B(R(1), 1) ( Z I1Billwioe (Rery. R; (z))) |R1.(t) — Ra(1)|

i=12
and then
R(1)
| (Stonp0 = Stz po)?er < 23, (5.39)
0
Integrating in time in (5.37), we get thanks to (5.38) and (5.39) that
R3(t) — R3(t) < TC(T +2)8 + 2T M. (5.40)

On the other hand, one has

R3(1) = R3(1) = (Ru(1) — R2()) (R} + RiR2 + RY).

We can assume without lost of generality that R1(tp) — R2(to) (for somerg € [0, T']),
hence

R3(t) — R3(t) > 4R?s.
Substituting this into (5.40) leads 8o< ko8 T . Furthermore, takind@y < 1/kg necessi-
tatesR1(r) = Ro(¢) for anyr € [0, T1]. Since| 8] takes its maximum aR(z) = R1(t) =

R2(¢) (and this maximum is 0), we get thAt= 0. Substituting in (5.36) and taking
as test function, we obtain

R(t) t rR(s)
/ o?r?dr < / / (g1(01, B1) — g1(02, P2))or?dr ds.
0 0 JO

As in Lemma 5.4, sincéo; +o; — 0,)H(0; + & — 0,) is a increasing function of,
we obtain by (5.27) and Lemma 5.3 th@t (o1, B1) — g1(02, B2))o < 0, which prove
o =0.

Repeating the above process, starting now ffamve get the uniqueness of solutions
for arbitraryT > O, providedR(T) > 0. ]



Mathematical analysis, controllability and numerical simulation 215

6. Approximate controllability

In this section we study the controllability of distribution of nutrients (in the usual weak
sense of parabolic system) by the internal localized action of inhibitors. The main results
of this section is the following theorem.

THEOREM®6.1. GivenT > 0, wg C B(Roexp—||S|lz=T}), ¢ > 0, andé? e Ll’(’)c(R3),
for somep > 1, there existsf € L?((0, T) x wp) such that, if(o, 8, R) is the solution

of the problenm(5.1)—(5.5) then

|o(T) (6.1)

— o ”LP(B(R(T))) e,

whereo? := 6 xp(r (1Y)

Due to some technical reasons, we shall prove the theorem firstly fod. This
assumption is a prerequisite in order to obtain the boundedness of the solution in the
proof of Lemma 5.1 in view of the Sobolev compact embeddifty? ((0, T) x B) C
L*°((0, T) x B). Finally, we prove the theorem for apy> 1 by Hélder inequality.

We shall establish the result in several steps./#amN, we start by assuming,, (¢)
prescribed and look for a contrg}, in wp such that the solutiofw,, 8,) of problem
(5.1), (5.2), (5.4) and (5.5), satisfies (6.1). Then we ob&im and f,,+1 from (o, B,)
which allows us to findo,+1, B,+1). The proof of the theorem relies mostly on methods
introduced in the study of approximate controllability (notion attributed to conclusions
such as (6.1)) by different authors (semhs [1990], LIONS [1991], FABRE, PUEL
and ZUAZUA [1995], GLowINSKI and LONS [1995] and DAz and Ramos [1995]).
Iterating the process, we obtain a sequeiRg f,, o,, B,) such as we shall show pos-
sesses a subsequence that converges to the searched ¢a@mdahe associate solution
of problem (5.1)—(5.5).

The next result shows the conclusion of Theorem 6.1 (the so-called approximate
controllability in L?) under some particular assumptions (maimyt) is a priori pre-
scribed).

PROPOSITIONG.1. Let wg C B(Roexp—||S|lz=T}) andog = o =0 = B = 0. Let
R € WL>°(0, T) a given function such that(0) = Ro, |R| < ||S||z= Roexp{|S|z=T]}.

