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Resumo. The paper is devoted to a mathematical analysis of general models of mass
transport and other interconnected physical processes developing in coupled flows of sur-
face, soil and ground waters. Such models widely are used for forecasting (numerical
simulation) of a hydrological cycle for concrete territories. The mathematical models that
proved realistic are obtained by combining mathematical models of local processes.The wa-
ter -exchange models take into account the following factors :water flows in confined and
unconfined aquifers, vertical moisture migration with allowing earth surface evaporation,
open-channel flow simulated by one-dimensional hydraulic equations,transport of contami-
nation, etc. These models may have different levels of sophistication, ranging from systems
of balance equations to systems of nonlinear partial differential equations. Investigation
of the questions concerning mathematical correctness of these models, such as existence
and uniqueness of solutions and the study of they qualitative properties is presented.

1



S. N. Antontsev, J.I. Dı́az

1 INTRODUCTION

The paper is devoted to a mathematical analysis of general models of mass transport
and other interconnected physical processes developing in coupled flows of surface, soil
and ground waters.

Beginning with 70-90 years in numerous articles were offered mathematical models
of mass transport in interconnected processes of surface, soil and grounds waters (see
[1, 4, 10, 12],[15]-[21],[23]-[25],[29, 30] and the further references therein). Such models
are called Mathematical models of hydrological cycle (MMHC). The mathematical models
that proved realistic are obtained by combining mathematical models of local processes.

The water -exchange models (MMHC) take into account the following factors: water
flows in confined and unconfined aquifers, vertical moisture migration with allowing earth
surface evaporation, open-channel flow simulated by one-dimensional hydraulic equations,
transport of contamination, etc.

These models may have different levels of sophistication, ranging from systems of bal-
ance equations to systems of nonlinear partial differential equations.

General scheme of hydrological cycle and the grid used in numerical simulation are
presented on the figure 1. Vertical and horizontal section of modelling area are presented
on the figure 2 and on 3, 4.

Recent activity in the study of these mathematical models and their numerical re-
alization has lead to several very important theoretical problems for nonlinear partial
differential equations.

The existing methods used to study properties of solutions to nonlinear degenerate
equations do not seem to apply to the systems discussed here.

In the paper is presented investigation of the questions concerning mathematical cor-
rectness of the models, such as existence and uniqueness of solutions and the study of
they qualitative properties such that asymptotic behavior with respect to time and spatial
variables and stability with respect initial data and physical parameters.

MMHC are produced a composition of mathematical models of local processes and may
be have different levels of complication, beginning with systems of ordinary equations until
systems of partial differential equations.

In the present paper we would like to illustrate and analyze these mathematical singu-
larities. First we demonstrate universally adopted nonlinear partial differential equations
describe local hydrological process composing a general model of the interactive model.

Next we concentrate on a more simple model of simultaneous (interactive ) flow of
surface and ground waters (SGW).

For this model we demonstrate a scheme of the proof for existence and uniqueness
theorems, convergence of iterative process splitting with respect to hydrological process.
We analyze also localization properties of solutions such that finite time of localization
(extinction), finite speed of propagation of disturbances from the initial data, waiting
time effect, etc.
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2 Mathematical Models of General Hydrological Cycle

2.1 Basic equations

We consider a bounded multiply connected modelling region Ω ⊂ R2 with the external
boundary Γ = ∂Ω =

∑n
i=1 Γi (see figure 4). Inside Ω there is a system of channels or

rivers describes by a set of lines Π =
∑l

i=1 Πi. The closed contours Γ0 =
∑m

j=1 Γ0j are
fixed boundaries of basins or lakes. The lines Πi may have points of intersection: with
Π (denoted as N =

∑
i,j=1 Nij ); with the boundary Γ (denoted as P =

∑
i=1 Pi ); with

the boundary Γ0 (denoted as P0 =
∑

i=1 P0i ).
Mathematical models of hydrological cycle are based on the following subsystems (equa-

tions):

1. one-dimensional Richards equation for soil water pressure (or moisture) in unsatu-
rated zone ([1, 26, 27, 30]),

∂ϑ(ψ)

∂t
=

∂

∂x3

[
K (ψ)

(
∂ψ

∂x3

+ 1

)]
+ fk (H, ϑ, x3, x, t) , (1)

H(x, t) < x3 < He(x), x = (x1, x2) ∈ Ω ∈ R2,

ϑ = ϑs/

[
1 +

(
−ψ

a

)m]
, ψ < 0, K = Ks [ ( ϑ− ϑr) / ( ϑs − ϑr)]

n ,

where θ is the volumetric moisture content, ψ is the pressure of the soil moisture, K is
the hydraulic conductivity, and x3 is the vertical coordinate direct upward, H(x, t) is
the level of the ground water ( elevation of the ground free surface), He(x1, x2) is
the given surface of the earth.

