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Preface

Canceris one of the most prevalent causes of natural death in the western world, and
a high percentage of people develop some kind of this disease during their lives. For
this reason medicine is one of the scientific fields which found significant interest not
only within the scientific community, but also among the general population. The scien-
tific community comprises medicine, but also other areas of research such us Biology,
Chemistry, Mathematics, Pharmacy or Physics. This is evident from the huge number
of research works and publications in the field and the great quantity of human and
economical resources which have been devoted to cancer research in the last decades.

The development and growth of a tumor is a complicated phenomenon which in-
volves many different aspects from the subcellular scale (gene mutation or secretion of
substances) to the body scale (metastasis). This complexity is reflected by the different
mathematical models given for each phase of the growth. The first phase is known as the
avascularphase, previous tovascularization, and the second one, whenangiogenesis
occurs, is known asvascularphase.

The aim of this work is to present the study of the mathematical analysis, the con-
trollability and a numerical simulation for a simple, avascular model of growth of a
tumor. In Section 1, we describe the biological phenomenology of several processes
which influence the growth and development of tumors. The mathematical modelling is
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presented by describing different models of partial differential equations (PDE). We fo-
cus our attention on a class of models proposed by GREENSPAN[1972] and BYRNE and
CHAPLAIN [1995], BYRNE [1999a], BYRNE [1999b], BYRNE and CHAPLAIN [1996a],
CHAPLAIN [1996], CHAPLAIN [1999], ORME and CHAPLAIN [1995], THOMPSONand
BYRNE [1999], WARD and KING [1998], studied in FRIEDMAN and REITICH [1999],
CUI and FRIEDMAN [1999], CUI and FRIEDMAN [2000], CUI and FRIEDMAN [2001],
DÍAZ and TELLO [2004], DÍAZ and TELLO [2003] and by other authors. We prove
the solvability of the model equations and establish uniqueness of solutions under addi-
tional conditions. In Section 6, we study the controllability of the growth of the tumor
by a localized internal action of the inhibitor on a nonnecrotic tumor. It is obvious that
this type of results has merely a mathematical interest and it does not suggest any spe-
cial therapeutical strategy to inhibit tumorgrowth. Nevertheless our results show that
there is not anyobstructionto the controllability (as it appears, for instance, in some
similar PDE’s models: see DÍAZ and RAMOS [1995]). In a final section, we address the
numerical simulation of the problem.

1. Phenomenology

A tumor originates from mutations of DNA inside cells. In order to create malignant
cells, a sufficiently large number of such mutations has to occur. Factors for mutations
can be external radiation, hereditary causes etc. Eventually, such gene mutations induce
an uncontrolled reproduction, the onset of the formation of a malignant tumor. This
process continues as long as the malignant cells find sufficient supply, and will generate
a small spheroid of a few millimeters. During this time, called theavascularphase,
nutrients (glucose and oxygen) arrive at the cells through diffusion. As the spheroid
grows, the level of nutrients in the interior of the tumor decreases due to consumption by
the outer cells. When the level of concentration of nutrients in the interior falls bellow
a critical level, the cells cannot survive, a phenomenon callednecrosis, and an inner
region is formed in the center of the tumor by the dead cells, which decompose into
simpler chemical compounds (mainly water). At this time, one can distinguish several
regions in the tumor: a necrotic region in the center, an outer region, wheremitosis
(division of cells) occurs, and a region in between where the level of nutrients suffices
for the cells to live, but not to proliferate. Until this moment, the tumor is amulticell
spheroidwhose radius is no more than a few millimeters.

The cells of the tumor secrete some chemical substances, known asTumor Angio-
genesis Factors(TAFs). These substances diffuse through the surrounding tissue. TAFs
stimulateendothelialcells (ECs), located in neighboring blood vessels. Endothelial cells
are thin cells which form the basement membrane of the blood vessels. When ECs are
stimulated by TAFs, they destroy the membrane basement (by secretion ofproteases
andcollagenases) and migrate towards the tumor forming capillary sprouts. These grow
thanks to the proliferation of ECs and other substances located in the extracellular ma-
trix (as fibronectin), forming a capillary network. Initially, the ECs move forming par-
allel vessels and as sprouts are closer to the tumor, the sprouts branch out and connect.

This process of formation of new vessels, known asangiogenesis, is one of the most
decisive steps in the growth of a tumor. Angiogenesis is present in other contexts of life,
as well, like in wound healing or in the formation of embryos.
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The connection of the blood vessels to the tumor supplies nutrients to the malignant
cells, aiding a faster proliferation of the tumor’s cells. This phase of the tumor is known
asvasculature phaseand is characterized by an aggressive growth.

Finally, the cells of the tumor invade the surrounding tissue and metastasizing to other
parts of the body. The circulatory and lymphatic systems are used by the malignant cells
for transport to another sites. The process in which cells leave the tumor and enter into
the vessels is known asintravasation. Cancer cells, which survive in the blood flow and
escape from the circulatory system, arrive at a new site, where a new colony of cells
may grow. Fortunately, less than 0.05 per cent of cells which were introduced in the
circulation are able to create new colonies. Each tumor has a preference to metastasize
to a specific organ.

During the growth of a tumor, theimmune systemcompetes with the malignant cells;
it will be activated through the recognition of the cancer cells by the immune cells.
Macrophages(Ms) are a type of white blood cells, which migrate into the tumor to the
regions with low oxygen (hypoxicregions) in the interior of the tumor through the ex-
ternal layer of well nourished cells of the tumor. Ms move to the tumor (by chemotaxis)
attracted bymacrophage chemoattractants, which is secreted by the tumor. Acytotoxic
substance is secreted into the tumor’s cell which kills it. Ms may also help the growth
of the tumor secreting other chemicalsubstances which help angiogenesis.

It is the main strategy of allcancer therapies (apart from surgery) to inhibit the growth
of tumors with tools adapted to the phase the tumor is in. E.g., chemotherapy or radiation
therapy are intended to destroy cells of tumor, other treatments try to stimulate cells of
the immune system. The first type of therapy is nonselective, destroying both, malignant
cells and cells of the immune system. Another therapy based on genetic engineering is
being studied. The idea is to insert a therapeutic gene into the cells of a patient and
re-inject them back into the patient.

2. Mathematical modelling

Mathematical modelling of the growth of a tumor have been studied by several authors
during the last thirty years in many different works.

Among the many different PDE models we can introduce (following FRIEDMAN

[2002]) a rough classification into two classes: the mixed models, in which all the dif-
ferent population of cells are continuously present everywhere in the tumor, at all the
times, and segregated models, perhaps less realistic but relevant for in vitro experiments,
in which the different populations of cellsare separated by unknown interfaces or free
boundaries. Our analysis will be restricted to the second class of models (some refer-
ences on mixed models can be found in BELLOMO and PREZIOSI [2000], DE ANGE-
LIS and PREZIOSI [2000], CHAPLAIN and PREZIOSI [2002] and FRIEDMAN [2002]).
Moreover, we shall consider spherical tumors (for other free boundary type tumors,
without symmetrical shape, arising in tumoral masses growing around a blood vessel
see, e.g., BERTUZZI, FASANO, GANDOLFI and MARANGI [2002] or BAZALIY and
FRIEDMAN [2003]).

In this section, we describe different mathematical models for each phase. A first and
simple model describing the avascular phase was presented in GREENSPAN[1972], as-



192 J.I. Díaz and J.I. Tello

suming spherical symmetry inR3. The outer boundary delimiting the tumor is denoted
by R(t) and the concentration of nutrients and inhibitors byσ andβ , respectively. Ac-
cording to principle of conservation of mass, the tumor mass is proportional to its vol-
ume 4

3πR3(t), assuming the density of the cell mass is constant. The balance between
the birth and death rate of cells is given as a function of the concentration of nutrients
and inhibitors. Let̂S be this balance, then after normalizing, we obtain the law

d

dt

(
4

3
πR3(t)

)
=

∫
{|x̃|<R(t)}

Ŝ
(
σ(x̃, t), β(x̃, t)

)
dx̃.

Depending on the author, the functionŜ can be written in different ways. GREENSPAN

[1972] studied the problem in the presence of an inhibitor, and the possibility that this af-
fects mitosis, when the concentration of the inhibitor is greater than a critical levelβ̃ . He
proposed̂S(σ,β) = sH(σ − σ̃ )H (β̃ − β), whereH(·) denotes the maximal monotone
graph ofR2 associate with the Heaviside function, i.e.,H(k) = 0 if k < 0, H(k) = 1 if
k > 0 andH(0) = [0,1]. BYRNE and CHAPLAIN [1996a] study the growth when the
inhibitor affects the cell proliferation and proposêS(σ,β) = s(σ − σ̃ )(β̃ − β) (for a
positive constants). In the absence of inhibitors or in case that the inhibitor does not
affect mitosis, they choosêS(σ,β) = sσ (σ − σ̃ ). FRIEDMAN and REITICH [1999] and
CUI and FRIEDMAN [2000] study the asymptotic behavior of the radius,R(t), with the
cell proliferation rate free of the action of inhibitors. They assume thatŜ = s(σ − σ̃ ),

wheresσ is the cell birth-rate and the death-rate is given bysσ̃ (see also the survey
SLEEMAN [1996]).

We assume that the tumor is composed of an homogeneous tissue and that the dis-
tribution of the concentration of nutrientsσ is governed by a PDE in the spheroid. As-
suming that there is no inhibitor, that the tumor has not necrotic core and that diffusion
is high, we obtain the equation

d1�σ = λσ, |x| < R,

whereλσ represents the nutrient consumption by cells andd1 is the diffusion coeffi-
cient.

In necrotic tumors, an inner free boundary appears, which is denoted byρ(t). It
separates the necrotic core (whereσ falls belowσn) from the remaining part. A model
for necrotic tumors was presented in BYRNE [1997a], who proposes the equation

0 = �σ − λH
(|x| − ρ(t)

)
, |x| < R(t),

where the effect of time-delay appears in the radial growth. In addition, asymptotic
techniques are used to show the effect of the delay terms.

Several authors (ADAM [1986] and BRITTON and CHAPLAIN [1993]) studied a
model proposed by SHYMKO and GLASS [1976] where cell proliferation is controlled
by chemical substancesGrowth inhibitor factor(GIFs) as chalones. GIFs secreted by
cells reduce the mitotic activity. Two different kinds of inhibitors appear, depending on
the phase of the cell cycle stage at which inhibition occurs. The inhibitor can act before
DNA synthesis (as epidermal chalon in Melanoma or granulocyte chalon in Leukemia)
or before mitosis (see ATTALLAH [1976]). The concentration of GIF (denoted byC) is
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modeled by one PDE in a bounded domainΩ of R
3,

(2.1)
∂C

∂t
= d�C + f (C) + S(x), x ∈ Ω, t > 0,

(2.2)D
∂C

∂n
+ PC = 0, x ∈ ∂Ω, t > 0, P � 0,

(2.3)C(x, t) = C0(x), x ∈ Ω,

whereS(x) is a source term andf (C) represents the decay of GIF (see ADAM and
BELLOMO [1997]).

In 1972, GREENSPAN[1972] proposed a radially symmetric model employing the
Heaviside functionH for modelling the necrotic part. The avascular model considers a
chemical inhibitorβ , which is produced in the necrotic core. The distribution of nutri-
entsσ̂ is given by the equation

(2.4)
∂σ

∂t
− d1�σ = −λ(σB − σ)H

(|x| − ρ
)
H

(
R − |x|),

whereR is the outer boundary of the tumor andρ is the radius of the necrotic core.
The chemical substance “β” (produced within the tumor) inhibits the mitosis of can-

cer cells without causing their death and satisfies the diffusion equation

(2.5)
∂β

∂t
− d2�β = PH

(|x| − ρ
)
H

(
R − |x|)− PdH

(
ρ − |x|).