Then, givers? e L2 (R3), there existsf € L?(wp x (0, T)), with p > 4, such that, if
(0, B) is the solution of problern(b.1), (5.2), (5.4)and (5.5), then

d
|lo(T) -0 ”LI’(B(R(T))) Sé
whereo? = 69| p(r(1y)-

PROOF Letp’ = p/(p—1) and consider the functiondl: LP (B(R(T))) — R defined
by

T ’
0\ _ p 0 d 0
J (g )—_//0 /wo|¢(x’t)| dedr +¢¢ ”Lp’(B(R(T)))_/B(R(T))‘7 ¢ dr,
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wheregg € LP (B(R(T))), and(g, v¥) is the solution to the adjoint problem

_aa—(,p—dmowup:o, x| < R(), 1€(0,T), 6.2
_%—dmﬁ+mﬁ+k<p=0, x| < R(), 1€ (0,T), 6.3)
or, T)=go0), (. T)=0, x| <R(T), (64
p,H=0,  Y,n=0, [xI=R(), €(©,T). (6:5)

We point out that the existence of a weak solutipnyr) of (6.2)—(6.5) can be obtained
as in Section 5, by employing (4.3)—(4.5) and (5.6).

In order to prove the uniqueness of solutidnyscontradiction, we assume that there
exist two solutions(g1, ¥1), (@2, ¥2). Theng := @1 — @2 satisfies (6.2) and taking
lo|”'~2¢ as test function and integrating by parts it follows that

d / ,
——/ 17 de <r1/ gI” .
dr Jeray) B(R(1))

We obtaing = ¢1 — 92 = 0 by Gronwall's lemma. Having proveg= 0, in the same
way, v := 1 — ¥ satisfies (6.3) and takirg | ~2y as test function, we obtaif = 0,
which proves the uniqueness.

Let us assume thaff is convex, continuous and coercive (in the sense that
liminf J — oo as||<p°||Lp/(B(Ro)) — 00), facts, which shall be proved at the end of the
proposition. Thery takes a minimunyg (see BRezis[1983], Corollary 111.20). More-
over, if (£, ¢) is the solution of the problem (6.2)—(6.5) with dat&®, 0), we have

T
/ / W I” "2y ¢ dudr — / o0 dx
0 Jaug B(R(T))

1-p/ r_2
e ”gooHU/I}B(R(T))) /B(R(T)) |¢O|p ¢%%dx = 0. (6.6)

Multiplying (5.1), (5.2) by(§, ¢), integrating by parts and applying Leibnitz theorem,
we arrive at

T a&- T T
—/ <a, —>dt—d/ (U,Ag)dt—i—/ / rio € dx dr
0 ot 0 0o JBRM))

T T ot T
+/ / A,Bsdxdt—/ <ﬂ,—>dt—d/ (B, Ac)dr
0 JB®R®)) 0 ot 0

T T
+/ / rzﬂfdxdt—/ f@'dxdt—i—/ ade]g
0 JBR)) 0 Jap B(R(t))

+ / Brdx]) =0,
B(R(1))

where(, ) is the duality prodché”’,(B(R(t))) x W=LP'(B(R(t))). We obtain from
the choice of &, ¢) ando (0, x) = B(0, x) = 0 that

T
—/ fg“dxdt—i—/ o(T)E%dx =0. (6.7)
0 wo

B(R(T))
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Let us take

f=l "y
Substituting this into (6.7) and using (6.6), one has

o(T) — o) e%dx + ¢ ° b / |<pO|P/_2<pO$0dx =0,
/B<R(T))( R | ”L’ BRDOD Jp(r(r))
for all €2 € L' (B(R(T))). Taking

£0 = (o(T) — o) 71 e L7 (B(R(TY)).
we obtain in view ofp =1+ 1/(p’ — 1) that

o) = o ”ZP(B(R(T)))
) %_1
=211 oy /B(R(T))W” ¢Clo(T) = 0|71 (o(T) — o) dx.