2. plane filtration equations for the levels of ground waters (consequence from Boussi-
nesq and Shchelkachev equations, [23, 25, 28, 30]),

µ
∂H

∂t
= div(x) (M∇H)− k′

T ′ (H −H1) + fΩ, x = (x1, x2) ∈ Ω, t ∈ (0, T ) (2)

M = k(x)(H −H1) , fΩ = fΩ(H, ϑ, x, t);

µ1
∂H1

∂t
= div(x) (k1T1∇H1) +

k′

T ′ (H −H1), x ∈ Ω, t ∈ (0, T ) (3)

where H(x, t) and H1 denote respectively the elevation of the groundwater free
surface in the upper layer and the piezometric head in the lower layer, µ denotes
the yield coefficient (the deficiency of saturation) and µ1 the storage coefficient;
k, k1 and k′ are the hydraulic conductivity (percolation) coefficients for the corre-
sponding layers and Hb(x) is the given confining bed height above the fixed plane
, fΩ is the a source function(see [8]). The last term in (3) characterize the rate of ver-
tical flow from the upper layer to the one through the semipermeable intermediate
layer.
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3. hydraulics equation for open channels (diffusion wave approximation of the Saint
Venan equations, see ([4, 17, 21, 23, 30] and the further references therein) for the
water level in the channel,

∂ω

∂t
=

∂

∂s

(
ψφ

(
∂u

∂s

))
−Q + fΠ, s ∈ Π, t ∈ (0, T ), (4)

ω = ω(s, u), ψ = ψ(s, u), φ

(
∂u

∂s

)
=

∣∣∣∣∣
∂u

∂s

∣∣∣∣∣

1
2

sign

(
∂u

∂s

)
,

Q = α u|Π + α0


M

∂H

∂n

∣∣∣∣∣
Π+

− M
∂H

∂n

∣∣∣∣∣
Π−


 ;

where u(s, t) is the water level in the channel stream , ω is the cross sectional area
(ωu = B is the width), s is the channel length measured along its axial cross-

section, ψ(s, u) = CωR
2
3 is the discharge modulus, C is the coefficient Chezy , R is

the hydraulic radius, fΠ is the a source function,

[MHn] =
(
MHn|Π+

+ MHn|Π−
)

is the total filtration inflow of ground water from the right Π+ and left Π−banks
of the channel, and Hn = ∂H/∂n is the outer normal derivative to Π.

4. balance equations for the water level in reservoirs on the boundaries of reservoirs([4]),

λ
∂z

∂t
= −

∮

Γ0

M
∂H

∂n
ds− (ψφ)Γ0

, x ∈ Γ0, t ∈ (0, T ). (5)

To obtain models describing the quality of ground and surface waters we need to add
the following equations of mass transfer between components (see for example [22])

1. solute transport equation in a confined aquifer

∂(mC)

∂t
= div (D∇C − vC) + Φ(C,N) + f, (6)

v = −M∇H, D = D0 + λ|v|, m = m0 + µ(H −Hp);

2. kinetic equation on the skeleton of a porous medium

∂N

∂t
= Φ(C, N) (7)

3. solute transport equation in open-channels (e.g., rivers)

∂($S)

∂t
=

∂

∂s
(D1

∂S

∂s
− v1S)− (q1C) + f, (8)

D1 = D1
0 + λ1|v1|, v1 = −Ψ(s, u)|us|1/2sign(us).
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2.2 Model of coupled flows of surface and ground waters(SGW)

2.2.1 Basic equations

Usually the basic mathematical models of hydrological cycle are a composition of above
stated equations completed by corresponding initial, boundary conjugate conditions. Now
we will consider the mathematical model describing interconnected process between sur-
face (lake, channel) and ground waters, neglecting unsaturate zone and assuming that
there is only one nonpressure layer (see figure 3,4). Then equations (2), (3), (4), (5)
reduce to the following ones:

µ
∂H

∂t
= div(x) (M∇H) + fΩ, x = (x1, x2) ∈ Ω, t ∈ (0, T ), (9)

∂ω

∂t
=

∂

∂s

(
ψφ

(
∂u

∂s

))
−Q + f, s ∈ Π, t ∈ (0, T ), (10)

λ
∂z

∂t
= −

∮

Γ0

M
∂H

∂n
ds− (ψφ)Γ0

, x ∈ Γ0, t ∈ (0, T ), (11)

for unknown functions W (x, t) = ( H(x, t), u(s, t), z(t)) ..

