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.J I DIAZ & J HERNANDEZ -
Free boundary problems for some

stationary reaction—diffusion systems

1. INTRODUCTION

We give here a brief survey of some recent results concerning the existence
of free boundaries for a class of reaction-diffusion systems arising in
combustion theory. Complementary results and complete proofs can be found
in [11]. '

" Here we consider a model system describing a single, irreversible non-

isothermic stationary reaction
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where ! is a bounded open subset of Rn with smooth boundary 30, pz is the Thiele

number, v is the Prater temperature and y is the Arrhenius number (cf. [21).
The function F is assumed to be increasing and such that F(0) = 0, F(1) =1
and F(s) > 0for s > 0. The unknowns u and v are non-negative and they
represent, respectively, the concentration and temperature of the reactant.
pften F takes the form F{u) = up, where p »'0 is the reaction order (cf. [21).
In the case p = 0, F is given by F(0) = 0 and F(s) =1 if s > 0. (Thus, F is
discontinuous.) ’ - .

Existence and uniqueness results for the parabolic problem associated
with (1.1) and (1.2) were given in [1] and [3] for p = 1. Existence and, 1N
some particular cases, uniqueness. for the elliptic problem can be found in
[1] or [12], again for p = 1. The case 0 < p < 1 is considered in [2], p. 31!
(cf. also [14]) but existence theorems are not given. It is shown in [2] and
[14] that for p strictly positive soTutions cannot
It is also shown, in particular examples, that the set 9 =
= 0}, which is called the dead core, has positive measure for

=0 and y 1érge enough,
exist.
{x € 9] ulx)

ﬁhe'main idea used in [14] and other papers 1is to reduce {1.1) and (1.2)

6 a nanlinear elliptic equation for u alone. Here we follow a different

f ach which allows us to include also the case of nonlinear boundary con-
itions, which cannat be handled by the preceding device.

We consider the case of discontinuous F in the framework of maximal mono-
fone graphs (cf. [6]).
@iffus1on systems are given for locally Lipschitz nonlinearities, which is
ot the case here for 0 < p < 1, it is necessary to prove existence in this

As known existence theorems for elliptic reaction-

.Oré general situation. This can be done by following the same lines as [12]
&itﬁua fixed-point argument using coupled sub- and supersolutions and the
resu]ts in [8]. (CFf. [11] for the details.).

we also study the existence and non-existence of a dead core QO where u = 0

nd then the existence of the free boundary 3y (cf. [10] for the case of &

gle equation), Roughly speaking, such a dead core for (1.1) and (1.2}
rises when diffusion is unable to supply enough reactant from outside Q to
each the central region of @ (cf. [14]). This can occur if the reaction
fate F(u 1Y VDY penaing high for small u.
;epends on three main factors: the reaction order p, the Thiele number pz,
und the size of 9.
ﬁdVS1ze of the dead core 9 and its dependence on p. All these results are
%d Tected in Theorem | of the following paragraph.

‘Fina11y, we point out that C. Bandle, R.P. Sperb and I.Stakgold have
ained independently similar results for (1.1) and (1.2) by using a

ifferent method.

Thus, the existence of QU

Moreover, we obtain some information about the location

MAIN RESULTS

ere we state our main theorem concerning free boundaries, together with some

[

%ﬁd1cat10ns about the method of proof and the meaning of the results.
We consider the system

- puo+ gfu) f(v) =0 in @ 1
, ' ) [ (2.1)
- bv - glu) glv) =0 in Q
u =g, Vo= gy on aQ = (2.2)
ﬁggre 0 is a bounded open subset of RY with smooth boundary 3. We assume



“that o and B are nondecreasing real continuous functions such that
o(0) = g(0) = 0. (2.3)
f and g are C1 functions satisfying

f(s) = my > 0 and 0<g(s)<m, forsce R. (2.4)

bgs by € C'(30), &y, 8, > 0 on 30 (2.5)

The main theorem in this paper s the following:

THEOREM 1. Assume that (2.3)-(2.5) are satisfied. Then there exists at
Teast one solution (u,v) of (2.1) and (2.2) with u,v € w °T(Q) for any

1er <+, and v >0o0n. Moreover, we have

(i) If afs) =Auzls|p'1s and (u,v) is any solution of (2.1) and (2.2),

then a dead core for u may exist only if 0 <p < 1.

(i) tet afs) = u2|s1p"1 with 0 < p <1 and let {u,v) be a solution of
(2.1) and (2.2), For A >0 let @, = {x € Q{f(v(x)) = A}. Then

1-p

- (39 - supp ¢1)) > (R—M——)T} (2.6)

Qn o {x € @ Jd(x,30
0 A A .

where M = ||¢, || and
%G
_ (2N(1-p)+4pp-T

K
AsH \Au {1-p)

= 0 can be handled in a completely similar way by

Remark 2.1.
= uzsg(s) and we also obtain the estimate (2.6)

considering the graph o(s}

The case p

for some M > 0.