By Hélder inequality, we have

— 1
A A /B(R( ))(QDOV? 20000/(T) — 0|71 Y (o(T) — o)

||0(T) —0

which leads to

¢ ” LP(B(R(T)))’

|0 (™) =0 Lo sirery) <€

and the conclusion holds.
So, it only remains to check the mentioned properties:of

J is convexWe can writeJ as the sum of the functionals

oy ._ d 0 0y._ .|[,0
Jl((P )-— —/B(R(T))U @ dx, JZ(‘P )'—EH‘P ”LP’(B(R(T)))’

1 /T /
= _// / [ |? dx dr.
P Jo JBR®)

First, we shall see thak is convex. Let(¢1, ¥1) and(g2, ¥2) be the solutions to (6.2)—
(6.5) with datumy?, 9 € L?(B(R(T))), respectively. Then, s@e the system is linear,
we get, fora € (0, 1),

Ja(og® + (1 — a)pd) = / / (Jovs + (1 — a)yo]” ) che
B(R(1))
and then
Ja(ag? + (1 - 0)9d) — ada(¢f) — (1 — ) J3(¢3)

1 /T / , ,
Z_// / (laeva+ Q= a)p2|” —alyal” — (L —a)|P2|”)drdr.
)4 B(R(1))
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Sincep’ > 1, we obtain

ey + (L= o) ya|” — alyal? — (1 — a)ly2l” <O,

and integrating, we have

1 T / ’ ’
—,/ / (ler + (A= o)y2|” —alyal” — (L —a)[y2l” ) dxdr <O,
P Jo JBR®)

which proves the convexity off3. Finally, J1 is linear and so convex and since
Iy BrR(TY) is convex,J/» is also convex.

J is continuousBYy construction,/1 and J, are continuous. We are going to prove
that J3 is also continuous. Let® € L? (B(R(T))) such that? — ¢° and let(p,, V),
(¢, ) be the solutions to (6.2)—(6.5) with datupfl and¢®. Subtracting both systems
and taking

(Pl = @ul” 20 = @u), D1V — Yl 20 — Y0)

as test function, using the integration by parts formula (see, eLg.aAd LUCKHAUS
[1983]) and Young's inquality, we arrive at

0

ot Jp(r())

+/ (le/_|)\|)|¢_§0n|p/dx+/ (rop’ — IX)1¥ — ¥ul” dx < 0.
B(R(™)) B(R(1))

[lo — @ul” + ¥ — Pul” ] dx

Let X, be defined by

T P _ P
Xn(®) =g wnllLP,(B(R(I)))JrIIW wn”LP'(B(R(t)))’

then,
~X, O CX ), 1O 1), X =08 =610 prcr
are satisfied, wher€ = max—r1p’ + ||, —r2p’ + |A|}. Thus, we obtain
0< X, (1) < | X, (T)|e™ €7D
Since

0< / W — l? dx < X, (1),
wo

we conclude by integrating ové®d, 7] and taking limits ag — oo that

T T
/ Ilﬂ—wnll’,dxdté/ X, () dt — 0,
0 wo 0

which proves the continuity afs.
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J is coerciveLet 90 € L”'(B(R(T))) such thau|<pn||Lp (BR(T)) —> O whenn — oo.
We claim
T (D)

liminf ————— >
||§0n ”Ll’ (B(R(T)))

n—oo

Let

0
I :=liminf I @n)

> e
n—00 |9l (B(R(T)))

d
”LP(B(R(T)))'
Then, there exists a minimizing subsequence (which we call aga;'ﬁ)@uch that

J (@)

I (B(R(T)))

=1

n—oo ||§0n
We define
0
Po= O
n ||(,0,(1)||LP’(B(R(T)))

and let(g,, ¥,) be the solution to (6.2)—(6.5) with data?, 0). Since the system is
linear, we have

_ - 1
(@n, ¥n) = —5—(0n, ¥u).