2.2.2 Initial, boundary and conjugate conditions

Stated above system should be completed by the following initial, boundary and con-
jugate conditions

W (x, 0) = W0(x), x ∈ Ω, (12)

(
σ1M

∂H

∂n
+ σ2H

)
= g, (x, t) ∈ ΓT = Γ×[0, T ], (13)

κ1ψ(s, u)φ(
∂u

∂s
) + κ2u = g, (x, t) ∈ PT = P × [0, T ], (14)

M
∂H

∂n

∣∣∣∣∣
Π±

= α (u−H±) + α0 (H+ −H−) , (x, t) ∈ ΠT = Π× [0, T ], (15)

ui = uj,
∑

i=1

ψ(s, ui)φ(
∂ui

∂s
) = 0 (x, t) ∈ NT = N × [0, T ], (16)

H = z(t), x ∈ Γ0, t ∈ (0, T ). (17)

The mathematical model is being described by equations (9)-(11), (12)-(17) we will call
(SGW)-model. The mathematical model just described leads to investigation of combined-
type nonlinear systems of partial differential equations (PDEs). The systems are fairly
complicated.
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The equations that they include are defined on different sets of space variables. Equa-
tion (9) is defined in two dimension domain Ω, equation (10) on the curve Π , (11) one
is an ordinary differential equation with respect to time and the right side of the one
is nonlocal operator over H, ∂H

∂n
. These equations degenerate changing type or order at

certain values of the solution that is sought (or its derivatives). These equations contain
numerous physical parameters. The interaction between different physical processes is
simulated by source functions included into differential equations, as well as by internal
boundary conditions.

The solutions of such equations may exhibit behavior that cannot occur in linear mod-
els. The list of effects of this kind includes: finite time of localization (extinction), finite
speed of propagation of disturbances from the initial data, waiting time effect,etc. The
questions of mathematical correctness -existence, uniqueness and qualitative properties
of solutions were analyzed preliminary in [8]. The mathematical singularities of such
equations and its solutions will be demonstrated more intuitively in next section.

3 Mathematical questions in a simple SGW

Here we consider a simple case above stated model of coupled flows of surface and
ground waters(SGW)under the following assumptions(see figure 5,6):the ground is homo-
geneous and isotropic, base impermeable is horizontal

M = H; (18)

the area of flow cross-section of the channel is given by

ω(s, u) = u; (19)

function ψ(s, u) = |u|α, where the parameter α is defined by the geometry of channel.
Assumed also that the coefficients σ1 = κ1 = 0 and the levels of the ground waters on

the left and right banks and the level of the water of the channel coincide. Last condition
follows from (15) if α = ∞ and α0/α = 0.

3.1 Statement of the mathematical problem

3.1.1 System of Equations

Under above stated propositions equations of SGW model take the form

∂H

∂t
= ∇ (H∇H) + fΩ, x, t ∈ ΩΠ

T = ΩΠ × (0, T ), ΩΠ = Ω/Π, (20)

∂u

∂t
=

∂

∂s

(
| u |α | ∂u

∂s
|
−1/2∂u

∂s

)
+

[
H

∂H

∂n

]

Π

+ fΠ, x, t ∈ ΠT , (21)
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3.1.2 Initial, boundary and conjugate conditions

Initial, boundary and conjugate conditions take the form

H(x, 0) = H0(x), u(x, 0) = u0(x), x ∈ Ω, (22)

H+= H−= u, x, t ∈ ΠT = Π× [0, T ], (23)

H = g, x, t ∈ ΓT , u = g, x, t ∈ ΠT (24)

The cross-section and plan view of the modelling domain are presented on the figures
5, 6. We assume that there exist functions H0(x, t), u0(x, t) defined on Ω × (0, T ) such
that