This model, proposed by Greenspan, has been studied by several authors in the last
thirty years. We shall focus on the study of a similar model and detail the modelling and
some mathematical results in the next section.

When asymmetric distribution of nutrients or displacement of cells produced by
nonuniform density appears in the interior of the spheroid tumor, the internal forces
may break the symmetry of the outer boundary. Several authors have studied, in dif-
ferent models, the symmetry breaking of the boundary. GREENSPAN[1976] studied a
model where the pressurep of the cancer cells satisfies

�p = S,

inside the tumor, whereS is the rate of volume lost per unit volume (assumed con-
stant). The distribution of nutrientsσ satisfies a elliptic equation outside of the tumor.
Using Darcy’s law, (the velocityv of the boundary is proportional to the gradient ofp)
that isv = µ∇p, with suitable boundary conditions forp andσ , Greenspan obtains
nonsymmetric explicit solutions using spherical harmonics.

Darcy’s law has been used in different models in order to describe the movement of
the free boundary. BYRNE [1997b], BYRNE and CHAPLAIN [1996b] and BYRNE and
MATTHEWS [2002] propose similar models improving GREENSPAN[1976]; they study
the stability of radially symmetric solutions via perturbations with spherical harmon-
ics. FRIEDMAN and REITICH [2001] study the bifurcation of non-symmetric solutions
from any radially symmetric steady state. Bessel functions are used in FRIEDMAN and
REITICH [2001] and also in FRIEDMAN, HU and VELÁZQUEZ [2001] in a protocell
model.
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LEVINE, SLEEMAN and NILSEN-HAMILTON [2000] and LEVINE, PAMUK , SLEE-
MAN and NILSEN-HAMILTON [in press] (see also HOLMES and SLEEMAN [2000]) de-
veloped models of angiogenesis based on analysis of the relevant biochemical processes
and on the methodology of the reinforced random walk of OTHMER and STEVENS

[1997]. A mathematical analysis of the model proposed in LEVINE, SLEEMAN and
NILSEN-HAMILTON [2000] have been performed in FONTELOS, FRIEDMAN and
HU [2002]. Their model involves several diffusing populations and several chemical
species. Another model of angiogenesis with one diffusing population and two non-
diffusing ones, was developed in ANDERSON and CHAPLAIN [1998] and CHAPLAIN

and ANDERSON[1997]. They denote the density of the endothelial cells byp, the con-
centration of the tumor angiogenesis factor (secreted by the tumor) byc, andw repre-
sents the density of the fibronectin cells, then

∂p

∂t
= div

(
∇p − p

(
α

1+ c
∇c + ρ∇w

))
,

∂w

∂t
= γp(1− w),

∂c

∂t
= −µpc,

whereα, ρ, γ andµ are positives constants. The asymptotic behavior of the solutions
has been studied for some values of the parameters and special initial data in FRIEDMAN

and TELLO [2002]. A computational approach is used by VALENCIANO and CHAPLAIN

[2003a], VALENCIANO and CHAPLAIN [2003b] to obtain numerical solutions for simi-
lar models. LEVINE and SLEEMAN [1997] study the chemotaxis equations developed in
the context of reinforced random walks. They use the classification of the second order
part of a modified equation in the “Hodograph plane” and study the existence of blow
up of solutions in finite time.

Recently, BERTUZZI, FASANO, GANDOLFI and MARANGI [2002] have developed a
model for the phase transition in tumor cells and their migration towards the periphery.

The macrophages cells are part of the response of the immune system to cancer; their
movement has been modeled by different authors (see OWEN and SHERRATT [1999]).

3. A simple mathematical model

In this section we describe a simple mathematical model which will be studied through-
out the remainder of this work. It belongs to a group of first generation cancer models
with Greenspan’s model (2.4), (2.5) being one of the earliest ones. Similar models have
been proposed and studied by several authors (BYRNE and CHAPLAIN [1996a], FRIED-
MAN and REITICH [1999], CUI and FRIEDMAN [2000], CUI and FRIEDMAN [2001]
and DÍAZ and TELLO [2004], DÍAZ and TELLO [2003]). We assume that the density of
live cells is proportional to the concentrations of the nutrientsσ . The tumor occupies a
ball in R

3 of radiusR(t) which is unknown (which is reason whyR is usually called
the free boundary of the problem).

The tumor comprised a centralnecrotic core of dead cells, the necrotic core is covered
with a layer (of living cells) resulting in a second free boundary denoted byρ(t) in
GREENSPAN[1972].



Mathematical analysis, controllability and numerical simulation 195

The transfer of nutrients to the tumor through the vasculature occurs below a certain
levelσB , and it is done with a rater1. During the development of the tumor, the immune
system secretes inhibitors as a immune response to the foreign body. The structure of
inhibitor absorption is similar to the transference of nutrients (for a constantr2). If
we assume that the nutrient consumption rate is proportional to the concentrations of
nutrients, the nutrient consumption rate is given byλσ . Both processes, consumption
and transference, occur simultaneously in the exterior of the necrotic core, where cells
are inhibited byβ̂ . We assume that the host tissue is homogeneous and that the diffusion
coefficient,d1, is constant. The reaction between nutrients and inhibitors can be globally
modelled by introducing the Heaviside maximal monotone graph (as function ofσ̂ ) and
some continuous functionsgi(σ̂ , β̂). Thenσ̂ satisfies

(3.1)
∂σ

∂t
− d1�σ ∈ r̂1

(
(σB − σ) − λ1σ − λβ

)
H(σ − σn) + ĝ1(σ,β).

We also assume a constant diffusion coefficient for the inhibitor concentrationβ̂, d2.
The model considers the permanent supply of inhibitors, modeled byf̃ and localized
on a small regionω0 inside the tumor. This term̃f was introduced in DÍAZ and TELLO

[2003] to control the growth of the tumor. Thenβ satisfies

(3.2)
∂β

∂t
− d2�β ∈ −r2(β − βB)H(σ − σn) + ĝ2(σ,β) + f̃ χω0,

adding initial and boundaryconditions, we obtain

(3.3)σ(x̃, t) = σ, β(x̃, t) = β, |x̃| = R(t),

(3.4)σ(x̃,0) = σ0(x̃), β(x̃,0) = β0(x̃), |x̃| < R0.

In this formulation, the presence of the maximal monotone graphH is the reason
why the symbol∈ appears in Eq. (3.2) instead of the equal sign (a precise notion of
weak solution will be presented later). Different constants appears in the equations and
boundary conditions which lead to a wide variety of special cases:σn is the level of
concentration of nutrients above which the cells can live (below this level the cells die

by necrosis), σ andβ are the concentration of nutrients and inhibitors in the exterior of
the tumor. The diffusion operator� is the Laplacian operator andχω0 denotes the char-
acteristic function of the setω0 (i.e.,χω0(x̃) = 1, if x̃ ∈ ω0, andχω0(x̃) = 0, otherwise).

Notice that the above formulation is of global nature and that the inner free boundary
ρ(t) is defined implicitly asthe boundary of the set{r ∈ [0,R(t)): σ � σn}. So, if
for instance, the initial datumσ0 satisfiesσ0(x̃) = σn on [0, ρ0], for someρ0 > 0 and
ĝ1(σn,β) ∈ [0, r1(σB − σn) − λσn] for anyβ � 0, the above formulation leads to the
associate double free boundary formulation in whichσ̂ satisfies

∂σ

∂t
− d1�σ + λ1σ = r̂1(σB − σ) + ĝ1(σ,β), ρ(t) < |x̃| < R(t),

σ (x̃, t) = σn, |x̃| � ρ(t),

σ (x̃, t) = σ , |x̃| = R(t),

R(0) = R0, ρ(0) = ρ0, σ (x̃,0) = σ0(x̃), ρ0 < |x̃| < R0.
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The free boundaryR(t) is described by the ODE presented in Section 2,

(3.5)
d

dt

(
4

3
πR3(t)

)
=

∫
{|x̃|<R(t)}

Ŝ
(
σ(x̃, t), β(x̃, t)

)
dx̃, R(0) = R0.

4. Existence of solutions

In this section, we study the existence of solutions to (3.1)–(3.5) after introducing some
structural assumptions on̂gi and Ŝ. We also introduce some functional spaces and a
useful change of variables. The existence result is presented in Theorem 4.1 and proved
by using a Galerkin approximation based on a weak formulation of the problem.

We shall assume that the reaction termsĝi and the mass balance of the tumorŜ

satisfy:

(4.1)ĝi are piecewise continuous,
∣∣ĝi (a, b)

∣∣� c0 + c1
(|a| + |b|),

(4.2)Ŝ is continuous and − λ0 � Ŝ(a, b) � c0 + c1
(|a|2 + |b|2)

for some positives constantsλ0, c0, c1.
The above assumptions ((4.1) and (4.2)) do not constitute biological restrictions, and

previous models satisfy them providedσ andβ are bounded. They are introduced in or-
der to carry out the mathematical treatment, and its great generality allows us to handle
all the special cases from the literature previously mentioned. They are relevant due to
its generality. It is possible to show that the absence of one (or both) of the conditions
implies the occurrence of very complicatedmathematical pathologies, and much more
sophisticated approaches would be needed for proving that the model admits a solution
(in some very delicate sense).

We introduce the change of variables,

(4.3)x = (x1, x2, x3) = x̃

R(t)
,

(4.4)u(x, t) = σ
(
R(t)x, t

) − σ

and

(4.5)v(x, t) = β
(
R(t)x, t

) − β.

Let the unit ball{x ∈ R
3: |x| < 1} be denoted byB and define functions fromR2 to

2R
2

by

(4.6)

g1
(
σ − σ,β − β

) := (
r̂1
(
(σB − σ) − λ1σ

) − λβ
)
H(σ − σn) + ĝ1(σ,β),

g2
(
σ − σ,β − β

) := −r2(β − βB)H(σ − σn) + ĝ2(σ,β),

(4.7)S
(
σ − σ ,β − β

) := 4

3π
Ŝ(σ,β)

and

f (x, t) := f̃
(
xR(t), t

)
, ω̃ t

0 = {
(x, t) ∈ B × [0, T ]: R(t)x ∈ ω0

}
.
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Problem (3.1)–(3.5) becomes

(4.8)



∂u

∂t
− d1

R(t)2 �u − R′(t)
R(t)

x · ∇u ∈ g1(u, v), x ∈ B, t > 0,

∂v

∂t
− d2

R(t)2 �v − R′(t)
R(t)

x · ∇v ∈ g2(u, v) + f χω̃ t
0
, x ∈ B, t > 0,

R(t)−1 dR(t)

dt
= ∫

B
S(u, v)dx, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂B, t > 0,

R(0) = R0, u(x,0) = u0(x), v(x,0) = v0(x), x ∈ B.

We introduce the Hilbert spaces

H(B) := L2(B)2, V(B) = H 1
0 (B)2

and define inner products by

〈Φ,Ψ 〉H(B) =
∫

B

Φ · Ψ t dx, 〈Φ,Ψ 〉V(B) =
∑
i=1,2

di

∫
B

(∇Φi)
t · ∇Ψi dx

for all Φ = (Φ1,Φ2), Ψ = (Ψ1,Ψ2).
For the sake of notational simplicity we useH = H(B) andV = V(B). GivenT > 0,

we introduceU = (u, v), U0 = (u0, v0) and defineG :R2 → 2R
2× 2R

2
andF : (0, T )×

B → R
2 by

G(U) = (
g1(u, v), g2(u, v)

)
, F (t, x) = (

0, f (t, x)χω̃ t
0

)
.

We have

(4.9)
∣∣G(U)

∣∣ = ∣∣g1(u, v)
∣∣ + ∣∣g2(u, v)

∣∣ � C0 + C1|U | = C0 + C1
(|u| + |v|).

DEFINITION. (U,R) ∈ L2(0, T : V) × W1,∞(0, T : R) is a weak solution of the prob-
lem (4.8) if there existsg∗ = (g∗

1, g∗
2) ∈ L2(0, T : H) with g∗(x, t) ∈ G(U(x, t)) a.e.