[ P

Then
J /_ T - /
7(% =[enll” 1/ / [Ynl? dxdt—/ odg0dx +¢.

||§0n ”LP (B(R(T))) 0 Juwg B(R(T))

Now, it is clear that, if
T —_ !
liminf P dx > ag, (6.8)
n—o0 wo

for some positivexg, then

J(99)

0— — X0
lenll Ly Berary)

Z o ||§0n ”Lp (B(R(T))) - ||Ud ”LP(B(R(T)))

asn — oo, which proves the property. Let us assume that
T - ’
Iiminf/ [, |? dx =0
0 wo
Then there exists a subsequemge such that

T
/ |V, |7 dx dt — O,
0 wo
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thereforelﬁni —0in Ll"(wo x [0, T]). Taking (0, ¢) as test function in (6.3), where
¢ € C%((0,T) x wp), we obtain

T _ a;— T _
/ / Wy, — dx dr —/ / Wy, AL dx dr
0 wo ot 0 wo

T T
—r2/ %iédxdtﬂf / @n; ¢ dxdr = 0.
0 wQ 0 wo

Taking limits, we conclude that

T
/ / @p; ¢ dxdr — O, (6.9)
0 wo

whereg,, is the solution to

A%,
—% — dAGy, —r1@n, =0, |x| <R(), 1€ (0,T),

@n; (1, x) =0, Ix| = R(r), t € (0, T), (6.10)
@, (T, x) = @°, x| < Ro.

Repeating the change of (5.6) and introducing the unknown

fin, (%,7) = Gy (R(t (D), 1),

we obtain
dil, -
—% — dAiiy, — R?R'% - Vity, + R?rity, =0, B x (0, T),
iin; (X,7) =0, 9B x (0,7), (6.11)
ity (¥, T) = 1, (¥) = @2 (¥ Ro)., ieB.

Sinceﬁgi — iig belongs toL”'(B), it follows thatii,, — @ (the solution of (6.11) with

iio = ¢°). By (6.9), ii,, — 0 weakly in L? (B(@)), wheredy is an open subset of
B such thatdg C @. Consequentlyiz = 0 on & for all 0 < 7 < 7. By the unique
continuation of the solution to Eq. (6.11) (seRIEDMAN [1964], CHI-CHEUNG POON
[1996], Theorem 11'), we deduce thai = 0 in B x (0, T), which impliesiip = 0 and
% =0 by uniqueness of (6.11). Furthermore,

—/ o?@%dx =0
B(R(T))
and/ = ¢, which proves the coerciveness.bf |

PROOF OF THEOREM 6.1. We consider the functiod:C1([0, T]) — H2(0,T),
0 (R*) = R, whereRr is defined by

R?’()R(t) = / S(o+0*, B+ B%)dx, R*(0) = Ro,
B(R*(1))
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where(o*, 8%) is the solution to the problem (5.1), (5.2), (5.4) and (5.5), witk:= 0,
and initial datao,]_, (x, 0) = oo(x), B*(x, 0) = Bo(x), and(o, B) is the solution men-
tioned in Proposition 6.1. Sincgis boundedR € w0, 7). By Proposition 6.1, for
eachR* there exists a minimum functiggf which minimize the functional

o._ 1" ' 0 d 0
(@ ).__//o /wo|1ﬁ|p drdr+efe ”LP/(B(R*(T)))_/B(R*(T))‘7 ¢ dx,

whereo? = 6 xp(r(r)). We are going to show thatp®l|, v g g«(r, iS uniformly

bounded. To the contrary, we assume that there exists a seqw@nsach that

21l (3(recryy — ©° @and get

J@) 1, g1 L.
0 = _,”‘pn ”LP’(B(R*(T)))/ / [, 1P dx dt
”Qon”Lp/ p 0 Jayg

+s—/ odg0dx <0 (6.12)
B(R*(T))
in view of J, (¢2) < 0. Since

d o0
On Pn d ~d
— AR dx| < X < ;
/B(R*(T)) ”‘pr(z)”LP’(B(R*(T))) ' ”O-n ” LP(B(R(TY) = “U ”LP(B(Roexp{MT}))