H0|ΓT
= g, u0 |ΠT

= g; H0(x, 0) = H0(x), u0 (x, 0) = u0(x), x ∈ Ω, (25)

|H0 | , |u0 | , ‖|∇H0|+|H0 t|‖2,ΩT
, ‖u0s ‖3/2,ΠT

, ‖u0t‖2,ΠT
≤ C < ∞. (26)

We assume also ∫ T

0

(
max

x
|fΩ|+ max

s
|fΠ|

)
ds ≤ C < ∞ (27)

3.2 Existence and uniqueness theorems

Definition 1 Non negative bounded functions (H, u) =
−→
W such that

0 ≤ (H(x, t), u(s, t)) ≤ C < ∞ (28)

∫ T

0

( ∫

Ω±
H| ∇H |2dx +

∫

Π

(
uα| us |

3
2

)
ds

)
dt≤ C < ∞ (29)

are called weak solution of simple (GSW) model (20)-(24) if for every test -function η
such that

η ∈ W 1,1
2 (ΩT ) ∩W 1,1

3/2(ΠT ), η = 0, (x, t) ∈ ΓT = Γ× (0, T )

and every t ∈ [0, T ] the following identity holds

t∫

0

∫

Ω

(−Hηt + H∇H∇η) dxdt +
∫

Ω

H(x, τ)η(x, τ)dx|τ=t
τ=0 (30)

+

t∫

0

∫

Π

(−uηt + ψϕ(us)ηs) dsdt +
∫

Π

u(s, τ)η(x, τ)dx|τ=t
τ=0

=

t∫

0

∫

Ω

fΩηdxdt +

t∫

0

∫

Π

fΠηdsdt.
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Theorem 1 Let us assume that (26), (27) hold and

0 ≤ ( fΩ, fΠ, H0, u0) ≤ C0 < ∞, 0 < α < ∞. (31)

Then the simple SGW model has at least one weak solution W (x, t) = (H, u) .
If additionally

0 < δ ≤ (u0, H0, g) ≤ C0 < ∞, (32)
∫ T

0

(
max

x
|∂fΩ/∂t|+ max

s
|∂fΠ/∂t|

)
ds ≤ C < ∞ (33)

H0xt, H0tt ∈ L2(Ω±
T ),∇H0∈ L∞(0, T ; L2(Ω±

T )), u0s∈ L∞(0, T ; L
3
2 (Π)), u0st∈ L2(ΠT ) ≤ C,

(34)
then there exist a small T0 > 0 such that this weak solution is unique and the following
estimates are valid

sup
0≤t≤T0

(∫

Ω±
| ∇H |2dx +

∫

Π
| u

s
| 32 ds

)
≤ C < ∞ (35)

∫ T0

0

∫

Ω±

(
Ht

2 + | Hxx |2
)
dxdt +

∫ T

0

∫

Π

(
ut

2 + | us |−1/2| uss |2
)
dsdt ≤ C < ∞. (36)

Proof 1 First we assume that (32) holds. Then it follows from Definition of weak solution
that

that
0 < δ ≤ ( H, u) .

The solution is constructed as the limit of the sequence of Galerkin’s approximations. It as-
sumed that the domain Ω admits a complete system of the functions Φk(~x) ∈ W 1

2 (Ω)}, Φk(~x)Γ =
0 which are dense in W 1

2 (Ω). Respectively assumed that the set of the lines Π admits a
complete system of the functions Ψk(s)∈ W 1

3
2

(Π)}, Ψk(s)
Γ∪Π

= 0 which are dense in

W 1
3
2

(Π)}. Without loss of the generality we assume that the functions Φk and Ψk are or-

thogonal in L2(Ω), L2(Π). Let us consider the approximate solution in the form

~WN = (HN , uN) =

(
N∑

k=1

Hk(t)Φk(~x) + H0,
N∑

k=1

uk(t)Ψk(s) + u0

)
, (37)

where the functions H0 and u0 satisfy the corresponding boundary conditions.
We substitute last presentation into corresponding differential equations, multiply by

Φ±
j (x) and Ψj(s) and integrate over Ω± and Π.
This leads us to the Cauchy problem for a system of nonlinear ordinary differential

equations

d~Y N

dt
= ~F (t, ~Y N), C = ~Y N

0 , (~Y N = (H1, .., HN , u1, .., uN)), (38)