(x, t) ∈ B × (0, T ) satisfying∫ T

0
−〈U,Φt 〉H dt +

∫ T

0
ã(t,U,Φ)dt =

∫ T

0
〈g∗,Φ〉H dt

+ 〈U0,Φ(0)〉H +
∫ T

0
〈F(t),Φ〉H dt,

∀Φ ∈ L2(0, T : V) ∩ H 1(0, T : H) with Φ(T ) = 0, where

(4.10)ã(t,U,Φ) := 1

R2(t)
〈U,Φ〉V − R′(t)

R(t)
〈x · ∇U,Φ〉H

andR(t) is strictly positive and given by

R(t)−1 dR(t)

dt
=

∫
B

S
(
U(x, t)

)
dx for t ∈ (0, T ).
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DEFINITION. (σ,β,R) is a weak solution of (3.1)–(3.5) if

σ(x̃, t) = u

(
x̃

R(t)
, t

)
+ σ and β(x̃, t) = v

(
x̃

R(t)
, t

)
+ β,

for t ∈ (0, T ) andx̃ ∈ R
3, |x̃| � R(t), where(U = (u, v),R) is a weak solution of (4.8)

for anyT > 0.

REMARK 4.1. The definition of weak solution and the structural assumptions onG

imply that∂U/∂t ∈ L2(0, T : V(B)′) and the equation holds inD′(B × (0, T )).

THEOREM 4.1. Assume(4.1), (4.2), R0 > 0 and σ0, β0 ∈ L2(0,R0), then problem
(3.1)–(3.5)has at least a weak solution for eachT > 0.

PROOF. We shall use a Galerkin method to construct a weak solution. LetR(t) ∈
W1,∞(0, T : R) such thatR′(t)/R(t) � −λ0 a.e.t ∈ (0, T ). For fixed t ∈ (0, T ), we
consider the operatorA(t) ≡ A(R(t)) : V → V′ defined by

A
(
R(t)

)
(U) =

(− d1
R(t)2�u − R′(t)

R(t)
x · ∇u 0

0 − d2
R(t)2�v − R′(t)

R(t)
x · ∇v

)
.

A(t) defines a continuous, bilinear form onV × V,

ã(t : ·, ·) : V × V → R

for a.e.t ∈ (0, T ) (see (4.10)). SinceR′(t)/R(t) � −λ0, ã satisfies

ã(t,U,U) = 1

R2(t)
〈U,U〉V − R′(t)

R(t)
〈x · ∇U,U〉H

= 1

R2(t)
〈U,U〉V + R′(t)

2R(t)
〈U,U〉H

�
(

max
0<t<T

{
R(t)

})−2‖U‖2
V − λ0

2
‖U‖2

H. �

Now we establish somea priori estimateswhich will be used later. In fact, those
estimates can be applied even for other existence methods, different from the Galerkin-
type one, as, for instance, iterative methods, fixed point methods, etc. (see, for instance,
SHOWALTER [1996]).

LEMMA 4.1.

‖U‖2
H � C2

0

(
exp

{
(λ0 + 2C1 + 1)T

}− 1
)+ ‖F‖2

L2(0,T :H)
+ ‖U0‖2

H.

PROOF. InsertingUt as test function into the weak formulation of (4.8), one obtains

d

dt

∫
B

1

2
U2 dx + ã(t,U,U) +

∫
B

g∗(U)Ut dx =
∫

B

F · Ut dx
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for someg∗ ∈ L2((0, T ) × B)2 andg∗(x, t) ∈ G(U(x, t)) for a.e.(x, t) ∈ B × (0, T ).
The definition ofã yields

(4.11)
1

2

d

dt
‖U‖2

H − λ0

2
‖U‖2

H �
(‖g∗‖H + ‖F‖H

)‖U‖H.

Thus by Young’s inequality and (4.9) imply

1

2

d

dt
‖U‖2

H −
(

λ0

2
+ C1 + 1

2

)
‖U‖2

H � 1

2

(
C2

0 + ‖F‖2
H

)
.

Integrating with respect to time, we get

1

2
‖U‖2

H − 1

2
‖U0‖2

H −
(

λ0

2
+ C1 + 1

2

)
‖U‖2

L2(0,T :H)
� 1

2

(
C2

0T + ‖F‖2
L2(0,T :H)

)
and by Gronwall’s lemma,

(4.12)‖U‖2
H � C2

0

(
exp

{
(λ0 + 2C1 + 1)T

}− 1
)+ ‖F‖2

L2(0,T :H)
+ ‖U0‖2

H � C.

�

REMARK 4.2. SinceU is bounded inH (by (4.12)),R satisfies

(4.13)R(t) = R0 exp

{∫ t

0

∫ 1

0
S(U)dx dt

}
� R0eK1t

and

(4.14)R(t) � R0 exp{−λ0t},
consequently,R ∈ W1,∞(0, T ).

LEMMA 4.2. ‖U‖L2(0,T :V) � K(T ,F,G,U0).

PROOF. SelectingU as test function in (4.8), we have

D

R2
0e2K1T

‖U‖2
L2(0,T :V)

− λ0

2
‖U‖2

L2(0,T :H)

� C1‖U‖2
L2(0,T :H)

+ (
C0 + ‖F‖L2(0,T :H)

)‖U‖L2(0,T :H).

By (4.12), we get

(4.15)‖U‖L2(0,T :V ) � K(F,G,U0, T ).

�

REMARK 4.3. By Lemma 4.2 and Remark 4.2, we get that

ut − d1

R2
�u ∈ L2(0, T : L2(B)

)
, vt − d2

R2
�v ∈ L2(0, T : L2(B)

)
and obtain the extra regularity

(4.16)Ut , �U ∈ [
L2(0, T : L2(B)

)]2
.
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Now, as previously in the proof of Theorem 4.1, we consider the approximate prob-
lem

(4.17)


∂Uε

∂t
+ A

(
Rε(t)

)
Uε = Gε

(
Uε

) + F(t) onB × (0, T ),

Uε(0, x) = U0, Uε = 0 on∂B,

1

Rε

dRε

dt
=

∫
B

S(Uε)dx,

whereGε = (gε
1, g

ε
2) is a Lipschitz continuous function such that

Gε → G whenε → 0 a.e. inR
2.

Gε is obtained replacingH by

Hε(s) =


0 if s < 0,
s

ε
if 0 � s � 1

ε
,

1 if s >
1

ε
.

Now, we apply the Galerkin method to the approximated problem. Letλn andφn ∈
H 1

0 (B) for n ∈ N be the eigenvalues and eigenfunctions associated to−� satisfying

−�φn = λnφn.

We considerVm the finite-dimensional vector space spanned by{φ1, . . . , φm}. We
search for a solutionUε

m ∈ L2(0, T : Vm) of the problem

(4.18)



d

dt
Uε

m + A
(
Rε

m(t)
)
Uε

m = Gε
(
Uε

m

) + Fm(t),

Uε
m(0) = Uε

0,m,

Rε
m(t)−1 dRε

m(t)

dt
=

∫
B

S
(
Uε

m(x, t)
)
dx,

where the initial conditionsUε
0,m = Pm(U0) (wherePm is the orthogonal projection

from L2(B) ontoVm) andFm = Pm(F). Then

Rε
m(t) = R0 exp

{∫ t

0

∫
B

S
(
Uε

m(x, s)
)
dx ds

}
.

PROPOSITION4.1. (4.18)has a unique solutionUε
m for anyT < ∞.

PROOF. Problem (4.18) can be written as a suitable nonlinear ordinary differential sys-
tem. LetUε

m = (uε
m, vε

m) be defined by

uε
m(t) =

∑
n=1,...,m

aεm
n (t)φn, vε

m(t) =
∑

n=1,...,m

bεm
n (t)φn
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and denote

aεm = (
aεm

1 , aεm
2 , . . . , aεm

m

)
, bεm = (

bεm
1 , bεm

2 , . . . , bεm
m

)
,

λa = (
λ1a

εm
1 , . . . , λmaεm

m

)
and λb = (λ1b

εm
1 , . . . , λmbεm

m ).

Thenaεm, bεm andRε
m satisfy

ȧεm + λa

(Rε
m)2

+ φε

(
aεm, bεm

)
Lm

1

(
aεm, bεm

) = gm
1

(
aεm, bεm

)
,

ḃεm + λb

(Rε
m)2 + φε

(
aεm, bεm

)
Lm

2

(
aεm, bεm

) = gm
2

(
aεm, bεm

)+ Fm(t),

Ṙε
m

Rε
m

= φε

(
aεm, bεm

)
,

where

φε

(
aεm, bεm

) =
∫

B

S
(
Uε

m

)
dx,

Lm
1

(
aεm, bεm

) =
∫

B

x · ∇uε
mφn dx for n = 1, . . . ,m,

Lm
2

(
aεm, bεm

) =
∫

B

x · ∇vε
mφn dx for n = 1, . . . ,m,

gm
1

(
aεm, bεm

) =
∫

B

gε
1(u

ε
m, vε

m)φn dx for n = 1, . . . ,m,

gm
2

(
aεm, bεm

) =
∫

B

gε
2

(
uε

m, vε
m

)
φn dx for n = 1, . . . ,m.

Since Gε is a Lipschitz function, we obtain that there exists a unique solution
aεm, bεm,Rεm to the system forT small enough. Moreover, (4.12) and (4.14) hold,
and we get the existence of a solution of (4.18) for anyT < ∞. By (4.15) and (4.16),
{(Uε

m, d
dt

Uε
m)}m=1,∞ is uniformly bounded inL2(0, T : V) × L2(0, T : V′). So, there

exists a subsequenceUε
mi ∈ L2(0, T : V) with d

dt
Uε

mi ∈ L2(0, T : V′) such that(
Uε

mi,
d

dt
Uε

mi

)
⇀

(
Uε,

d

dt
Uε

)
weakly inL2(0, T : V) × L2(0, T : V′),

andRε
mi ⇀ Rε weakly inW1,p(0, T ) for p < ∞. Taking limits whenmi → ∞, we get

the existence of a weak solution to (4.17) for anyT < ∞.
To end the proof of Theorem 4.1, we take limits in the equation whenε → 0. We

employ (4.12) and (4.14) and the compact embeddingH1
0(B) ⊂ Ls (B) (for s < 6) in

order to obtain the existence of a subsequenceUεi such that

Uεi → U in L2(0, T : [Ls(B)
]2)

and in particular

Uεi → U in L2(0, T : H)
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(see, e.g., SIMON [1987]). Since

Hε
(
uε + σ

)
⇀ h ∈ H(u + c) weakly inL2(0, T : Ls(B)

)
and

vε → v in L2(0, T : Ls(B)
)

(see Lemma 3.4.1 of VRABIE [1995]), we have

Gεi
(
Uεi

)
⇀ g∗ ∈ G(U) weakly inL1(0, T : H).

Since|R′| � C, there exists a subsequenceRεij such that

Rεij ⇀ R weakly inW1,p(0, T ), p < ∞,

and we deduce thatRεij → R in C0([0, T ]). Finally, taking limits in the weak formula-
tion of the problem (4.17), we get∫ T

0
〈Ut ,Φ〉H dt +

∫ T

0
ã
(
R(t),U,Φ

)
dt +

∫ T

0
〈g∗,Φ〉H dt =

∫ T

0
〈F,Φ〉H dt

for all Φ ∈ L2(0, T : V ) and, moreover,

R(t)−1 dR(t)

dt
=

∫
B

S
(
U(x, t)

)
dx.

Notice that∫ T

0

R′
εij

Rεij

∫
B

x · ∇uεijψ dx dt =
∫ T

0

R′
εij

Rεij

∫
B

uεijψ − uεij x · ∇ψ dx dt

and ∫ T

0

R′
εij

Rεij

∫
B

x · ∇vεijψ dx dt =
∫ T

0

R′
εij

Rεij

∫
B

vεijψ − vεij x · ∇ψ dx dt .