Remark 2.2. An estimate similar to (2.6) still holds in the case of non-
homogeneous nonlinear boundary conditions if 2 has some geometr1ca1 propertie:
and, in particular, if Q is convex. Cf. [11] for the details.

The above theorem is particularly interesting if m, >0 in (2.4) (this
condition is satisfied in the case of the comhustion svstem (1.1) and {1.2)):

1-p
M Y2

Q k]
0> {x € Q|d(x.,3Q) > (—Kk,u) }

We see that K
Ayl

of a dead core can only be guaranteed by estimate (2.6) if, for exampie

”;¢£ > 0 aon 2%. + + = if u + + »; therefore the existence

Then, for a
'ed Q, it is clear that for u large enough, QO has a positive measure.

Th proof of Theorem 1 can be carried out by using results for a single
n11near equation, but not in the usual way for the combustion probiem. In
fact, if (u,v) is a solution of (2.1) and (2.2) with a(s) = U2|s|p 1s, then

s

sat1sf1es
- Ay + f(x) a{u) = F(x}) in® _ (2.7)

u = ¢1 on ofl (2.8)

%here £ x) f(v(x) a.e. on 2 and F = O.

Many authors have studied the subset QU for the problem (2.1) and (2. 2)
ft’ e.q., [41, (51, [71, [91, [10], [13], £157) but to the best of our
knowledge, all the existing results concern the case f = constant. Our
sults here follow the ideas in [10].

The main ingredient for- the proof of Theorem 1 is the following auxiliary
fresult.

WEMMA 1. Let F e L (), @€ ¢! (52) and suppose that u € HE(Q) satisfies

- du(x) + RO OO k) = Fx) dn @ (2.9)

u= o on 39 (2.10)

a¥]
@:herefu (@), f>0onqand 0 <p <l txealF(x) A,

if we define QA =
%A > 0 we have the estimate



- (x e aulx) = 0} 5 [x € 2 |d(x,8(8, - supp F) |
Jf?l (2.1
- (30 - supp ) > (Kfl;) "}

-

1
F ) —
Here M = max {(1L~JLL§iEQ>p, I3 }and K, s given by

AU S ()
20(1-p)+4p \1/(p-1)
KA:U (}\ (1 - p ) :

Sketch of the proof. Simple compar1son arguments allow us te consider only
the case F >0, ¢ > 0. If uy € H ( ) satisfies

2 S
- Auy + Au lullp > F in QX
Uy > ¢ on a2, N 30 (2.12)
u, > jjull o on 3Q, - N
. (2) *

it is not difficult to show by using comparison results in [107 that
0 <u(x) < UA(X) a.e. on (the same argument works on any subset of @, ).
Therefore estimate {2.11) w111 follow by constructing such functions u,. We
Took for u, of the form u (X = h(|x-xg|) for some X, € O,

For O < n < 1 fixed, 1et h be a solution of the Cauchy probiem

h;(r)
hn(O)

2 p-1
nAl lhﬂ(r)l hn(r) } (2.13)

h%(ﬂ) = 0.

It is easy to check that
2

h(r)=L ;Tﬁi )
n n

where Ln is a constant explicitly given, is a solution of (2.13), If

1+ p+ (N-1)(1-p)

0 «<nc<

then for any x € RA’

-Ahn(lx-xgi) + A hn(\x—xoi)

&hd from this it follows that the function

2
- - T-p
UA(X) = Kxgulx xO[
catisfies
n
- s +Apf =0 = F(x) dng
n
u, > 0=4¢ onann (30 - supp ¢)
) v
Where @ =, - supp F. Hence it is sufficient to have

4" n
} on 32 - (89 n (8% - supp ¢)) (2.14)

u, >max {4, {lul] _
A (@)

. . n a,

o obtain 0 < u(x) < ul(x) on Q. But by the maximum principle u <M on Q

land then (2.14) is satisfied if we choose x, such that
n 1-p

M )‘Z—

I - xg| > (K;7: (2.15)

/ﬁor any x € an - (30 n (38 - supp-¢)). The conclusion now follaws from
AZ 14), (2.15) and UA(XB) = 0. '
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MIESTEBAN | : -
Compactness results and existence of many
solutions of nonlinear elliptic problems in
smp -like domains

INTRODUCTION

; e shall be interested here in finding nontrivial solutions u of the follow-
ting secord-order nonlinear elliptic problem:

- a4 o= flu) in @

1
u =10 on aq, J (1)

shere f is a given nontinearity, and @ is a strip in RN
here 0 is a bounded domain of R™.

ie., =20 XRD,

‘ ;_This kind of problem, which arises in many physical and mechanical pro-
'ems, has been studied by many authors when @ is bounded. The unboundedness
f n makes it very difficult to find a global solution of (1), because of the
flack of compactness.
. Problem (1) was solved for g = RN {see Berestycki and Lions [3] and Strauss
12]1), and for a few more cases, but the principal fact seemed to prove a
ghertain sort of compactness which permitted the application.of global methods.
“In the case of q = RN, for example, the solutions were sought in the sub-
ispace of H1(RN), which consists of the radial symmetric functions.

When @ is a str1p, it seemed to be important to obtain a certain compact-
\ness using the symmetries of the strip. This is the key result which
Klnables us to obtain global existence resulis.
- The structure of this paper is as follows.

In the first section, we state
;ﬁur principal results and we give the fundamental compactness lemma and some
::ther auxiliary ones. The second sectjon applies the preceding lemmas to the
proof of the existence of a positive solution or many solutions of (1). In
the third section we give some alternative results for a natural eigenvalue
fproblem related to (1). This third part of our work gives us a better idea
Df the situation regarding existence and quantity of solutions of (1).

For more details about these results see Esteban and Liens [7] and
é&ﬁteban [67.



1. MAIN RESULTS AND AUXILIARY LEMMAS

Let 0 be the strip 0 x Rp, where 0 is a bounded domain of R", m > 1, and et
f be a function which satisfies the following assumptions:

f(0) = 0, f(t) = g{t) + vt, with v < A (0), where 1}, (0)
is the first eigenvalue of -A acting on H (D)

_m<m ﬁ<mm=,k<{}; (3)

ot b et T

[im Eﬁéﬂ_ < 0, where £ = Ei%-1f N>2; 2<+o0oifN=2; (4)
trie ¢ .
G(t) 7% is nondecreasing for £t > 0, 0 < Tim G(t) t'e < g @
trw (5)

t
for same 8 > 2, where G(t) = J g(s) ds.
‘ 7D
Then we can-prove the two following theorems:

THEQREM 1. Suppose that p > 2 and let f,g satisfy (2)-(5), then problem (1)
has a solution u € N%ég(ﬂ) n Hé(ﬂ), vq < + =, satisfying:

(i) u > 0-in Q
(ii) u is axially symmetric, i.e., u has the form u(x1,x1) = u(xq,]xll),
vx, €0, wx! o
(iii) if f dis locally HBlder continuous, u € C (ﬂ).

¢ RP; moreover, u is decreas1ng in [x l;

THEOREM 2, If p» 2, if f, g satisfy all the assumptions made above, and if
g is odd, then problem (1) possesses an infinity of distinct solutions which
are axially symmetric and which are in Cz(ﬁ) whenever f is locally Hilder
continuous. ’

Next we give two lemmas that we use in the proof of the abave theorems.
" The first lemma, which generalizes results of Strauss [12], and Berestycki
and Lions 3], is fundamental in all that follows.

DEFINITION, That U € Hé(O % Rp) is axially symmetric if u(x1,x1) = u(x1,|X1H

for all x, € 0, %! E RP,
Let us note by HO (Q) the set of all axially symmetric functions in Hy (9)

‘Then, we can prove fhe f0110wiﬁg.

?EMMA 3. If p > 2, the Sobolev imbedding of HD (2) in L9(R) is compact for
2N

gvery q € (2, f=p)» where N =m + p.

Furthermore, if" {u }is a bounded sequence in HG (%), and if F is a con-

tinuous function wh1ch satisfies:

F(t) = o(tz) as t > 0
2N
F(t) = oftV %) as t + + =,

‘then the sequence {F(un)} is relatively compact in L1(Q).
“The proof of this lemma is given in detail in [7]. It usesin a funda-

‘mental way the radial symmetric with respect to the xl—variabTE.

TEMMA 4. 1f o= 0 xR and 0 < R" is bounded, then for all u € Hy(a), ve
%ave: '

-1

Jlu}z dx < (x,(0)) Jr [ul? dx,
Q 1 Q-

gﬁhere A1(D) is again the first eigenvalue of (-A) acting on Hé(O).
We prove this lemma defining

[t
A= dinf st B
ueHd () J u|? dx
u$0 &

E%?i'ncl noting that x must be actually equal to 11(0).

HZ. PROOF OF THEOREMS 1 AND 2

"Proof of Theorem 1. First we modify g, defining

g(t) for t >0
0 = { ,
0 for t< 0.
It is clear that the positive sclutions of (1) will be ‘the same if we

- a,
‘Change g to g.