8
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with a given smooth with respect to ~Y N vector function ~F . Multiplying equations (38) by

the vector ~Y N and summing, we arrive at the relation

1

2

(∫

Ω±
| H

N

(x, τ)−H0|2dx +
∫

Π
| uN(x, τ)− u0|2ds

)∣∣∣∣∣
τ=t

τ=t

) (39)

+
∫ t

0




∫

Ω±
H

N

∇HN∇(HN −H0)dx +
∫

Π


 |uN | 1√

|uN
s |

∂uN

∂s
(uN

s − u
0s

)


 ds


 dτ

−
∫ t

0

(∫

Ω±
H

0t
(HN −H0)dx +

∫

Π
u

0t
(uN − u0)ds

)
dτ.

To prove the estimates (35), (36) we differentiate (38) with respect to t and multiply by

d~Y N/dt. Obtained estimates permit us to pass to the limit when N →∞ and δ > 0 and
next to pass to the limit when δ → 0.

Remark 1 Notice that presentation (37) may be used as an approximative solutions if
the functions Φj, Ψj may be constructed effectively.

3.3 Splitting with respect to physical process.

In this section we propose a method to solve the mathematical model of SGW.

3.3.1 Iterative process for differential equations

The given algorithm use the splitting the initial problem into two following independent
problems:

I. Plane filtration in the domain x ∈ Ω/Π, t ∈ (0, T ),k = 1, 2, ...

∂Hk

∂t
= ∇

(
Hk∇Hk

)
+ fΩ, x ∈ Ω/Π, (40)

Hk(x, 0) = H0(x), x ∈ Ω (41)

Hk ∂Hk

∂n
|
±

= σ
(
uk−1 −Hk±

)
, x ∈ Π (42)

(
σ1H

k Hk∂Hk

∂n
+ σ2H

k

)
= g, x ∈ Γ = ∂Ω (43)

II. Flow in the channel Π

∂uk

∂t
=

∂

∂s


| uk |α| ∂uk

∂s
|
−1/2

∂uk

∂s


 +

[
Hk ∂Hk

∂n

]

Π

+ fΠ, x ∈ Π (44)

9
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(
κ1ψ(s, uk)φ(

∂uk

∂s
) + κ2u

k

)
= g, x ∈ Π ∩ Γ. (45)

uk(x, 0) = u0(x), , x ∈ Ω (46)

Let us introduce hk = Hk −Hk−1, zk = uk − uk−1.

Theorem 2 Let assumptions (32)- (34)) of existence theorem be valid. Then

yk(t) = ||hk||22,Ω + ||∇hk||22,ΩT
+ ||uk||22,Π + ||uk

s ||3/2
3/2,ΠT

≤ (Ct)k−1

(k − 1)!
y0(t) → 0, k →∞, t ≤ T.

Remark 2 To numerical simulate of the independent problems I and II may be applied
well-known finite-difference schemes.

4 Localization Properties of Solutions

In this section we demonstrate the localization properties of solutions of problem SGW
following to the book [3]. We start with the initial-boundary value problem for indepen-
dent equation of diffusion waves EDW (equation (10) with Q = 0).

4.1 Equation of Diffusion Waves(EDW)

Let us consider the following initial boundary value problem

∂u

∂t
=

∂

∂s


 |u|α

∣∣∣∣∣
∂u

∂s

∣∣∣∣∣
−1/2

∂u

∂s


 + fΠ, s ∈ [−1, 1], t ∈ [0, T ], (47)

u(i, t) = u0(t), i = −1, 1, (or
∂u(1, t)

∂s
= 0), (48)

u(s, 0) = u0(s), t ∈]0, T [, (49)

0 < δ ≤ (ui(t), u0(s)) ≤ C0 (50)

4.1.1 Finite time stabilization to a non zero state

Theorem 3 Let conditions (50),(32), be fulfilled and fΠ(s, t) ≡ 0. Then the solution of
problem (47)-(49) is constant beginning with a finite time t∗:

u(s, t) ≡ u0 fors ∈ [0, 1], t ≥ t∗.

If fΠ 6≡ 0, and for some tf > t∗

10
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‖fΠ‖3/2
L2(Ω) ≤ ε

(
1− t

tf

)4

+

, (51)

with a small constant ε, then the following estimate holds:

∥∥∥u(·, t)− u0
∥∥∥
2

L2(Ω)
≤ C

(
1− t

tf

)4)

+

.