We conclude that(σ,β,R) defined by

σ(t, x̃) = u

(
t,

x̃

R(t)

)
+ σ and β(t, x̃) = v

(
t,

x̃

R(t)

)
+ β

is a weak solution to (3.1)–(3.5). The additional regularity

σt − d1�σ and βt − d2�β ∈ L2
( ⋃

t∈[0,T ]

(
0,R(t)

) × {t}
)

follows from the fact that

∂U

∂t
(t) + A

(
R(t)

)
U(t) ∈ L2(0, T : L2(B)2). �
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5. Uniqueness of solutions

We begin by pointing out that if, for instance,

σn � r1σB

r1 + λ
, r1σB > 0, ĝ1(σ̂ , β̂)

is a decreasing function of̂σ and independent of̂β and the initial datumσ0(x̃) is such
thatσ ′

0(ρ0) = σ ′′
0 (ρ0) = 0, then it is possible to adapt the arguments of DÍAZ and TELLO

[1999] in order to construct more than one solution of problem (3.1)–(3.5). This and the
presence of non-Lipschitz terms at both equations clarify that any possible uniqueness
result will require an significant set of additional conditions.

In this section we prove the uniqueness of solution for two different cases. CUI and
FRIEDMAN [2000] prove uniqueness of radial symmetric solutions without forcing term
(i.e.,f = 0).

5.1. 3-dimensional case with forcing term

When a tumor does not have a necrotic core, Eqs. (3.1) and (3.2) simplify such that
reaction terms become linear, i.e.,the nutrients concentration̂σ and the inhibitors con-
centrationβ̂ satisfy

∂σ̂

∂t
− d1�σ̂ − r̂1(σB − σ̂ ) + λ1σ̂ + λβ̂ = 0, |x| < R(t), t ∈ (0, T ),

∂β̂

∂t
− d2�β̂ − r2(βB − β̂) = f χω0, |x| < R(t), t ∈ (0, T ).

For notational convenience we shall assume that the diffusion coefficientsd1 andd2
are equal and constantd1 = d2 = d . Thus by normalizing the unknown densities

σ := σ̂ − r̂1σB + λβB

(r̂1 + λ1)
, β := β̂ − βB,

and setting

r1 := r̂1 + λ1, S(σ,β) := 3

4π
Ŝ(σ̂ , β̂),

we arrive at the formulation

(5.1)
∂σ

∂t
− d�σ + r1σ + λβ = 0, |x| < R(t), t ∈ (0, T ),

(5.2)
∂β

∂t
− d�β + r2β = fχω0, |x| < R(t), t ∈ (0, T ),

(5.3)R(t)2 dR(t)

dt
=

∫
|x|<R(t)

S(σ,β)dx, R(0) = R0, t ∈ (0, T ),

(5.4)σ(x,0) = σ0(x), β(x,0) = β0(x), |x| < R0,

(5.5)σ(x, t) = σ, β(x, t) = β, |x| = R(t), t ∈ (0, T ),
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whereR0 > 0, the normalized nutrient and inhibitor densities at the exterior of the
tumorσ , β and the initial densities(σ0, β0) are known. We introduce again the changes
of unknown and variables (4.3)–(4.5) and set

(5.6)t̃ (t) :=
∫ t

0
R−2(ρ)dρ.

Note that sinceR is a continuous function and 1/R2(t) > 0, we obtain that̃t(t) ∈
C1([0, T̃ ]) and employing the implicit function theorem, one derives the existence of
the inverse functiont (t̃) ∈ C1([0, T ]). Then, problem (5.1)–(5.5) reduces to

(5.7)
∂u

∂t̃
+ A(u) + R2r1u = R2(r1σ + λ

(
v + β

))
, x̃ ∈ B, t̃ ∈ (0, T̃ ),

(5.8)
∂v

∂t̃
+ A(v) + R2r2v = R2fχ

ω̃t̃
0
− R2r2β, x̃ ∈ B, t̃ ∈ (0, T̃ ),

(5.9)R(t̃)
d

dt̃
R(t̃) =

∫
B

S
(
u(x̃, t̃) + σ , v(x̃, t̃) + β

)
dx̃, R(0) = R0,

(5.10)u(x̃, t̃) = v(x̃, t̃) = 0, x̃ ∈ ∂B, t̃ ∈ (0, T̃ ),

(5.11)u(x̃,0) = u0(x̃) = σ0(x̃R0), v(x̃,0) = v0(x̃) = β0(x̃R0),

whereT̃ = t̃ (T ), ω̃t̃
0 = {x̃ ∈ B: R(t (t̃))x̃ ∈ ω0}, for any t̃ ∈ [0, T̃ ] and

A(w) := −d�w − RṘx̃ · ∇w.

We assume that

(5.12)Ŝ ∈ W1,∞(
R

2),
(5.13)f χ

ω̃t̃
0
∈ Lp

(
(0, T ) × Ω

)
, p > 4,

(5.14)(σ0, β0) ∈ W2,∞(
B(R0)

)2
.

LEMMA 5.1. Assume(5.12)–(5.14), then the solution(u, v,R) to the problem(5.7)–
(5.11)satisfies

u ∈ Lq
(
0, T̃ : W2,q (B)

) ∩ W1,q
(
0, T̃ : Lq(B)

)
for all 1 < q < ∞ and

v ∈ Lp
(
0, T̃ : W2,p(B)

) ∩ W1,p
(
0, T̃ : Lp(B)

)
.

PROOF. By Theorem 4.1, we know that

(u, v,R) ∈ [
L2(0, T̃ : H 1(B)

)]2 × W1,∞(0, T̃ ).

Sincev0 ∈ H 2(B) andf ∈ Lp((0, T ) × B), we get

v ∈ W1,p
(
(0, T̃ ) × B

) ∩ Lp
(
0, T̃ : W2,p(B)

)
(see, e.g., LADYZENSKAJA, SOLONNIKOV and URALSEVA [1991], Theorem 9.1,
Chapter IV). Sincep > 4, W1,p((0, T ) × B) ⊂ L∞([0, T̃ ] × B), hence
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u ∈ W1,q
(
(0, T ) × B

) ∩ Lq
(
0, T : W2,q (B)

)
,

for q � ∞. Consequently, we getR ∈ W2,p(0, T ). �

One obtains from the lemma, in view ofW
1,p
0 (B × [0, T̃ ]) ⊂ L∞(B × [0, T̃ ]) (for

p > 4) the following corollary.

COROLLARY 5.1. u,v ∈ L∞(B × [0, T̃ ]).

Utilizing the continuous embedding

W1,q
(
(0, T ) × B

)∩ Lq
(
0, T : W2,q (B)

) ⊂ L2(0, T : W1,∞(B)
)
,

W1,p
(
(0, T̃ ) × B

) ∩ Lp
(
0, T̃ : W2,p(B)

) ⊂ L2(0, T : W1,∞(B)
)
,

and undoing the change of variables and unknown (4.3)–(4.5) and (5.17), we obtain

COROLLARY 5.2. Under the assumptions of Theorem4.1, we have∫ T

0

(‖σ‖2
W1,∞(R(t))

+ ‖β‖2
W1,∞(R(t))

)
dt � k0

for somek0 < ∞.

The uniqueness of solutions is established in the next theorem.

THEOREM 5.1. Let f ∈ Lp(ω0 × (0, T )) with p > 4, and (σ0 − σ,β0 − β) ∈
W2,s (B(R0)) ∩ H 1

0 (B(R0)), for s > 4. Then, there exists a unique solution to(5.1)–
(5.5).

PROOF. In arguing by contradiction, we assume that there exist two different solutions
(σ1, β1,R1) and(σ2, β2,R2). Let

R(t) = min
{
R1(t),R2(t)

}
, σ = σ1 − σ2, β = β1 − β2.

Then(σ,β,R) satisfies the problem,

(5.15)
∂σ

∂t
− d�σ + r1σ + λβ = 0, |x| < R(t), t ∈ (0, T ),

(5.16)
∂β

∂t
− d�β + r2β = 0, |x| < R(t), t ∈ (0, T ),

(5.17)σ(x,0) = 0, β(x,0) = 0, |x| < R0,

(5.18)σ(x, t) = σ1(x, t) − σ2(x, t), |x| = R(t), t ∈ (0, T ),

(5.19)β(x, t) = β1(x, t) − β2(x, t), |x| = R(t), t ∈ (0, T ).

We introduce a new unknown defined by

z = k1σ − k2β,
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with

k1 = 1, k2 = λ

r1 − r2
if r1 �= r2,

k1 = 1

2
, k2 = λ

r1 − 2r2
if r1 = r2 �= 0.

By construction ofz, we have

(5.20)


∂z

∂t
− d�z + r1z = 0, |x| < R(t), t ∈ (0, T ),

z(x,0) = 0, |x| < R0,

z = k1σ − k2β, |x| = R(t), t ∈ (0, T ).

We need the following preliminary result.

LEMMA 5.2. Let z be the solution to the problem(5.20)andβ the solution to(5.16),
(5.19), thener1t z ander2tβ take their maximum and minimum on|x| = R(t).

PROOF. Multiplying Eq. (5.20) by er1t , we obtain that er1t z satisfies

(5.21)


∂

∂t

(
er1t z

)− d�
(
er1t z

) = 0, |x| < R(t), t ∈ (0, T ),

z(x,0) = 0, |x| < R0,

er1t z = er1t (k1σ − k2β), |x| = R(t), t ∈ (0, T ).

In the same way, er2tβ satisfies

(5.22)


∂

∂t

(
er2t β

)− d�
(
er2tβ

) = 0, |x| < R(t), t ∈ (0, T ),

β(x,0) = 0, |x| < R0,

er2tβ = er2t (β1 − β2), |x| = R(t), t ∈ (0, T ).

Applying Corollary 5.1, we obtain that er1t z and er2tβ are bounded. Let

z∗∗ = max
{
er1t z(x, t), t ∈ [0, T ], x ∈ ∂B

(
R(t)

)}
,

z∗∗ = min
{
er1t z(x, t), t ∈ [0, T ], x ∈ ∂B

(
R(t)

)}
,

β∗∗ = max
{
er2tβ(x, t), t ∈ [0, T ], x ∈ ∂B

(
R(t)

)}
,

β∗∗ = min
{
er2t β(x, t), t ∈ [0, T ], x ∈ ∂B

(
R(t)

)}
.

Notice thatz∗∗ � 0, β∗∗ � 0, z∗∗ � 0 andβ∗∗ � 0. LetTk andT k be defined by

Tk(s) =
{

s, if s > k,

k, if s � k,
and T k(s) =

{
k, if s � k,

s, if s < k.

TakingT0(er1t z − z∗∗) as test function in (5.21) and integrating by parts overB(R(t)),
we arrive after some manipulations at

d

dt

∫
B(R(t))

[
T0

(
er1t z − z∗∗)]2

dx � 0.
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We deduce that er1t z takes his maximum on|x| = R(t). In the same way, taking
T 0(er1t z − z∗∗) as test function, we obtain

(5.23)z∗∗ � er1t z � z∗∗.

The proof of

(5.24)β∗∗ � er2tβ � β∗∗,

is analogous. �

END OF THE PROOF OFTHEOREM 5.1. Givent ∈ [0, T ], we can assume, without lost
of generality, thatR1(t) � R2(t). Consider

R2
1(t)Ṙ1(t) − R2

2(t)Ṙ2(t) =
∫

B(R(t))

(
S(σ1, β1) − S(σ2, β2)

)
dx

−
∫

R1(t)<|x|<R2(t)

S(σ2, β2)dx.