it follows, by (6.12) that

T
/ / |¥,|? dxdr — 0 whenn — oo.
0 wo
Using the same argument as in the proof of coercivenegswe obtain
@2 —0 inL? (B(R*(I)))

and

= ©>

which contradicts (6.12). Consequen[tly,?”L,,/(B(R*(T))) is uniformly bounded, hence
”(p””LI’/(B(R*(T))) is uniformly bounded. Furthermore, the set of controls is uniformly
bounded. Performing the change of (4.3)—(4.5) and (5.6), applying Lemma 5.1, we ob-
tain that is continuous and compact. Then, there exists a fixed goirt, R) which
satisfies (5.1)—(5.5) and condition (6.1). Thus the theorem is proved in thepcade

In the casep < 4, we consider the controf for any s > 4, for instancef <
L3((0,T) x £2), then

5
3 p(5—p)
lo () = 0] Locairery < (5 mead BRI} ) o) =0l s srary)
2

p)

ss(e’fexp{Tnsnm})”(s,
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setting

_pG=p)
5

3
8=8’<§6XP{T||S||LOO} ,
we obtain the theorem. O

REMARK 6.1. Notice that the final observation is made regarding the deméity-)
and that once we have chosen the control to obtain (6.1). The free bouRdaryand
the inhibitor density8(T, -) are univocally determined.

REMARK 6.2. There exists a long literature on the application of Optimization and
Control Theory to different mathematical tumor growth models. We refer the interested
reader to the works bywaM [1984], HSTER, LENHART and MCNALLY [1998], BEL-
LoMO and RREz10s1[2000] and the references therein.

7. Numerical analysis

In this section we establish a numerical solution to the problem (5.1)—(5.5) by employ-
ing a time discretization scheme which is implicit with respect tandv and explicit

for the free boundanR. We assume radial symmetry, no forcing terms (ife= 0),

and a nonnecrotic core. Let=r1/R(¢) and

u(x,t)y=0(xR(0),1) =5,  v(x,1)=B(xR@1).1)—pB.
Then, problem (3.1)—(3.5) becomes

ou dl 0 ( 50 R du - =
—=—=—x"= — = —X A 1 T
o = T2R2 9x <x Bxu) +x R 7x riu v+rioc+x8, (0,1) x (0, T),

v dy 9 [ ,0v "9 =
— = — — ——v— , (0,1 0,7),
ot xZRZax(x ax>+xR8xv rav+r2B, (0,1) x( )

t pl
R(t):Roexp{//sz(u,v)dxdt}, t>0,
0 JO
uy(0,t)= v, (0,) = u(l,t) = v(1,t)=0, >0,
R(0) = Ro, u(x,0) =up(x), v(x,0 =vo(x), xe€(0,1).

7.1. Time discretization

LetNeN,n=1,...,N ands, =n(T/N). We introduce the approximations
u (x) X u(x, t), v (x) A u(x, ), R" ~ R(tn),
. dRrR(r) .
R”%J int=t,
dr

defined by the following algorithm:
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Step O:
0. 0. 0
(0.1) (R°, u”,v°) = (Ro, uo, vo),

1 1
(0.2) RY?= E(RO + Roe? Jo XZS(MO.vo)dx)’
1 9
©3) K= Ro [ 2% 00 dRoed IS 50
0

Now, for 1< n < N, assuming R"~1, u*~1, v"~1) be given, we calculater”, u",
v") as follows:

Step n:
(n.1)
-1 on—1
V"t — " _ do x_zi xzivn x R" ivn—l
At (R-1)27  3x \7 ax Ri—1 9y
— rov" +r2§, in0<x <1,
8 n
— (0 =v"(1) =0,
(for n = 1, we user/?).
(n.2)
ul _un—l d1 5 0 5 0 " Rn_l 0 n—1
At (RL2Y E(x ax >+XR"—1 ax
—riu"™ — A" +r1§+)ﬁ, in0<x <1,
8 n
ab; (0) = u"(1) = 0.