Specifically,
u(s, t) ≡ u0, s ∈ [−1, 1], t ≥ tf .

In physical terms, first assertion of the theorem means that the water level in the
channel becomes constant in a finite time provided the external source fΠ is absent (see
figures 7 and 11 ).

If f 6≡ 0 and condition (51) is fulfilled, one can point out the source intensity ε > 0,
such that the water level in the channel stabilizes at the same instant tf when the source
disappears.

4.1.2 Finite speed of propagation. Waiting time phenomenon

Here as opposed to the above stated situation we consider local properties of weak
solution of equation (47) with zero initial data on the interval s ∈[−ρ, ρ],(see figures 8, 9).

Theorem 4 (Finite speed of wetting of a dry bottom) Let u(s, t) ≥ 0 be a weak
solution of equation (47) with α > 1/2 and let

fΠ = 0, u0(s) = u(s, 0) = 0 for|s| ≤ ρ0, t ∈ (0, T ). (52)

Then
u(s, t) = 0 for|s| ≤ ρ(t), θ = θ(α) > 0. (53)

where ρ(t) is defined by the formula

ρ1+σ(t) = ρ1+σ
0 − Ctθ

with constants C = C(C0, α), θ = θ(α), σ = σ(α). If, additionally to (52),

∫ ρ

−ρ
|u0(s)|2ds +

∫ T

0

∫ ρ

−ρ
|fΠ|2dsdt ≤ ε(ρ− ρ0)

1/(1−ν)
+ , ρ0 ≤ ρ,

then there exists t∗ ∈ [0, T ) such that

u(s, t) = 0, s ∈ [−ρ0, ρ0, t ∈ [0, t∗]].

11
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4.2 Coupled Flow of Surface and Ground Waters(SGW)

Let us return to equations (15), (20),(21), with α0 = 0, describing coupled flows. We
will consider weak solutions of equations of this system in the domain Bρ × (0, T ), Bρ =
{x ∈ Ω||x− x0| < ρ}.

4.2.1 Finite Speed of Propagation. Waiting Time Phenomenon.

Theorem 5 Let W = (H, u) be a local weak solution of equations (15) , (20),(21) under
the assumptions

H0(x) = 0, fΩ = 0 (x, t) ∈ Bρ0 × [0, T ),

u0(s) = 0, fΠ = 0 (s, t) ∈ Πρ0 × [0, T ).

Then there exist t∗ ∈ (0, T ) and ρ(t) such that

H(x, t) = 0 x ∈ Bρ(t), u(s, t) = 0 s ∈ Πρ(t), t ∈ [0, t∗]

with ρ(t) defined by the formula

ρ1+σ(t) = ρ1+σ
0 − Ctθ,

with some constant C. If, moreover,

‖H0‖2
L2(Bρ) + ‖u0‖2

L2(Πρ) +
∫ T

0

(
‖fΩ‖2

L2(Bρ) + ‖fΠ‖2
L2(Πρ)

)
dτ

≤ ε (ρ− ρ0)
ϑ
+ , ρ > ρ0, ϑ(α) > 0.

Reverting to the original physical problem we interpret the results as follows. If the
domain Bρ0 was dry at the initial moment i.e. the levels of the surface and ground water
were zero therein, then the first assertion of the theorem gives estimates on the location
of the free boundaries H(x, t) and u(s, t) (see figure 11). The second assertion states that
whatever the flux outside Bρ0 , this domain can only be swamped in a finite non-zero time.

Some presented results and formulations of the problems it is possible to find in [2]-[19].
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Figura 1: Scheme of interaction of underground and surface waters: a) area of modelling;b) interface of
computational grids

Figura 2: Vertical cross-section of the flow domain and plan view
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Figura 3: Vertical cross-section of the flow domain

Figura 4: Plan view

17



S. N. Antontsev, J.I. Dı́az

x
1

x
2

H
-

H
+

E
r

E
S

I
-

I
+

B
r

n
+

n
-

Figura 5: Plan view

River

f
W

f
P f

W

x1x2

uH+ H-

W
-W

+ P

Figura 6: Vertical cross-section of the flow domain

18



S. N. Antontsev, J.I. Dı́az

Figura 7: Stabilization to a stationary state(EDW)

Figura 8: Finite speed of wetting(EDW)

Figura 9: Waiting time of wetting(EDW)
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