SinceS is bounded, then∣∣∣∣∫
R1(t)<|x|<R2(t)

S(σ2, β2)dx

∣∣∣∣ � N
∣∣R3

1(t) − R3
2(t)

∣∣ � M
∣∣R1(t) − R2(t)

∣∣,
whereM depends only of|S|L∞ . SinceS is Lipschitz continuous, integrating in time,
it results∫ T

0

∫
B(R(t))

∣∣S(σ1, β1) − S(σ2, β2)
∣∣dx dt

�
∫ T

0

∫
B(R(t))

|S|W1,∞(R2)

(
sup|σ | + sup|β|)dx dt

�
∫ T

0

∫
B(R(t))

k0

(
1

k1
sup|z + k2β| + sup|β|

)
dx dt

�
∫ T

0

∫
B(R(t))

C
(
sup|z| + sup|β|)dx dt

�
∫ T

0

∫
B(R(t))

C
(
sup

∣∣e−r1ter1t z
∣∣ + sup

∣∣e−r2ter2tβ
∣∣)dx dt

�
∫ T

0

∫
B(R(t))

C
(
e|r1|T sup

∣∣er1t z
∣∣ + e|r2|T sup

∣∣er2t β
∣∣)dx dt

�
∫ T

0

∫
B(R(t))

k3
(
sup

∣∣er1t z
∣∣ + sup

∣∣er2tβ
∣∣)dx dt .

From Lemma 5.2, we know∫ T

0

∫
B(R(t))

sup
∣∣er1t z(x, t)

∣∣dx dt � er1T
3π

4

∫ T

0
R3(t) sup

|x|=R(t)

∣∣z(x, t)
∣∣dt .
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By Corollary 5.2, we deduce that∫ T

0

(‖σ2‖2
W1,∞(B(R(t)))

+ ‖β2‖2
W1,∞(B(R(t)))

)
dt � K0,

and consequently,∫ T

0
‖z‖2

W1,∞(B(R(t)))
dt � K.

Since

er1t z(x, t) = er1t
(
k1

(
σ2(x, t) − σ

) − k2
(
β2(x, t) − β

))
, on |x| = R(t),

we deduce

er1T
3π

4

∫ T

0
R3(t) sup

|x|=R(t)

∣∣z(x, t)
∣∣dt

� k4

∫ T

0
‖σ2‖W1,∞(B(R2(t)))

+ ‖β2‖W1,∞(B(R2(t)))

∣∣R1(t) − R2(t)
∣∣dt

� k4 sup
0<t<T

∣∣R1(t) − R2(t)
∣∣T 1/2

∫ T

0

(‖σ2‖2
W1,∞(B(R2(t)))

+ ‖σ2‖2
W1,∞(B(R2(t)))

)
dt

� k sup
0<t<T

∣∣R1(t) − R2(t)
∣∣T 1/2.

In the same way,∫ T

0

∫
B(R(t))

k3 sup|β|dx dt � k sup
0<t<T

∣∣R1(t) − R2(t)
∣∣T 1/2.

Then

(5.25)
∫ T

0

∣∣R2
1(t)Ṙ1(t) − R2

2(t)Ṙ2(t)
∣∣dt � C0 sup

0<t<T

∣∣R1(t) − R2(t)
∣∣(T + T 1/2).

Let δ = maxt∈[0,T ]{R1(t) − R2(t)} then∣∣R3
1(t) − R3

2(t)
∣∣ � 3C0δ

(
T + T 1/2),

since|R3
1(t)−R3

2(t)| � 3R2
0|R1(t)−R2(t)|, it follows δ � k0δ(T +T 1/2). Furthermore,

if T < T1 = min{1/4k2
0,1}, necessarilyR1(t) = R2(t). Since er1t z and er2t β take their

maximum and minimum onR(t) = R1(t) = R2(t), andR(t) is zero,β = 0 andz = 0,
and we deduceσ = 0. Repeating the process, starting now fromT1, we conclude the
uniqueness of solutions for anyT > 0 providedR(T ) > 0. �

REMARK 5.1. Other qualitative properties of the solutions of this type of models have
been studied in the literature by different authors. In particular, we mention the study
of the asymptotic behavior, whent → +∞ (see, e.g., BYRNE and CHAPLAIN [1996a],
FRIEDMAN and REITICH [1999], CUI and FRIEDMAN [2000], CUI and FRIEDMAN
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[2001]) and the continuous dependence and bifurcation phenomena with respect to pa-
rameters (see, e.g., BYRNE and CHAPLAIN [1995], FRIEDMAN and REITICH [2001],
FRIEDMAN, HU and VELÁZQUEZ [2001], among others).

5.2. Uniqueness of solutions with radial symmetry

Let (σ̂ , β̂) be a solution of problem (3.1)–(3.5) without forcing term (i.e.,f = 0). We

assume the solution is radially symmetric and defineσ = σ̂ −σ , β = β̂ −β andr = |x|.
Then(σ,β) verifies

(5.26)



∂σ

∂t
− d1

r2

∂

∂r

(
r2 ∂

∂r
σ

)
∈ g1(σ,β), 0 < r < R(t), 0 < t < T,

∂β

∂t
− d2

r2

∂

∂r

(
r2 ∂

∂r
β

)
= g2(σ,β), 0 < r < R(t), 0 < t < T,

R(t)2 dR(t)

dt
=

∫ R(t)

0
S(σ,β)r2 dr, 0 < t < T,

∂σ

∂r
(0, t) = 0,

∂β

∂r
(0, t) = 0, 0 < t < T,

σ
(
R(t), t

) = 0, β
(
R(t), t

) = 0, 0 < t < T,

R(0) = R0,

σ (r,0) = σ0(r), β(r,0) = β0(r), 0 < r < R0,

wheregi are given by

(5.27)g1(σ,β) = −[
(r1 + λ)

(
σ + σ

) − r1σB + (
β + β

)]
H

(
σ + σ − σn

)
,

(5.28)g2(σ,β) = −r2
(
β + β

)
.

We will assume in this subsection that

(5.29)S ∈ W
1,∞
loc

(
R

2),
(5.30)S is an increasing function inσ and decreasing inβ,

(5.31)σn � r1σB − β

r1 + λ

and the initial data(σ0 = σ̂ − σ,β0 = β̂0 − β ) belong toH 2(0,R0) and satisfy

(5.32)
∂σ0

∂r
(0, t) = 0,

∂β

∂r
(0, t) = 0, 0 < t < T,

(5.33)σ
(
R(t), t

) = 0, β
(
R(t), t

) = 0, 0 < t < T .

THEOREM 5.2. There is, at most, one solution to(5.26).

We will use some earlier results in the proof.
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LEMMA 5.3. Every solution(σ,β) of the problem(5.26)is bounded and satisfiesσn �
σ � σB and−β � β � max{β0} providedσn � σ0 � σB and−β � β0.

PROOF. By the “integrations by parts formula” (justifying the multiplication of the
equation byT0(σ − σB) and posterior integrations in time and space, see ALT and
LUCKHAUS [1983], Lemma 1.5), we have

1

2

∫ R(t)

0

[
T0(σ − σB)

]2
r2 dr �

∫ t

0

∫ R(s)

0
g1(σ,β)T0(σ − σB)r2 dr ds.

Since

−[
(r1 + λ)

(
σ + σ

) − r1σB + (
β + β

)]
H

(
σ + σ − σn

)
T0(σ − σB)

= −(r1 + λ)T0(σ − σB)2 − [
(r1 + λ)

(
σB + σ

) − r1σB + (
β − β

)]
T0(σ − σB)

� −[
λσB + (r1 + λ)σ + (

β + β
)]

T0(σ − σB)

� T 0(β + β
)
T0(σ − σB) � 1

2

([
T 0(β + β

)]2 + [
T0(σ − σB)

]2)
,

we obtain

(5.34)

∫ R(t)

0
T0(σ − σB)2r2 dr �

∫ t

0

∫ R(s)

0

[
T 0(β + β

)2 + T0(σ − σB)2]r2 dr ds.

In the same way, we considerT 0(β + β ), and since

r2
(
β + β

)
H

(
σ + σ − σn

)
T 0(β + β

)
� r2

[
T 0(β + β

)]2
,

it follows that

(5.35)
∫ R(t)

0

[
T 0(β + β

)]2
r2 dr �

∫ t

0

∫ R(s)

0
r2T

0(β + β
)
r2 dr ds.

Adding (5.34) and (5.35), we obtain thanks to Gronwall’s lemma

σ � σB and β � −β.

Notice thatβ � −β impliesβ̂ � 0.
Let us considerε > 0 and takeT 0(σ − σn − ε) as test function in the weak formula-

tion, then

1

2

∫ R(t)

0

[
T 0(σ − σn − ε)

]2
r2 dr � 0.

Now, taking limits asε → 0, one concludes

1

2

∫ R(t)

0

[
T 0(σ − σn)

]2
r2 dr � 0,

which provesσ � σn.
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Knowingσ andR, β is well-defined as the unique solution of the equation

∂β

∂t
− d2

r2

∂

∂r

(
r2 ∂

∂r
β

)
= −r2

(
β + β

)
, 0 < r < R(t), 0 < t < T,

β
(
R(t), t

) = 0,
∂β

∂r
= 0 on 0< t < T .

Sinceβ0 � −β, it follows that

∂β

∂t
− d2

r2

∂

∂r

(
r2 ∂

∂r
β

)
� 0,

and we obtain by maximum principle thatβ � max{β0}. �

COROLLARY 5.3. There exists a positive constantM such thatR(t) � R0eMt and
R′(t) � R0MeMT .

PROOF. The above result shows(σ (r, t), β(r, t)) ∈ [σn,σB] × [−β,max{β0}]. SinceS

is a continuous function, it attains its maximum (denoted by 3M) on that set. Thus,

R2(t)
dR(t)

dt
�

∫ R(t)

0
3Mr2 dr.

Integrating the above equation, we have dR(t)/dt � MR(t). Finally, the conclusion
follows by Gronwall’s lemma. �

REMARK 5.2. As in the previous subsection the solution(σ,β) of (5.26) satisfies∫ T

0

(‖σ‖2
W1,∞(ε,R(t))

+ ‖β‖2
W1,∞(ε,R(t))

)
dt � C1

for all ε > 0.

PROOF OF THEOREM 5.2. We argue by contradiction and assume that(σ1, β1,R1)

and(σ2, β2,R2) are two solutions of the problem. LetR(t) := min{R1(t), R2(t)}, σ :=
σ1 − σ2 andβ := β1 − β2 be the solution to

(5.36)



∂σ

∂t
− d1

r2

∂

∂r

(
r2 ∂

∂r
σ

)
= g1(σ1, β1) − g1(σ2, β2), r < R(t), 0 < t < T,

∂β

∂t
− d2

r2

∂

∂r

(
r2 ∂

∂r
β

)
= g2(σ1, β1) − g2(σ2, β2), r < R(t), 0 < t < T,

∂σ

∂r
(0, t) = 0,

∂β

∂r
(0, t) = 0, 0 < t < T,

σ
(
R(t), t

) = σ1
(
R(t), t

) − σ2
(
R(t), t

)
, 0 < t < T,

β
(
R(t), t

) = β1
(
R(t), t

) − β2
(
R(t), t

)
, 0 < t < T,

σ(r,0) = 0, β(r,0) = 0, 0 < r < R0.

Now, we state a technical lemma.
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LEMMA 5.4. |β| takes the maximum on the boundaryR(t) andσ satisfies∫ R(t)

0

[
T0(σ − σ ∗)

]2
r2 dr � T C

[
max

t∈[0,T ]{β}
]2

,

where

σ ∗ = max
t∈[0,T ]

{
σ
(
R(t), t

)}
.

PROOF. Let us considerβ∗ = min{0, β(R(t), t)} and

g2(β1) − g2(β2) = −r2
[(

β1 − β
) − (

β2 − β
)] = −r2β,

then(
g2(β1) − g2(β2)

)
T 0(β − β∗) = −r2βT 0(β − β∗) � 0.