Then a satisfies the stronaer conditions



rim 9B oy,
t+0*
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Now we define a functional S by
S(u) = % J IVU[Z dx - % J ]u|2 dx - J G{u) dx,
Q Q Q

and we verify that S is a good c!-functional on E = Hé el

The existence of a positive soiution of (1) f011ows,from the application
of a critical point theorem of P. H. Rabinowitz (see Theorem 3.9 1in [1]) -to
the functional S, for it is clear that critical points of S are solutions of
(1). ' ‘ '

Then, the proof of Theorem 1 consists in verifying that all conditions
needed in the critical point theorem we want to apply are accomplished.

The most interesting point of the proof is the verification of the Palais-
Smale condition in which we strongly use Lemma 4.

The decreasingness in |x1| of the solution is proved by the application of
some results of Gidas and Nirenberg [8].

Proof of Theorem 2. This is very similar to the above.' The only modifi-

N
cations are that now we do not replace g by g, and that the critical point
result used is another one (Theorem 3.37 in [1]) which takes into account
the evenness of S.

Remark. If f is locally H8lder continuous we use a bootstrap argument to
prove that u € (@),

Remark. The-casep =1, ¢ = 0 xR, is a Tittle different, because now we
cannot apply any compactness resuit, and so we cannot use a global method
to prove the existence of solutions of (1) inq = 0 xR.

In this case we must use a 'local' method which consists in solving (1)
ingy =0 x (-R,R). Then we find for every R> R, a positive solution up of
(1) in Qq.

Then we obtain a priori uniform estimates on the Up and we prove the
symmetry of Up with respect to the R-variable, and the decreasingness of
uuvwfwy>0
" Next we apply a version of Lemma 3 which provides us with the compactness
@e need. This Temma states the follewing:

LEmA 5. Letp =1, g€ (2, 1), N = mel. Then, if 2= 0 xR, 0 R
LA
bounded, and if we denote by K the cone of H (Q) defined by

={ue Hé(n)]u > 0 in @; u(x,y) non-increasing in
y for x € 0, y » 0; u(x,y) non-decreasing in
y forx €0, y< 0}.

Then, the Sobo]ev imbedding from Hy (Q) into LY(Q) maps bounded closed sets
1n K into compact sets.

‘The application of this lemma enables us to pass to the 1imit as R + + o,
fand to find a positive solution of {1) in @ = 0 xR.

3. AN EIGENVALUE PROBLEM RELATED TO (1)

R

Let us now focus our attention on the following problem:

Ad + Af(u) =0 in Q
} (6)

u=10o0n 3

Wwhere @ = 0 x Rp, 0 «R™ is bounded, p,m > 1, and where f satisfies {3), (4)
and '

F(0) =0, f{t) =0vt <O {7)
3¢ > 0 such that F(z) > 0, (8)
. t
iwhere  F(t) = J f(s) ds.
0

To solve (6) we consider the following minimization problem:

Minimize J(v} = % Jo ]Vv|2 dx over Kiy2 {(9)



.sequence, but now it will be in Hé S(ﬂ).

;
where K= {v € HU(Q)IJ F(v) dx > n}.
n Q.
Under the above assumptions we can state the following.

THEOREM 6. For every n > 0 problem (9) has a solution u € Hg(ﬁ) n N?ég(ﬂ)
(vq < + «), which is positive and axially symmetric, i.e. u € HU,S(Q)’
u(x1,x1) is decreasing with respect to lxllland u satisfies /g F(u) dx = n,

Moreover, there exists a Lagrange multiplier A > 0 for which (u,*) is a
solution of (6).

Remarks

. (1) This theorem gives an extension of Pohozaev's results [11] for the
case of strip-1ike domains. .
{2) The fact that we can solve (6) without making assumption (5) on f
suggests to us that (5) is no more than a technical hypothésié, which can
probably be disregarded.

Prodf. First we prove that for every n > 0, the minimizing set Kn is not

empty. Then we take a minimizing sequence, and we consider the Steiner
symmetrizations of its elements. This sequence will be another minimizing
Then we can apply Lemma 3 to find
a solution of problem (9). ’ _

To conclude we see that for this u € Hé S(Q) n wz’q(n) (vq < + =} there

» Toc
exists A > 0 such that (u,A) is a solution of (6).

Finally, the positiveness of u follows from the strong maximum principle.

CONCLUSION

The results we give in this paper answer the question of the existence of
solutions of (1). As we have already pointed out, it seems to us that the
hypotheses made to solve (1) are not the best. Assumptions {2)-(4) seem to
be optimal but it should be possible to find a different proof which would

not use assumption (5), or that would consider a weakened version of it.
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