(n.3) We computeRr” by integrating accordindie compound trapezium rule

n—=1 .1
R — Roexp{ AIZ/ xZ%(S(uf’ v/) + S(uf+1, vj+1)) dx}
j=0"°

= Roexp{ At/olx2|:%(5(uo, 00) + S(u", v")) + HZ_%S(MJ, vj)} dx }

(n.4)
. 1 n—=1 .1 1 ) )
R = Ro / sz(u”,v”)dxexp{AtZ / K22 ($( ) d
0 ; 0
j=0

+S(ui L, vt dx)}
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1 1
=R0/ sz(u”,v”) dx eXp{AT/ x2|:%(S(uO, vo)
0 0

7.2. Full discretization

We approximate{1(0, 1) by spaceV,, defined by

Vi :={¢ € C°(10,11): ¢l(x,_1.xj) € P1. foOr j=15+1},

wherex; = j/(s + 1) and P is the space of those polynomials of degree 0 or 1. We
approximate the above implicit—explicit scheme by the system

ul — D1 8,9 R 9 = .z

in0<x<1 n=1,...,N,

-1 Sn—1

vy — v, D> (59 R*™ 93 =

AT GRE2ax x av,’q’ +x—Rn_1£vZ—r2vZ+r2,B,

in0<x<1,i=1,...,N,

du,  dvy
up(H=v, (1) =0, Pl =0, onx=0,
RO =Ro,  uJ(x)=upo(x),  vj(x)=wvp0(x),
1 1 n—-1 S
RZ:ROexpiAT/O x2|:§(S(u2,v2)+S(uZ,vZ))+ZS(ufl,vJ):|dx}.
j=1

7.3. Weak formulation of the discrete problem

Setting

1
b(¢,¢)=/0 x%¢gdx,

the weak formulation of the discrete problem is given(ly € V)

d1AT , ATR"1
Wb((%)x’ ¢x) =~z b () - )
=b(u! " =] + 11T+ B, @) =b(u! "+ AT (M) + 115 +4B), 9),

diAT ATR"1
1+ ATr2)b(vy, ¢) + (Rni_l)zb((v;:)x’ ¢x) — Wb(x(UZ)y 9)

(1+ ATryb(u}, @) +

= b(vz_l + ATrzﬁ, 9).
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7.4. Numerical experiments

We consider the special casesib, 8) =0 — o, T =3, N =501, (i.e.,AT = 3/500)

ands = 20 (i.e.,h = 1/20) with the following choice of the paramete =5, D1 =

Dy =1,IN=TI>=0 =B =1. These values of the parameters have been taken merely
with academical purpose. For other choices see, for instancenB and GHAPLAIN
[19964a]. In Figs. 7.1, 7.5 and 7.9, we display the computed evolution of the radius of
the tumor for experiments 15(= 0.75), 2 ¢ = 1) and 3 6 = 1.5). In Figs. 7.2, 7.6

and 7.10 we display visualized the computed evolution of the radius of the tumor in two

515
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dimensions. Figs. 7.3, 7.7 and 7.11 show the computed evolution of the concentration
of nutrientso . Finally, in Figs. 7.4, 7.8 and 7.12 we exhibit the computed concentration
of the inhibitorsg. Numerical simulation of the model (whe$i= o — &) show us

the importance of the paramet&rin the behavior of the boundary. As it is expected,
asmalle produces a faster growth of the boundary. We can see in Figs. 7.1, 7.5and 7.9
an initial concave growth of the radius that becomes convex after a time (which depends
ong). Among other different aspects it can be appreciated that the free boundary is not
necessarily increasing in time (see Fig. 7.1).
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i ' ' 2 m

FiG. 7.9. FiG. 7.10.

1e

Fic. 7.11. FiG. 7.12.
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