Multiply the equation byT 0(β − β∗), we get∫ R(t)

0

[
T 0(β − β∗)

]2
r2 dr � 0

and obtainβ � β∗. In the same way, we prove thatβ takes its maximum onR(t).
Let us consider

g1(σ1, β1) − g1(σ2, β2)

= −([
(r1 + λ)

(
σ1 + σ

) − r1σB + (
β1 + β

)]
H

(
σ1 + σ − σn

)
− [

(r1 + λ)
(
σ2 + σ

)− r1σB + (
β2 + β

)]
H

(
σ2 + σ − σn

))
= (r1 + λ)

[(
σ1 + σ − σn

)
H

(
σ1 + σ − σn

)− (
σ2 + σ − σn

)
H

(
σ2 + σ − σn

)]
+ (−(r1 + λ)σn + r1σB − β

)(
H

(
σ1 + σ − σn

)− H
(
σ2 + σ − σn

))
− [

β1H
(
σ1 + σ − σn

)− β2H
(
σ2 + σ − σn

)]
.

Since(σ + σ − σn)H(σ + σ − σn) is an increasing function ofσ , we obtain that

−[(
σ1 + σ − σn

)
H

(
σ1 + σ − σn

)− (
σ2 + σ − σn

)
H

(
σ2 + σ − σn

)]
× T0(σ1 − σ2 − σ ∗) � 0.

Since−(r1 + λ)σn + r1σB − β � 0, it follows that(−(r1 + λ)σn + r1σB − β
)(

H
(
σ1 + σ − σn

)− H
(
σ2 + σ − σn

))
× T0(σ1 − σ2 − σ ∗) � 0.

Then[
g1(σ1, β1) − g1(σ2, β2)

]
T0(σ1 − σ2 − σ ∗)

� −[
β1H

(
σ1 + σ − σn

) − β2H
(
σ2 + σ − σn

)]
T0(σ1 − σ2 − σ ∗)

� −(β1 − β2)H
(
σ2 + σ − σn

)
T0(σ1 − σ2 − σ ∗)

� −T 0(β1 − β2)T0(σ1 − σ2 − σ ∗) � −β∗T0(σ1 − σ2 − σ ∗).
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Multiplying the equation, as before, byT0(σ − σ ∗), we get∫ R(t)

0

[
T0(σ − σ ∗)

]2
r2 dr +

∫ t

0

∫ R(s)

0

[
∂

∂r
T0(σ − σ ∗)

]2

r2 dr ds

=
∫ t

0

∫ R(s)

0

(
g1(σ1, β1) − g1(σ2, β2)

)
T0(σ − σ ∗)r2 dr ds

� −
∫ t

0

∫ R(s)

0
β∗T0(σ − σ ∗)r2 dr ds

� T C̃

λ
β2∗ + λ

∫ t

0

∫ R(s)

0

[
T0(σ1 − σ2 − σ ∗)

]2
r2 dr ds.

Now, we chooseλ such that

λ

∫ R(s)

0

[
T0(σ1 − σ2 − σ ∗)

]2
r2 dr

−
∫ R(s)

0

[
∂

∂r
T0(σ − σ ∗)

]2

r2 dr � 0 a.e.t ∈ (0, T ),

then,∫ R(t)

0

[
T0(σ − σ ∗)

]2
r2 dr � T Cβ2∗

holds, which ends the proof. �

END OF THE PROOF OFTHEOREM 5.2. Let us define

δ = max
t∈[0,T ]

{∣∣R1(t) − R2(t)
∣∣} � 0,

and consider

R2
1(t)R′

1(t) − R2
2(t)R′

2(t)

=
∫ R(t)

0

(
S(σ1, β1) − S(σ2, β2)

)
r2 dr

(5.37)+
∫ R1(t)

R(t)

S(σ1, β1)r
2 dr −

∫ R2(t)

R(t)

S(σ2, β2)r
2 dr.

By (5.29) and Lemma 5.3, we obtain

(5.38)

∣∣∣∣∫ Ri(t)

R(t)

S(σi , βi)r
2 dr

∣∣∣∣ � Mδ (for i = 1,2),

where

M = max
{
S(σ,β) for any(σ,β) ∈ [σn,σB ] × [

β,max{β0}
]}

.

(5.29) and (5.30) imply∫ R(t)

0

(
S(σ1, β1) − S(σ2, β2)

)
r2 dr � C

∫ R(t)

0

(
T0(σ ) − T 0(β)

)
r2 dr.
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SinceT0(σ ) � T0(σ − σ ∗) + σ ∗ and−T 0(β) � −β∗, we obtain∫ R(t)

0

(
S(σ1, β1) − S(σ2, β2)

)
r2 dr

� C

∫ R(t)

0

(
T0(σ − σ ∗) + σ ∗ − β∗

)
r2 dr

� C′
([∫ R(t)

0
T0(σ − σ ∗)2r2 dr

]1/2

+ σ ∗ − β∗
)

.

By Lemma 5.4, it follows that

C′
([∫ R(t)

0
T0(σ − σ ∗)2r2 dr

]1/2

+ σ ∗ − β∗
)

� C′′(σ ∗ − (T + 1)β∗
)
.

Sinceσi(Ri(t), t) = 0 (for j = 1 or 2), we obtain∣∣σ (
R(t), t

)∣∣ �
( ∑

i=1,2

‖σi‖W1,∞(R(t),Ri(t))

)∣∣R1(t) − R2(t)
∣∣,

∣∣β(
R(t), t

)∣∣ �
( ∑

i=1,2

‖βi‖W1,∞(R(t),Ri(t))

)∣∣R1(t) − R2(t)
∣∣

and then

(5.39)
∫ R(t)

0

(
S(σ1, β1) − S(σ2, β2)

)
r2 dr � C(T + 2)δ.

Integrating in time in (5.37), we get thanks to (5.38) and (5.39) that

(5.40)R3
1(t) − R3

2(t) � T C(T + 2)δ + 2T Mδ.

On the other hand, one has

R3
1(t) − R3

2(t) = (
R1(t) − R2(t)

)(
R2

1 + R1R2 + R3
1

)
.

We can assume without lost of generality thatδ = R1(t0)−R2(t0) (for somet0 ∈ [0, T ]),
hence

R3
1(t) − R3

2(t) � 4R2δ.

Substituting this into (5.40) leads toδ � k0δT . Furthermore, takingT1 < 1/k0 necessi-
tatesR1(t) = R2(t) for any t ∈ [0, T1]. Since|β| takes its maximum atR(t) = R1(t) =
R2(t) (and this maximum is 0), we get thatβ = 0. Substituting in (5.36) and takingσ
as test function, we obtain∫ R(t)

0
σ 2r2 dr �

∫ t

0

∫ R(s)

0

(
g1(σ1, β1) − g1(σ2, β2)

)
σr2 dr ds.

As in Lemma 5.4, since(σi + σ i − σn)H(σi + σ − σn) is a increasing function ofσ ,
we obtain by (5.27) and Lemma 5.3 that(g1(σ1, β1) − g1(σ2, β2))σ � 0, which prove
σ = 0.

Repeating the above process, starting now fromT1, we get the uniqueness of solutions
for arbitraryT > 0, providedR(T ) > 0. �
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6. Approximate controllability

In this section we study the controllability of distribution of nutrients (in the usual weak
sense of parabolic system) by the internal localized action of inhibitors. The main results
of this section is the following theorem.

THEOREM 6.1. GivenT > 0, ω0 ⊂ B(R0 exp{−‖S‖L∞T }), ε > 0, andσ̂ d ∈ L
p

loc(R
3),

for somep > 1, there existsf ∈ Lp((0, T ) × ω0) such that, if(σ,β,R) is the solution
of the problem(5.1)–(5.5), then

(6.1)
∥∥σ(T ) − σd

∥∥
Lp(B(R(T )))

� ε,

whereσd := σ̂ dχB(R(T )).

Due to some technical reasons, we shall prove the theorem firstly forp > 4. This
assumption is a prerequisite in order to obtain the boundedness of the solution in the
proof of Lemma 5.1 in view of the Sobolev compact embeddingW1,p((0, T ) × B) ⊂
L∞((0, T ) × B). Finally, we prove the theorem for anyp > 1 by Hölder inequality.

We shall establish the result in several steps. Forn ∈ N, we start by assumingRn(t)

prescribed and look for a controlfn in ω0 such that the solution(σn,βn) of problem
(5.1), (5.2), (5.4) and (5.5), satisfies (6.1). Then we obtainRn+1 andfn+1 from (σn,βn)

which allows us to find(σn+1, βn+1). The proof of the theorem relies mostly on methods
introduced in the study of approximate controllability (notion attributed to conclusions
such as (6.1)) by different authors (see LIONS [1990], LIONS [1991], FABRE, PUEL

and ZUAZUA [1995], GLOWINSKI and LIONS [1995] and DÍAZ and RAMOS [1995]).
Iterating the process, we obtain a sequence(Rn,fn, σn,βn) such as we shall show pos-
sesses a subsequence that converges to the searched controlf and the associate solution
of problem (5.1)–(5.5).

The next result shows the conclusion of Theorem 6.1 (the so-called approximate
controllability in Lp) under some particular assumptions (mainly,R(t) is a priori pre-
scribed).

PROPOSITION 6.1. Let ω0 ⊂ B(R0 exp{−‖S‖L∞T }) and σ0 = β0 = σ = β = 0. Let
R ∈ W1,∞(0, T ) a given function such thatR(0) = R0, |Ṙ| � ‖S‖L∞R0 exp{|S|L∞T }.
Then, given̂σd ∈ L2

loc(R
3), there existsf ∈ Lp(ω0 × (0, T )), with p > 4, such that, if

(σ,β) is the solution of problem(5.1), (5.2), (5.4)and (5.5), then∥∥σ(T ) − σd
∥∥

Lp(B(R(T )))
� ε,

whereσd = σ̂ d |B(R(T )).

PROOF. Letp′ = p/(p−1) and consider the functionalJ :Lp′
(B(R(T ))) → R defined

by

J
(
ϕ0) = 1

p′

∫ T

0

∫
ω0

∣∣ψ(x, t)
∣∣p′

dx dt + ε
∥∥ϕ0

∥∥
Lp′

(B(R(T )))
−

∫
B(R(T ))

σ dϕ0 dx,
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whereϕ0 ∈ Lp′
(B(R(T ))), and(ϕ,ψ) is the solution to the adjoint problem

(6.2)−∂ϕ

∂t
− d�ϕ + r1ϕ = 0, |x| < R(t), t ∈ (0, T ),

(6.3)−∂ψ

∂t
− d�ψ + r2ψ + λϕ = 0, |x| < R(t), t ∈ (0, T ),

(6.4)ϕ(x,T ) = ϕ0(x), ψ(x,T ) = 0, |x| < R(T ),

(6.5)ϕ(x, t) = 0, ψ(x, t) = 0, |x| = R(t), t ∈ (0, T ).

We point out that the existence of a weak solution(ϕ,ψ) of (6.2)–(6.5) can be obtained
as in Section 5, by employing (4.3)–(4.5) and (5.6).

In order to prove the uniqueness of solutionsby contradiction, we assume that there
exist two solutions(ϕ1,ψ1), (ϕ2,ψ2). Thenϕ := ϕ1 − ϕ2 satisfies (6.2) and taking
|ϕ|p′−2ϕ as test function and integrating by parts it follows that

− d

dt

∫
B(R(t))

|ϕ|p′
dx � r1

∫
B(R(t))

|ϕ|p′
dx.

We obtainϕ = ϕ1 − ϕ2 = 0 by Gronwall’s lemma. Having provedϕ ≡ 0, in the same
way,ψ := ψ1−ψ2 satisfies (6.3) and taking|ψ|p′−2ψ as test function, we obtainψ ≡ 0,
which proves the uniqueness.

Let us assume thatJ is convex, continuous and coercive (in the sense that
lim inf J → ∞ as‖ϕ0‖

Lp′
(B(R0))

→ ∞), facts, which shall be proved at the end of the
proposition. ThenJ takes a minimumϕ0 (see BREZIS [1983], Corollary III.20). More-
over, if (ξ, ζ ) is the solution of the problem (6.2)–(6.5) with datum(ξ0,0), we have∫ T

0

∫
ω0

|ψ|p′−2ψζ dx dt −
∫

B(R(T ))

σ dξ0 dx

(6.6)+ ε
∥∥ϕ0

∥∥1−p′
Lp′

(B(R(T )))

∫
B(R(T ))

∣∣ϕ0
∣∣p′−2

ϕ0ξ0 dx = 0.

Multiplying (5.1), (5.2) by(ξ, ζ ), integrating by parts and applying Leibnitz theorem,
we arrive at

−
∫ T

0

〈
σ,

∂ξ

∂t

〉
dt − d

∫ T

0
〈σ,�ξ〉dt +

∫ T

0

∫
B(R(t))

r1σξ dx dt

+
∫ T

0

∫
B(R(t))

λβξ dx dt −
∫ T

0

〈
β,

∂ζ

∂t

〉
dt − d

∫ T

0
〈β,�ζ 〉dt

+
∫ T

0

∫
B(R(t))

r2βζ dx dt −
∫ T

0

∫
ω0

f ζ dx dt +
∫

B(R(t))

σ ξ dx
]T
0

+
∫

B(R(t))

βζ dx
]T
0 = 0,

where〈 , 〉 is the duality productW1,p′
0 (B(R(t))) × W−1,p′

(B(R(t))). We obtain from
the choice of(ξ, ζ ) andσ(0, x) = β(0, x) = 0 that

(6.7)−
∫ T

0

∫
ω0

f ζ dx dt +
∫

B(R(T ))

σ (T )ξ0 dx = 0.
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Let us take

f := |ψ|p′−2ψ.

Substituting this into (6.7) and using (6.6), one has∫
B(R(T ))

(
σ(T ) − σd

)
ξ0 dx + ε

∥∥ϕ0
∥∥1−p′

Lp′
(B(R(T )))

∫
B(R(T ))

|ϕ0|p′−2ϕ0ξ0 dx = 0,

for all ξ0 ∈ Lp′
(B(R(T ))). Taking

ξ0 = (
σ(T ) − σd

) 1
p′−1 ∈ Lp′(

B
(
R(T )

))
,

we obtain in view ofp = 1+ 1/(p′ − 1) that∥∥σ(T ) − σd
∥∥p

Lp(B(R(T )))

= ε
∥∥ϕ0

∥∥1−p′
Lp′

(B(R(T )))

∫
B(R(T ))

∣∣ϕ0
∣∣p′−2

ϕ0|σ(T ) − σd | 1
p′−1

−1(
σ(T ) − σd

)
dx.

By Hölder inequality, we have∥∥ϕ0
∥∥1−p′

Lp′
(B(R(T )))

∫
B(R(T ))

∣∣ϕ0
∣∣p′−2

ϕ0|σ(T ) − σd | 1
p′−1

−1(
σ(T ) − σd

)
dx

�
∥∥σ(T ) − σd

∥∥p−1
Lp(B(R(T )))

,

which leads to∥∥σ(T ) − σd
∥∥

Lp(B(R(T )))
� ε

and the conclusion holds.
So, it only remains to check the mentioned properties ofJ :

J is convex.We can writeJ as the sum of the functionals

J1
(
ϕ0) := −

∫
B(R(T ))

σ dϕ0 dx, J2
(
ϕ0) := ε

∥∥ϕ0
∥∥

Lp′
(B(R(T )))

,

J3
(
ϕ0) := 1

p′

∫ T

0

∫
B(R(t))

|ψ|p′
dx dt .

First, we shall see thatJ3 is convex. Let(ϕ1,ψ1) and(ϕ2,ψ2) be the solutions to (6.2)–
(6.5) with datumϕ0

1, ϕ0
2 ∈ Lp(B(R(T ))), respectively. Then, since the system is linear,

we get, forα ∈ (0,1),

J3
(
αϕ0

1 + (1− α)ϕ0
2

) = 1

p′

∫ T

0

∫
B(R(t))

(∣∣αψ1 + (1− α)ψ2
∣∣p′)

dx dt

and then

J3
(
αϕ0

1 + (1− α)ϕ0
2

) − αJ3
(
ϕ0

1

) − (1− α)J3
(
ϕ0

2

)
= 1

p′

∫ T

0

∫
B(R(t))

(∣∣αψ1 + (1− α)ψ2
∣∣p′ − α|ψ1|p′ − (1− α)|ψ2|p′)

dx dt .
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Sincep′ > 1, we obtain∣∣αψ1 + (1− α)ψ2
∣∣p′ − α|ψ1|p′ − (1− α)|ψ2|p′ � 0,

and integrating, we have

1

p′

∫ T

0

∫
B(R(t))

(∣∣αψ1 + (1− α)ψ2
∣∣p′ − α|ψ1|p′ − (1− α)|ψ2|p′)

dx dt � 0,

which proves the convexity ofJ3. Finally, J1 is linear and so convex and since
‖·‖Lp′

(B(R(T )) is convex,J2 is also convex.

J is continuous.By construction,J1 and J2 are continuous. We are going to prove
thatJ3 is also continuous. Letϕ0

n ∈ Lp′
(B(R(T ))) such thatϕ0

n → ϕ0 and let(ϕn,ψn),
(ϕ,ψ) be the solutions to (6.2)–(6.5) with datumϕ0

n andϕ0. Subtracting both systems
and taking(

p′|ϕ − ϕn|p′−2(ϕ − ϕn),p
′|ψ − ψn|p′−2(ψ − ψn)

)
as test function, using the integration by parts formula (see, e.g., ALT and LUCKHAUS

[1983]) and Young’s inequality, we arrive at

− ∂

∂t

∫
B(R(t))

[|ϕ − ϕn|p′ + |ψ − ψn|p′]
dx

+
∫

B(R(t))

(
r1p

′ − |λ|)|ϕ − ϕn|p′
dx +

∫
B(R(t))

(
r2p

′ − |λ|)|ψ − ψn|p′
dx � 0.

Let Xn be defined by

Xn(t) = ‖ϕ − ϕn‖p′
Lp′

(B(R(t)))
+ ‖ψ − ψn‖p′

Lp′
(B(R(t)))

,

then,

−X′
n(t) � CXn(t), t ∈ (0, T ), Xn(T ) = ∥∥ϕ0

n − ϕ0
∥∥p′

Lp′
(B(R(T ))

are satisfied, whereC = max{−r1p
′ + |λ|,−r2p

′ + |λ|}. Thus, we obtain

0 � Xn(t) �
∣∣Xn(T )

∣∣e−C(t−T ).

Since

0 �
∫

ω0

|ψ − ψn|p′
dx � Xn(t),

we conclude by integrating over[0, T ] and taking limits asn → ∞ that∫ T

0

∫
ω0

|ψ − ψn|p′
dx dt �

∫ T

0
Xn(t)dt → 0,

which proves the continuity ofJ3.
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J is coercive.Let ϕ0
n ∈ Lp′(B(R(T ))) such that‖ϕ0

n‖
Lp′

(B(R(T )))
→ ∞, whenn → ∞.

We claim

lim inf
n→∞

J (ϕ0
n)

‖ϕ0
n‖Lp′

(B(R(T )))

� ε.

Let

I := lim inf
n→∞

J (ϕ0
n)

‖ϕ0
n‖Lp′

(B(R(T )))

� −∥∥σd
∥∥

Lp(B(R(T )))
.

Then, there exists a minimizing subsequence (which we call again byϕ0
n) such that

lim
n→∞

J (ϕ0
n)

‖ϕ0
n‖

Lp′
(B(R(T )))

= I.

We define

ϕ̄0
n := ϕ0

n

‖ϕ0
n‖

Lp′
(B(R(T )))

,

and let(ϕ̄n, ψ̄n) be the solution to (6.2)–(6.5) with data(ϕ̄0
n,0). Since the system is

linear, we have

(ϕ̄n, ψ̄n) = 1

‖ϕ0
n‖

Lp′
(ϕn,ψn).

Then

J (ϕ0
n)

‖ϕ0
n‖Lp′

(B(R(T )))

= ∥∥ϕ0
n

∥∥p′−1
∫ T

0

∫
ω0

|ψ̄n|p′
dx dt −

∫
B(R(T ))

σ d ϕ̄0
n dx + ε.

Now, it is clear that, if

(6.8)lim inf
n→∞

∫ T

0

∫
ω0

ψ̄
p′
n dx � α0,

for some positiveα0, then

J (ϕ0
n)

‖ϕ0
n‖Lp′

(B(R(T )))

� α0
∥∥ϕ0

n

∥∥p′−1
Lp′

(B(R(T )))
+ ε − ∥∥σd

∥∥
Lp(B(R(T )))

→ ∞

asn → ∞, which proves the property. Let us assume that

lim inf
∫ T

0

∫
ω0

|ψ̄n|p′
dx = 0.

Then there exists a subsequenceψ̄ni such that∫ T

0

∫
ω0

|ψ̄ni |p
′
dx dt → 0,
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thereforeψ̄ni → 0 in Lp′
(ω0 × [0, T ]). Taking (0, ζ ) as test function in (6.3), where

ζ ∈ C2
c ((0, T ) × ω0), we obtain∫ T

0

∫
ω0

ψ̄ni

∂ζ

∂t
dx dt −

∫ T

0

∫
ω0

ψ̄ni �ζ dx dt

− r2

∫ T

0

∫
ω0

ψ̄ni ζ dx dt + λ

∫ T

0

∫
ω0

ϕ̄ni ζ dx dt = 0.

Taking limits, we conclude that

(6.9)
∫ T

0

∫
ω0

ϕ̄ni ζ dx dt → 0,

whereϕ̄ni is the solution to

(6.10)


−∂ϕ̄ni

∂t
− d�ϕ̄ni − r1ϕ̄ni = 0, |x| < R(t), t ∈ (0, T ),

ϕ̄ni (t, x) = 0, |x| = R(t), t ∈ (0, T ),

ϕ̄ni (T , x) = ϕ̄0, |x| < R0.

Repeating the change of (5.6) and introducing the unknown

ūni (x̃, t̃) := ϕ̄ni

(
R
(
t (t̃)

)
x̃, t (t̃)

)
,

we obtain

(6.11)


−∂ūni

∂ t̃
− d�ūni − R2R′x̃ · ∇ūni + R2r1ūni = 0, B × (0, T̃ ),

ūni (x̃, t̃ ) = 0, ∂B × (0, T̃ ),

ūni (x̃, T̃ ) = ū0
ni

(x̃) = ϕ̄0
ni

(x̃R0), x̃ ∈ B.

Sinceū0
ni

⇀ ū0 belongs toLp′
(B), it follows thatūni ⇀ ū (the solution of (6.11) with

ū0 = ϕ̄0). By (6.9), ūni → 0 weakly in Lp′
(B(ω̂0)), whereω̂0 is an open subset of

B such that̂ω0 ⊂ ω̃0. Consequently,̄u ≡ 0 on ω̃0 for all 0 � t̃ � T̃ . By the unique
continuation of the solution to Eq. (6.11) (see FRIEDMAN [1964], CHI-CHEUNG POON

[1996], Theorem 1.1′), we deduce that̄u = 0 in B × (0, T̃ ), which impliesū0 ≡ 0 and
ϕ̄0 ≡ 0 by uniqueness of (6.11). Furthermore,

−
∫

B(R(T ))

σ dϕ̄0 dx = 0

andI = ε, which proves the coerciveness ofJ . �

PROOF OF THEOREM 6.1. We consider the functionθ :C1([0, T ]) → H 2(0, T ),
θ(R∗) = R, whereR is defined by

R2(t)Ṙ(t) =
∫

B(R∗(t))
S
(
σ + σ s,β + βs

)
dx, R∗(0) = R0,
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where(σ s, βs) is the solution to the problem (5.1), (5.2), (5.4) and (5.5), withf ≡ 0,
and initial dataσ s

n−1(x,0) = σ0(x), βs(x,0) = β0(x), and(σ,β) is the solution men-
tioned in Proposition 6.1. SinceS is bounded,R ∈ W1,∞(0, T ). By Proposition 6.1, for
eachR∗ there exists a minimum functionϕ0

n which minimize the functional

J
(
ϕ0) := 1

p′

∫ T

0

∫
ω0

|ψ|p′
dx dt + ε

∥∥ϕ0
∥∥

Lp′
(B(R∗(T )))

−
∫

B(R∗(T ))

σ dϕ0 dx,

whereσd = σ̂ dχB(R∗(T )). We are going to show that‖ϕ0‖Lp′
(B(R∗(T ))) is uniformly

bounded. To the contrary, we assume that there exists a sequenceϕ0
n such that

‖ϕ0
n‖

Lp′
(B(R∗(T )))

→ ∞ and get

J (ϕ0
n)

‖ϕ0
n‖

Lp′
= 1

p′
∥∥ϕ0

n

∥∥p′−1
Lp′

(B(R∗(T )))

∫ T

0

∫
ω0

|ψ̄n|p′
dx dt

(6.12)+ ε −
∫

B(R∗(T ))

σ d
n ϕ̄0

n dx � 0

in view of Jn(ϕ
0
n) � 0. Since∣∣∣∣∫

B(R∗(T ))

σ d
n ϕ0

n

‖ϕ0
n‖

Lp′
(B(R∗(T )))

dx

∣∣∣∣ �
∥∥σd

n

∥∥
Lp(B(R∗(T )))

�
∥∥σ̂ d

∥∥
Lp(B(R0 exp{MT })),

it follows, by (6.12) that∫ T

0

∫
ω0

|ψ̄n|p′
dx dt → 0 whenn → ∞.

Using the same argument as in the proof of coerciveness ofJ , we obtain

ϕ̄0
n ⇀ 0 in Lp′(

B
(
R∗(T )

))
and

lim inf
n→∞

Jn(ϕ
0
n)

‖ϕ0
n‖

� ε,

which contradicts (6.12). Consequently‖ϕ0
n‖

Lp′
(B(R∗(T )))

is uniformly bounded, hence
‖ϕn‖Lp′

(B(R∗(T )))
is uniformly bounded. Furthermore, the set of controls is uniformly

bounded. Performing the change of (4.3)–(4.5) and (5.6), applying Lemma 5.1, we ob-
tain thatθ is continuous and compact. Then, there exists a fixed point(σ,β,R) which
satisfies (5.1)–(5.5) and condition (6.1). Thus the theorem is proved in the casep > 4.

In the casep � 4, we consider the controlf for any s > 4, for instancef ∈
L5((0, T ) × Ω), then

∥∥σ(T ) − σd
∥∥

Lp(B(R(T )))
�

(
3π

4
meas

{
B
(
R(T )

)}) 5
p(5−p) ∥∥σ(T ) − σd

∥∥
L5(B(R(T )))

� ε

(
3π

4
exp

{
T ‖S‖L∞

}) 5
p(5−p)

,
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setting

ε = ε′
(

3π

4
exp

{
T ‖S‖L∞

})− p(5−p)
5

,

we obtain the theorem. �

REMARK 6.1. Notice that the final observation is made regarding the densityσ(T , ·)
and that once we have chosen the control to obtain (6.1). The free boundary,R(t), and
the inhibitor densityβ(T , ·) are univocally determined.

REMARK 6.2. There exists a long literature on the application of Optimization and
Control Theory to different mathematical tumor growth models. We refer the interested
reader to the works by SWAM [1984], FISTER, LENHART and MCNALLY [1998], BEL-
LOMO and PREZIOSI [2000] and the references therein.

7. Numerical analysis

In this section we establish a numerical solution to the problem (5.1)–(5.5) by employ-
ing a time discretization scheme which is implicit with respect tou andv and explicit
for the free boundaryR. We assume radial symmetry, no forcing terms (i.e.,f = 0),
and a nonnecrotic core. Letx := r1/R(t) and

u(x, t) = σ
(
xR(t), t

) − σ, v(x, t) = β
(
xR(t), t

) − β.

Then, problem (3.1)–(3.5) becomes

∂u

∂t
= d1

x2R2

∂

∂x

(
x2 ∂

∂x
u

)
+ x

R′

R

∂u

∂x
− r1u − λv + r1σ + λβ, (0,1) × (0, T ),

∂v

∂t
= d2

x2R2

∂

∂x

(
x2 ∂v

∂x

)
+ x

R′

R

∂

∂x
v − r2v + r2β, (0,1) × (0, T ),

R(t) = R0 exp

{∫ t

0

∫ 1

0
x2S(u, v)dx dt

}
, t > 0,

ux(0, t) = vx(0, t) = u(1, t) = v(1, t) = 0, t > 0,

R(0) = R0, u(x,0) = u0(x), v(x,0) = v0(x), x ∈ (0,1).

7.1. Time discretization

Let N ∈ N, n = 1, . . . ,N andtn = n(T /N). We introduce the approximations

un(x) ≈ u(x, tn), vn(x) ≈ v(x, tn), Rn ≈ R(tn),

Ṙn ≈ dR(t)

dt
in t = tn,

defined by the following algorithm:
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Step 0:

(0.1)
(
R0, u0, v0) = (R0, u0, v0),

(0.2) R1/2 = 1

2

(
R0 + R0e�t

∫ 1
0 x2S(u0,v0)dx

)
,

(0.3) Ṙ0 = R0

∫ 1

0
x2S(u0, v0)dxR0e�t

∫ 1
0 x2S(u0,v0)dx.

Now, for 1< n � N , assuming(Rn−1, un−1, vn−1) be given, we calculate(Rn,un,

vn) as follows:

Step n:

(n.1) 

vn − vn−1

�t
= d2

(Rn−1)2x−2 ∂

∂x

(
x2 ∂

∂x
vn

)
+ x

Ṙn−1

Rn−1

∂

∂x
vn−1

− r2v
n + r2β, in 0 < x < 1,

∂vn

∂x
(0) = vn(1) = 0,

(for n = 1, we useR1/2).

(n.2) 

un − un−1

�t
= d1

(Rn−1)2x−2 ∂

∂x

(
x2 ∂

∂x
un

)
+ x

Ṙn−1

Rn−1

∂

∂x
un−1

− r1u
n − λvn + r1σ + λβ, in 0< x < 1,

∂un

∂x
(0) = un(1) = 0.

(n.3) We computeRn by integrating according the compound trapezium rule

Rn = R0 exp

{
�t

n−1∑
j=0

∫ 1

0
x21

2

(
S
(
uj , vj

) + S
(
uj+1, vj+1))dx

}

= R0 exp

{
�t

∫ 1

0
x2

[
1

2

(
S
(
u0, v0)+ S

(
un, vn

)) +
n−1∑
j=1

S
(
uj , vj

)]
dx

}
.

(n.4)

Ṙn = R0

∫ 1

0
x2S

(
un, vn

)
dx exp

{
�t

n−1∑
j=0

∫ 1

0
x21

2

(
S
(
uj , vj

)
dx

+ S
(
uj+1, vj+1)dx

)}
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= R0

∫ 1

0
x2S

(
un, vn

)
dx exp

{
�T

∫ 1

0
x2

[
1

2

(
S
(
u0, v0)

+ S
(
un, vn

)) +
n−1∑
j=1

S
(
uj , vj

)]
dx

}
.

7.2. Full discretization

We approximateH 1(0,1) by spaceVh defined by

Vh := {
φ ∈ C0([0,1]): φ|(xj−1,xj ) ∈ P1, for j = 1, s + 1

}
,

wherexj = j/(s + 1) andP1 is the space of those polynomials of degree 0 or 1. We
approximate the above implicit–explicit scheme by the system

un
h − un−1

h

�T
= D1

(xRn−1)2

∂

∂x

(
x2 ∂

∂x
un

h

)
+ x

Ṙn−1

Rn−1

∂

∂x
un

h − r1u
n
h − λvn

h + r1σ + λβ,

in 0< x < 1, n = 1, . . . ,N,

vn
h − vn−1

h

�T
= D2

(xRn−1)2

∂

∂x

(
x2 ∂

∂x
vn
h

)
+ x

Ṙn−1

Rn−1

∂

∂x
vn
h − r2v

n
h + r2β,

in 0< x < 1, i = 1, . . . ,N,

un
h(1) = vn

h(1) = 0,
∂un

h

∂x
= ∂vn

h

∂x
= 0, onx = 0,

R(0) = R0, u0
h(x) = uh,0(x), v0

h(x) = vh,0(x),

Rn
h = R0 exp

{
�T

∫ 1

0
x2

[
1

2

(
S
(
u0

h, v
0
h

)+ S
(
un

h, v
n
h

)) +
n−1∑
j=1

S
(
u

j

h, v
j

h

)]
dx

}
.

7.3. Weak formulation of the discrete problem

Setting

b(ζ,ϕ) =
∫ 1

0
x2ζϕ dx,

the weak formulation of the discrete problem is given by(∀ϕ ∈ Vh)

(1+ �T r1)b
(
un

h,ϕ
)+ d1�T

(Rn−1)2
b
((

ui
h

)
x
, ϕx

) − �T Ṙn−1

Rn−1
b
(
x
(
un

h

)
x
, ϕ

)
= b

(
un−1

h − vn
h + Γ1σ + β,ϕ

) = b
(
un−1

n + �T
(−λvn

h + r1σ + λβ
)
, ϕ

)
,

(1+ �T r2)b
(
vn
h,ϕ

)+ d1�T

(Rn−1)2b
((

vn
h

)
x
, ϕx

) − �T Ṙn−1

Rn−1 b
(
x
(
vn
h

)
x
, ϕ

)
= b

(
vn−1
h + �T r2β,ϕ

)
.



Mathematical analysis, controllability and numerical simulation 225

7.4. Numerical experiments

We consider the special case ofS(σ,β) = σ − σ̂ , T = 3, N = 501, (i.e.,�T = 3/500)
ands = 20 (i.e.,h = 1/20) with the following choice of the parameters:R0 = 5, D1 =
D2 = 1, Γ1 = Γ2 = σ = β = 1. These values of the parameters have been taken merely
with academical purpose. For other choices see, for instance, BYRNE and CHAPLAIN

[1996a]. In Figs. 7.1, 7.5 and 7.9, we display the computed evolution of the radius of
the tumor for experiments 1 (σ̂ = 0.75), 2 (σ̂ = 1) and 3 (̂σ = 1.5). In Figs. 7.2, 7.6
and 7.10 we display visualized the computed evolution of the radius of the tumor in two

FIG. 7.1. FIG. 7.2.

FIG. 7.3. FIG. 7.4.



226 J.I. Díaz and J.I. Tello

FIG. 7.5. FIG. 7.6.

FIG. 7.7. FIG. 7.8.

dimensions. Figs. 7.3, 7.7 and 7.11 show the computed evolution of the concentration
of nutrientsσ . Finally, in Figs. 7.4, 7.8 and 7.12 we exhibit the computed concentration
of the inhibitorsβ . Numerical simulation of the model (whenS = σ − σ̃ ) show us
the importance of the parameterσ̃ in the behavior of the boundary. As it is expected,
a smallerσ̃ produces a faster growth of the boundary. We can see in Figs. 7.1, 7.5 and 7.9
an initial concave growth of the radius that becomes convex after a time (which depends
on σ̃ ). Among other different aspects it can be appreciated that the free boundary is not
necessarily increasing in time (see Fig. 7.1).
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FIG. 7.9. FIG. 7.10.

FIG. 7.11. FIG. 7.12.
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